IHRS-Biosoft Abstract Book

Total Page:16

File Type:pdf, Size:1020Kb

IHRS-Biosoft Abstract Book 1st BioSoft symposium Biophysical approaches to understand life at different scales Forschungszentrum Jülich ± 6th November 2014 Within the scope of the graduate school program International Helmholtz Research School in Biophysics and Soft Matter (IHRS BioSoft), the fellows are pleased to organize the first networking event. We hope that our efforts help to foster a series of events in the near future. This meeting brings together researchers using quantitative approaches towards the biophysical understanding of different physiological processes essential to life. The sheer complexity of living organisms poses a jumbled puzzle to solve when studying processes like the development of an early embryo or the maturation of pathogenic behaviors. Recent developments in biotechnology, molecular biology, biochemistry and biophysical modeling have fostered unprecedented approaches to unravel the multidimensional facets of such complex pathways. Our workshop aims at providing an interdisciplinary platform to bring together the complementary skills of experimentalists and theoreticians (spanning as many involved fields as possible) in order to understand the role of forces, flow and fluctuations within biological systems. The 7 proposed talks specifically address 3 major themes: 1. Bioadhesion, cytoskeleton and cell motility 2. Tissue growth and morphogenesis 3. Collective behaviors in biological networks The proposed themes focus on cellular behavior at different scales ranging from the single cell level to multicellular-aggregates like tissues, and even encompass complex biological networks. A major goal is to provide a platform for students and young scientists to present and discuss their work with other students and expert researchers, in order to promote the mutual exchange of ideas and facilitate the development of novel research directions. Looking forward to seeing in Juelich, Sabyasachi Dasgupta, Guglielmo Saggiorato, Gloria Fabris, and Melanie Balbach Schedule 9:00 - 9:10 Introduction to the symposium 9:10 - 10:05 Biomimetics (T1) A. Roux ± Univ. of Geneva (Switzerland) Mechanics of protein coats in cell membrane traffic 10:05 - 11:00 Cytoskeleton (T2) J. Guck - TU Dresden (Germany) How cells feel - and why that©s important 11:00 - 11:15 Coffee & tea break 11:15 - 12:15 Cell Adhesion (T3) E. Sackmann - TU München (Germany) Physics of Cell Adhesion 12:15-14:15 Poster Session @ Lunch 14:15 - 15:15 Collective Behavior (T4) P. Silberzan - Institut Curie, Paris (France) Imposing and releasing confinement to an epithelium 15:15 - 16:15 Bionetworks (T5) T. Mora - ENS, Paris (France) Inferring the statistical mechanics of collective phenomena 16:15 - 16:45 Coffee & tea break 16:45 - 17:45 Morphogenesis (T6) P. F. Lenne - IBDM, Marseille (France) Mechanics of cell contacts during tissue morphogenesis 17:45 - 18:45 Developmental Biology L. Hufnagel - EMBL Heidelberg (Germany) (T7) BioImaging across scales with light-sheet microscopy: from cells to embryos 18:45 - 19:00 Valedictory remarks Talk abstracts T1. Aurelien Roux Mechanics of protein coats in cell membrane traffic Proteins involved in membrane traffic transiently interact with lipid membranes in order to remodel them, i.e. to deform them, cut and fuse them. But lipid membrane are not passive in these processes, they are visco-elastic surfaces which require energy to be remodeled. In this talk I will review a few studies where we show that the elastic energy of the membrane impacts the function of protein assemblies in membrane traffic. In particular, we will show how membrane tension and rigidity competes with clathrin budding and dynamic fission reactions, and I will show how ESCRT proteins have evolved to deform membranes by buckling. T2. Jochen Guck How cells feel - and why that©s important While most current biological research focuses on molecular, biochemical aspects of cell function, we are interested in the mechanical properties of cells and tissue and their importance for biological function. The mechanical strength of cells is largely determined by the cytoskeleton, an internal polymer hybrid network intricately regulated by many signaling pathways. This cytoskeleton evolves during physiological changes, such as differentiation, is involved in many cellular functions, such as migration, and is characteristically altered in pathologies, including cancer or inflammation. We can exploit the deformability of the cytoskeleton as