Indole-3-Acetic Acid Production, Solubilization of Insoluble Metal Minerals and Metal Tolerance of Some Sclerodermatoid Fungi Collected from Northern Thailand

Total Page:16

File Type:pdf, Size:1020Kb

Indole-3-Acetic Acid Production, Solubilization of Insoluble Metal Minerals and Metal Tolerance of Some Sclerodermatoid Fungi Collected from Northern Thailand Ann Microbiol (2014) 64:707–720 DOI 10.1007/s13213-013-0706-x ORIGINAL ARTICLE Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand Jaturong Kumla & Nakarin Suwannarach & Boonsom Bussaban & Kenji Matsui & Saisamorn Lumyong Received: 31 January 2013 /Accepted: 1 August 2013 /Published online: 18 August 2013 # Springer-Verlag Berlin Heidelberg and the University of Milan 2013 Abstract Sclerodermatoid fungi basidiomes were collected Keywords Ectomycorrhizal fungi . Phytohormone . Toxic from northern Thailand and pure cultures were isolated. The metal . Pure culture morphology and molecular characteristics identified them as Astraeus odoratus, Phlebopus portentosus, Pisolithus albus and Scleroderma sinnamariense. This study investigated the Introduction in vitro ability of selected fungi to produce indole-3-acetic acid (IAA), to solubilize different toxic metal (Co, Cd, Cu, Pb, Zn)- Ectomycorrhizal fungi form a mutualistic relationship with containing minerals, and metal tolerance. The results indicated plants, in which the fungi can enhance a plant's nutrient and that all fungi are able to produce IAA in liquid medium. The water uptake, increase tolerance to environmental stresses, optimum temperature for IAA production of all fungi was increase the photosynthetic rate of the plant and protect 30 °C, and the optimum concentration of L-tryptophan of against pathogens (Brundrett et al. 1996; Chung et al. 2002; Astraeus odoratus, Pisolithus albus and Scleroderma Makita et al. 2012). Ectomycorrhizal fungi include more than − sinnamariense was 2 mg ml 1. The highest IAA yield (65.29 7,000 reported species (Taylor and Alexander 2005). The − ±1.17 μgml 1) was obtained from Phlebopus portentosus after sclerodermatoid fungal group is one of ectomycorrhizal fungi 40 days of cultivation in culture medium supplemented with aggregated based on phylogenetic analysis, and the group − 4mgml1 of L-tryptophan. The biological activity tests of belongs to the suborder Sclerodermatineae,orderBoletales fungal IAA showed that it can simulate coleoptile elongation, (Binder and Hibbett 2006; Wilson et al. 2011). The fungi in and increase seed germination and root length of tested plants. In the genera Astraeus, Boletinellus, Calostoma, Phlebopus, addition, the metal tolerance and solubilizing activities varied for Pisolithus and Scleroderma have been classified as members different minerals and fungal species. The presence of metal of the sclerodermatoid fungi (Watling 2006). However, the minerals affected fungal growth, and cobalt carbonate showed mechanisms of root morphological changes caused by the highest toxicity. The solubilization index decreased when the ectomycorrhizal fungi are not yet understood. One possible concentration of metal minerals increased. Astraeus odoratus mechanism is that plant growth regulating phytohormores showed the lowest tolerance to metals. This is the first report of such as auxin, cytokinins, ethylene and gibberellin-like sub- in vitro IAA production, solubilization of insoluble metal min- stances are produced (Strelczyck and Pokojska-Burdziej erals and metal tolerance abilities of the tested fungi. 1984;BarkerandTagu2000). Auxins are phytohormones widely present in most plants, J. Kumla : N. Suwannarach : B. Bussaban : S. Lumyong (*) and indole-3-acetic acid (IAA) is the most active auxin. IAA is Department of Biology, Faculty of Science, Chiang Mai University, responsible for the regulation of cell elongation, cell division, Chiang Mai 50200, Thailand cell differentiation and root initiation (Teale et al. 2006; Zhao e-mail: [email protected] 2010). IAA, which is a product of L-tryptophan metabolism, K. Matsui is produced not only in plants, but also by microorganisms, Department of Applied Molecular Bioscience, Graduate School of including bacteria and fungi (Hasan 2002; Chung and Tzeng Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan 2004; Ahmad et al. 2005; Tsavkelova et al. 2007; Apine and Jadhav 2011). Several studies reported that IAA produced K. Matsui Department of Biological Chemistry, Faculty of Agriculture, from microorganisms, including those in rhizospheric soil, Yamaguchi University, Yamaguchi 753-8515, Japan endophytic microorganisms and mycorrhizal fungi, has the 708 Ann Microbiol (2014) 64:707–720 ability to improve and promote plant growth (Niemi et al. Scleroderma sinnamariense, were surveyed and collected 2002; Tsavkelova et al. 2007;Khamnaetal.2010;Chaiharn from mid-April to the end of July, 2008−2010, in Chaing and Lumyong 2011; Chutima and Lumyong 2012;Zaghian Mai and Chiang Rai Provinces, Thailand (Table 1). After et al. 2012). Many ectomycorrhizas, such as Amanita return to the Research Laboratory for Excellence in muscaria, Cenococcum graniforme, Laccaria bicolor, Sustainable Development of Biological Resources, Faculty Paxillus involutus, Pisolithus tinctorius, Rhizopogon luteolus, of Science, Chiang Mai University, the mycelia were isolated Suillus luteus, Suillus bovinus, Tuber borchii and T. from each basidiome by aseptically removing a small piece of melanosporum,werereportedtoproduceIAAinpureculture mycelium from the inside, and transferring it to modified (Frankenberger and Poth 1987; Rudawska and Kieliszewska- Melin-Norkans (MMN) medium (0.05 g CaCl2,0.025g Rokicka 1997; Karabaghli et al. 1998; Splivallo et al. 2009). NaCl, 0.15 g MgSO4·7H2O, 0.012 g FeCl3·6H2O, 0.001 g However, there is still a need to do further research on IAA thiamine HCl, 10.0 g malt extract, 0.25 g NH4H2PO4,0.5g produced by ectomycorrhizal fungi. KH2PO4, 2.5 g glucose and 15.0 g agar per liter of distilled Toxicity of metals in soil is a major constraint affecting water, pH 6.0) and incubating the isolated plates at 30 °C in plant growth in a number of natural or managed ecosystems. the dark. The mycelia emerging from these tissue samples However, plants that can prevent the metal toxicity in soil by were transferred to a new fresh MMN medium. Each parallel phytoremediation processes have great potential for helping culture was kept in either sterile distilled water at 4 °C or 20 % other plants withstand the metal stress (Mapelli et al. 2012; glycerol at −20 °C for long-term preservation. Rajkumar et al. 2012). Moreover, rhizosphere microbes de- Macroscopic and microscopic characteristics were used to serve special attention because they can directly improve both identify the basidiomes. In addition, molecular methods were phytoremediation processes and plant growth (Gadd 2004, used to confirm the pure culture isolated from basidiome. 2010; Rajkumar et al. 2012). Similarly, ectomycorrhizal plants Genomic DNA was extracted according to a CTAB method can grow better in metal contaminated soil than non- (Kumla et al. 2012) and the internal transcribed spacer (ITS) ectomycorrhizal plants. Several studies have concluded that region of ribosomal DNA (rDNA) was amplified using ITS4 ectomycorrhizal fungi are able to protect the roots against and ITS5 primers (White et al. 1990)underthefollowing metal toxicity and increase the tolerance of their hosts in thermal conditions