a link between molecular structure and biological function to sensitively monitor these functional changes using an optical stretcher and a novel, high-throughput microfluidic technique. Our results indicate that the material properties of cells define their function, can be used as an inherent cell marker and could serve as target for novel therapies. T3. Erich Sackmann Physics of Cell Adhesion Cells migrate by ongoing formation of adhesion domains at the leading front and their dismantling at the trailing end. Protruding forces are generated by sequential generation of solitary actin gelation waves protruding form adhesion domains (AD). The AD are formed by interplay of generic and specific interfacial forces and act both as force transmitting feet and biochemical reaction centers controlling actin polymerization and actin-microtubule crosstalk. Actin polymerization serves the generation of protrusion forces while microtubules drive the motion of the cell body. The global polarization of migrating cells is mediated by actin microtubule crosstalk. The short range cell polarization is controlled by the competition of antagonistic GTPase controlled biochemical pathways. that promote actin gelation at the front of migrating cells and AD dismantling at the trailing ends , respectively. Insight into the actin microtubule crosstalk is gained by magnetic tweezer micro-rheometry. Microinterferometry (RICM) serves the observation of adhesion domains and the measurement of adhesion and transmission forces. T4. Pascal Silberzan Imposing and releasing confinement to an epithelium Epithelial tissues, for which cells maintain contacts with their neighbors, exhibit collective behaviors largely controlled by cell-cell interactions. In this context confinement and boundary conditions play an important role in the dynamics of these cell assemblies. Interestingly, many in vivo processes, including morphogenesis or tumor maturation, involve small populations of cells within a spatially restricted region. Cells confined on finite, population-sized domains exhibit both collective rotation with stochastic reversals and low-frequency radial displacement modes. When this boundary condition is removed, we observe the collective migration of these epithelia. In the first stages, the essential characteristics of these collective dynamics in these two situations are well described by the same model in which cells are described as persistent random walkers which adapt their motion to that of their neighbors. However, at late stages, cells in confined epithelia develop a tridimensional structure in the form of a peripheral cell cord at the domain edge. Epithelial confinement by itself is thus observed to induce morphogenetic-like processes including spontaneous collective pulsations and transition from 2D to 3D. References: [1] Deforet, M., Hakim, V., Yevick, H. G., Duclos, G. & Silberzan, P. Emergence of collective modes and tridimensional structures from epithelial confinement. Nat. Commun. 5, 1±9 (2014). [2] Reffay, M. et al. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat. Cell Biol. 16, 217 (2014). [3] Sepúlveda, N. et al. Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model. PLoS Comput. Biol. 9, e1002944 (2013). T5. Thierry Mora Inferring the statistical mechanics of collective phenomena Collective phenomena are emergent events that cannot simply be explained as a sum of individual behaviors. They are relevant at many scales in biology, from the collective dynamics of neural networks to the concerted motion of bird flocks. Focusing on these two examples, I will show how the tools and concepts of statistical mechanics, when applied directly to experimental data, can be used to gain insight about the collective behavior of complex biological systems. T6. Pierre - François Lenne Mechanics of cell contacts during tissue morphogenesis Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell-cell and cell-extracellular matrix contacts to apply local forces on adhesive structures. Using quantitative imaging and force measurements in vivo, we study how cell-cell contacts are organized and how subcellular tensile forces are transmitted to drive tissue morphogenesis. T7. Lars Hufnagel BioImaging across scales with light-sheet microscopy: from cells to embryos Developmental processes are highly dynamic and span many temporal and spatial scales. A whole-embryo view of morphogenesis with subcellular resolution is essential to unravel the interconnected dynamics at the varying scales of development, from interactions within cells to those acting across the whole embryo. Bridging scales from the submicron to the millimeter range with a temporal resolution of several seconds (combined with a total imaging time of several hours) not only poses tremendous challenges for modern microscopy methods but also requires powerful computational approaches for data handling, processing
Recommended publications
  • 5892 Cisco Category: Standards Track August 2010 ISSN: 2070-1721
    Internet Engineering Task Force (IETF) P. Faltstrom, Ed. Request for Comments: 5892 Cisco Category: Standards Track August 2010 ISSN: 2070-1721 The Unicode Code Points and Internationalized Domain Names for Applications (IDNA) Abstract This document specifies rules for deciding whether a code point, considered in isolation or in context, is a candidate for inclusion in an Internationalized Domain Name (IDN). It is part of the specification of Internationalizing Domain Names in Applications 2008 (IDNA2008). Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5892. Copyright Notice Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
    [Show full text]
  • Kyrillische Schrift Für Den Computer
    Hanna-Chris Gast Kyrillische Schrift für den Computer Benennung der Buchstaben, Vergleich der Transkriptionen in Bibliotheken und Standesämtern, Auflistung der Unicodes sowie Tastaturbelegung für Windows XP Inhalt Seite Vorwort ................................................................................................................................................ 2 1 Kyrillische Schriftzeichen mit Benennung................................................................................... 3 1.1 Die Buchstaben im Russischen mit Schreibschrift und Aussprache.................................. 3 1.2 Kyrillische Schriftzeichen anderer slawischer Sprachen.................................................... 9 1.3 Veraltete kyrillische Schriftzeichen .................................................................................... 10 1.4 Die gebräuchlichen Sonderzeichen ..................................................................................... 11 2 Transliterationen und Transkriptionen (Umschriften) .......................................................... 13 2.1 Begriffe zum Thema Transkription/Transliteration/Umschrift ...................................... 13 2.2 Normen und Vorschriften für Bibliotheken und Standesämter....................................... 15 2.3 Tabellarische Übersicht der Umschriften aus dem Russischen ....................................... 21 2.4 Transliterationen veralteter kyrillischer Buchstaben ....................................................... 25 2.5 Transliterationen bei anderen slawischen
    [Show full text]
  • Partículas Y Materia Oscura Arxiv:2004.01021V1 [Hep-Ph]
    UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Departamento de Física Fenomenología de modelos supersimétricos: partículas y materia oscura Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área Ciencias Físicas por Lic. Andres Daniel PEREZ arXiv:2004.01021v1 [hep-ph] 2 Apr 2020 Director de Tesis: Dr. Daniel Elbio LOPEZ-Fogliani Consejero de Estudios: Dr. Claudio M. SIMEONE Lugar de Trabajo: Instituto de Física de Buenos Aires, UBA-CONICET, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, 2020 Resumen Dilucidar la composición de la materia oscura es uno de los temas abiertos más importantes en la fenomenología de partículas y astropartículas. Para ello, es necesario contar con un marco teórico de trabajo, y poder contrastar los resultados con experimentos capaces de detectar una señal proveniente de la materia oscura. Con respecto al marco teórico, los modelos supersimétricos se encuentran muy bien motivados y ofrecen candidatos viables a materia oscura. Por consiguiente, el compañero supersimétrico del gravitón, conocido como gravitino, surge como un candidato natural ya que solo es necesario asumir la existencia de gravedad en un contexto supersimétrico. En el marco de las extensiones supersimétricas mínimas del modelo estándar de partículas fundamentales, el ‘mu-from-nu supersymmetric standard model’, µνSSM, es capaz de reproducir toda la fenomenología conocida, incluyendo la masa y ángulos de mezcla de los neutrinos, dando además la posibilidad de encontrar señales de nueva física en un futuro cercano. Trabajando en el modelo mencionado, se estudió la detección en experimentos como Fermi– LAT de señales de rayos gamma provenientes del decaimiento del gravitino como materia oscura.
    [Show full text]
  • The Unicode Standard 5.1 Code Charts
    Cyrillic Extended-B Range: A640–A69F The Unicode Standard, Version 5.1 This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 5.1. Characters in this chart that are new for The Unicode Standard, Version 5.1 are shown in conjunction with any existing characters. For ease of reference, the new characters have been highlighted in the chart grid and in the names list. This file will not be updated with errata, or when additional characters are assigned to the Unicode Standard. See http://www.unicode.org/errata/ for an up-to-date list of errata. See http://www.unicode.org/charts/ for access to a complete list of the latest character code charts. See http://www.unicode.org/charts/PDF/Unicode-5.1/ for charts showing only the characters added in Unicode 5.1. See http://www.unicode.org/Public/5.1.0/charts/ for a complete archived file of character code charts for Unicode 5.1. Disclaimer These charts are provided as the online reference to the character contents of the Unicode Standard, Version 5.1 but do not provide all the information needed to fully support individual scripts using the Unicode Standard. For a complete understanding of the use of the characters contained in this file, please consult the appropriate sections of The Unicode Standard, Version 5.0 (ISBN 0-321-48091-0), online at http://www.unicode.org/versions/Unicode5.0.0/, as well as Unicode Standard Annexes #9, #11, #14, #15, #24, #29, #31, #34, #38, #41, #42, and #44, the other Unicode Technical Reports and Standards, and the Unicode Character Database, which are available online.
    [Show full text]
  • Data-Driven Object Segmentation Via Local Shape Transfer
    PatchCut: Data-Driven Object Segmentation via Local Shape Transfer Jimei Yang1, Brian Price2, Scott Cohen2, Zhe Lin2, and Ming-Hsuan Yang1 1UC Merced 2Adobe Research Figure 1: Overview of proposed object segmentation algorithm using examples. Given a test image and a set of segmentation examples, our algorithm first performs multiscale image matching in patches by PatchMatch. The local shape masks within the matched patches are then transferred to represent the patch-wise segmentation candidates for the test image. Finally, local mask candidates are selected based on MRF energy function to produce the segmentation in a coarse-to-fine manner. Abstract Recent methods [29, 20] show that object segmentation can be solved efficiently with a carefully prepared bounding Object segmentation is highly desirable for image un- box around the target and further refined by user inputs. In derstanding and editing. Current interactive tools require a these interactive algorithms [6, 29, 20], color is commonly great deal of user effort while automatic methods are usu- used to separate foreground from background. Although ally limited to images of special object categories or with more complex image cues such as textures are shown to be high color contrast. In this paper, we propose a data-driven useful to improve segmentation performance [34], a criti- algorithm that uses examples to break through these limits. cal source of information, object shape, is clearly missing As similar objects tend to share similar local shapes, we in these algorithms. Similar situations exist in salient object match query image patches with example images in mul- segmentation [28, 25,8] in that most of algorithms work tiscale to enable local shape transfer.
    [Show full text]
  • ISO/IEC International Standard 10646-1
    JTC1/SC2/WG2 N3381 ISO/IEC 10646:2003/Amd.4:2008 (E) Information technology — Universal Multiple-Octet Coded Character Set (UCS) — AMENDMENT 4: Cham, Game Tiles, and other characters such as ISO/IEC 8824 and ISO/IEC 8825, the concept of Page 1, Clause 1 Scope implementation level may still be referenced as „Implementa- tion level 3‟. See annex N. In the note, update the Unicode Standard version from 5.0 to 5.1. Page 12, Sub-clause 16.1 Purpose and con- text of identification Page 1, Sub-clause 2.2 Conformance of in- formation interchange In first paragraph, remove „, the implementation level,‟. In second paragraph, remove „, and to an identified In second paragraph, remove „with an implementation implementation level chosen from clause 14‟. level‟. In fifth paragraph, remove „, the adopted implementa- Page 12, Sub-clause 16.2 Identification of tion level‟. UCS coded representation form with imple- mentation level Page 1, Sub-clause 2.3 Conformance of de- vices Rename sub-clause „Identification of UCS coded repre- sentation form‟. In second paragraph (after the note), remove „the adopted implementation level,‟. In first paragraph, remove „and an implementation level (see clause 14)‟. In fourth and fifth paragraph (b and c statements), re- move „and implementation level‟. Replace the 6-item list by the following 2-item list and note: Page 2, Clause 3 Normative references ESC 02/05 02/15 04/05 Update the reference to the Unicode Bidirectional Algo- UCS-2 rithm and the Unicode Normalization Forms as follows: ESC 02/05 02/15 04/06 Unicode Standard Annex, UAX#9, The Unicode Bidi- rectional Algorithm, Version 5.1.0, March 2008.
    [Show full text]
  • Cargosoft Gmbh – Logistic Software and Consulting from Experts for Experts
    CargoSoft GmbH – Logistic Software and Consulting from Experts for Experts The Business Our central software solutions CargoSoft GmbH creates logistic information systems with global reach for our customers. A subsidiary of the Hamburg-based DAKOSY AG since CargoSoft TMS 2007, CargoSoft is considered to be a leading supplier of transport ma- The Transport Management System (TMS) from CargoSoft is an efficient, nagement solutions for international shipping and industrial businesses. user-friendly software package – and the optimal tool for the complex daily challenges in transport and logistics. Its modular construction With more than fifty employees, our business offers forward-looking lets CargoSoft TMS adapt exactly to individual requirements – even solutions from a single source from its premises at the Technology Park retrospectively, if necessary. Additional CargoSoft modules can always University in Bremen. The central asset of its portfolio is the interna- be incorporated to expand the basic application. tionally successful eLogistic sector solution CargoSoft TMS, which is already in use at more than four hundred businesses on all five conti- CargoSoft GLA nents. This success is based primarily on the fact that CargoSoft TMS is consistently geared to the complex necessities of the transport sector. CargoSoft Global Logistic Access (GLA) visualizes the phases of the logistics chain for all participating partners – transparently and in real In 2009, due to the strong demand on the international market, time within a unified system. CargoSoft GmbH opened another branch office in Singapore. The continual growth of the business demonstrates one thing above all: CargoSoft CRM that CargoSoft rises to meet new challenges dynamically and con- CargoSoft CRM enables a systematic presentation across all depart- tinues to develop its solutions and services consistently with an eye ments and even branch offices, and management of all customer-rela- to the sector’s future challenges.
    [Show full text]
  • Optimization of Load-Driven Soft Dielectric Elastomer Generators
    Available online at www.sciencedirect.com ScienceDirect Procedia IUTAM 12 ( 2015 ) 42 – 51 IUTAM Symposium on Mechanics of Soft Active Materials Optimization of load-driven soft dielectric elastomer generators Eliana Bortota, Roberta Springhettia, Gal deBottonb, Massimiliano Geia,∗ aDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy; bDepartment of Mechanical Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 8410501, Israel. Abstract The performance of energy harvesting generators based on dielectric elastomers is investigated in this contribution. The amount of energy extracted by a four-step load-driven cycle is constrained by structural instabilities due to the loss of tension, the electric breakdown and the ultimate stretch ratio. To identify the optimal cycle complying with these limits, we formulate a constraint optimization problem proving the dependency of the generator performance on the ultimate stretch ratio and, moreover, a universal limit on the dielectric strength beyond which the optimal cycle is independent of this parameter. Thus, we reveal that there is an upper bound on the amount of harvested energy that depends only on the ultimate stretch ratio. ©c 20142014 TheThe Authors. Authors. Published Published by byElsevier Elsevier B.V. B.V. This is an open access article under the CC BY-NC-ND license (Peer-reviehttp://creativecommons.org/licenses/by-nc-nd/3.0/w under responsibility of Konstantin Volokh). and Mahmood Jabareen. Peer-review under responsibility of Konstantin Volokh and Mahmood Jabareen. Keywords: Energy harvesting; electro-active polymers; smart materials; optimization; electroelasticity 1. Introduction A particularly promising technology to harvest energy from renewable resources such as sea waves, wind, human gait and others is that based on soft dielectric elastomers (DEs) 1,2,3,4,5,6,7.
    [Show full text]
  • Congressional-Executive Commission on China Annual
    CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2011 ONE HUNDRED TWELFTH CONGRESS FIRST SESSION OCTOBER 10, 2011 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: http://www.cecc.gov VerDate Mar 15 2010 19:28 Oct 07, 2011 Jkt 000000 PO 00000 Frm 00001 Fmt 6011 Sfmt 5011 U:\DOCS\AR11FIN.TXT DEIDRE 2011 ANNUAL REPORT VerDate Mar 15 2010 19:28 Oct 07, 2011 Jkt 000000 PO 00000 Frm 00002 Fmt 6019 Sfmt 6019 U:\DOCS\AR11FIN.TXT DEIDRE CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA ANNUAL REPORT 2011 ONE HUNDRED TWELFTH CONGRESS FIRST SESSION OCTOBER 10, 2011 Printed for the use of the Congressional-Executive Commission on China ( Available via the World Wide Web: http://www.cecc.gov U.S. GOVERNMENT PRINTING OFFICE 68–442 PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Mar 15 2010 19:28 Oct 07, 2011 Jkt 000000 PO 00000 Frm 00003 Fmt 5011 Sfmt 5011 U:\DOCS\AR11FIN.TXT DEIDRE CONGRESSIONAL-EXECUTIVE COMMISSION ON CHINA LEGISLATIVE BRANCH COMMISSIONERS House Senate CHRISTOPHER H. SMITH, New Jersey, SHERROD BROWN, Ohio, Cochairman Chairman MAX BAUCUS, Montana CARL LEVIN, Michigan DIANNE FEINSTEIN, California JEFF MERKLEY, Oregon SUSAN COLLINS, Maine JAMES RISCH, Idaho EXECUTIVE BRANCH COMMISSIONERS SETH D. HARRIS, Department of Labor MARIA OTERO, Department of State FRANCISCO J. SA´ NCHEZ, Department of Commerce KURT M.
    [Show full text]
  • Cyrillic # Version Number
    ############################################################### # # TLD: xn--j1aef # Script: Cyrillic # Version Number: 1.0 # Effective Date: July 1st, 2011 # Registry: Verisign, Inc. # Address: 12061 Bluemont Way, Reston VA 20190, USA # Telephone: +1 (703) 925-6999 # Email: [email protected] # URL: http://www.verisigninc.com # ############################################################### ############################################################### # # Codepoints allowed from the Cyrillic script. # ############################################################### U+0430 # CYRILLIC SMALL LETTER A U+0431 # CYRILLIC SMALL LETTER BE U+0432 # CYRILLIC SMALL LETTER VE U+0433 # CYRILLIC SMALL LETTER GE U+0434 # CYRILLIC SMALL LETTER DE U+0435 # CYRILLIC SMALL LETTER IE U+0436 # CYRILLIC SMALL LETTER ZHE U+0437 # CYRILLIC SMALL LETTER ZE U+0438 # CYRILLIC SMALL LETTER II U+0439 # CYRILLIC SMALL LETTER SHORT II U+043A # CYRILLIC SMALL LETTER KA U+043B # CYRILLIC SMALL LETTER EL U+043C # CYRILLIC SMALL LETTER EM U+043D # CYRILLIC SMALL LETTER EN U+043E # CYRILLIC SMALL LETTER O U+043F # CYRILLIC SMALL LETTER PE U+0440 # CYRILLIC SMALL LETTER ER U+0441 # CYRILLIC SMALL LETTER ES U+0442 # CYRILLIC SMALL LETTER TE U+0443 # CYRILLIC SMALL LETTER U U+0444 # CYRILLIC SMALL LETTER EF U+0445 # CYRILLIC SMALL LETTER KHA U+0446 # CYRILLIC SMALL LETTER TSE U+0447 # CYRILLIC SMALL LETTER CHE U+0448 # CYRILLIC SMALL LETTER SHA U+0449 # CYRILLIC SMALL LETTER SHCHA U+044A # CYRILLIC SMALL LETTER HARD SIGN U+044B # CYRILLIC SMALL LETTER YERI U+044C # CYRILLIC
    [Show full text]
  • Lizenz Mit Logo.Pmd.Pmd
    LIZENZVEREINBARUNG Lizenz Nr. _____________ Lizenzgeber: Lizenznehmer: Firma/Name: Abteilung: Firma Straße: ConSoft GmbH Computertechnik Ort: Markgrafstraße 5 Telefon: D-30419 Hannover Telefax: Telefon (0511) 979869-0 E-Mail: Wir, die Lizenzgeber, und Sie, der Lizenznehmer, treffen hiermit, um zwischen uns keine Missverständnisse aufkommen zu lassen, folgende Vereinbarung: 1. Wir werden Sie auftragsgemäß mit der bestellten Soft- Eine weitere Gewährleistung und Haftung, insbeson- ware in Form einer CD beliefern. dere für solche Mangelfolgeschäden, die aus dem Ein- satz der gelieferten Software entstehen können, ist 2. Sie erkennen an, dass die von uns gelieferte Software ausgeschlossen. im vollen Lieferumfang für uns urheberrechtlich ge- schützt ist. 8. Wir sind berechtigt, diesen Vertrag fristlos zu kündi- gen, wenn Sie gegen die Ziffern 4 oder 5 dieses 3. Mit der Bezahlung des Kaufpreises erwerben Sie das Vertrages verstoßen haben. Dann sind Sie verpflich- Recht, die gelieferte Software auf einem Computer Ihrer tet, die Arbeit mit der gelieferten Software einzustel- Wahl einzusetzen. Sie erhalten das Nutzungsrecht, len (siehe Ziffer 10). Die Geltendmachung weiterge- nicht das Eigentum an der Software. hender Ansprüche bleibt hiervon unberührt. 4. Sie dürfen auf Ihre Kosten von der gelieferten Software 9. Da wir Ihnen gemäß Ziffer 4 und 5 ein besonderes eine Arbeitskopie erstellen, die mit unserem Copyright- Vertrauen entgegenbringen, verpflichten Sie sich, für vermerk zu versehen ist. Jede darüber hinausgehende jeden Fall der Zuwiderhandlung gegen Ziffer 4 und 5 Vervielfältigung der Software ist unzulässig. dieses Vertrages an uns eine Vertragsstrafe in Höhe des 8-fachen Betrages unseres am Tage der Zuwider- 5. Sie verpflichten sich, die von uns gelieferte Software im handlung geltendenden Listenpreises für die miss- vollen Lieferumfang und die von Ihnen selbst angefertig- brauchte Software zu zahlen.
    [Show full text]
  • Energy- and Facility Management Software Energy- Und Facility Management Software
    Energy- and Facility Management Software Energy- und Facility Management Software Vitricon is a facility management software designed for all lifecycle phases for the acquisi- tion and administration of real estate, buildings and technical facilities as well as all related processes. As a web-based application, Vitricon FM serves as a holistic solu- tion concept in order to transparently and comprehensively depict and optimize the FM processes in the context of the management of real estate. In order to be able to demonstrate and guarantee high quality, Vitricon FM is subjected to regular audits. Our CAFM software is certifi ed according to the GEFMA guideline 444. Vitricon EM is a software specially designed for energy manage- ment. The web-based application off ers countless established in- terfaces for building automation, data loggers and other meter reading systems. Simple input masks (Wizard), a fl exible report de- sign kit and comprehensive plausibility and evaluation functions help you to enter and monitor your metering and consumption values. Extensive interfaces and standards allow for easy implementation and rapid success in using the system. Due to the modular design, new modules can be relicensed at any time. In ad- dition to the installation on your server, Vitricon FM / EM can also be operated as a hosting model. We are happy to introduce you to the applications as part of a free web meeting and to provide you with information material. Contact us! We like to support you. Visit us on our website www.ebcsoft.de Here you can fi nd further information and you may enter the demo system.
    [Show full text]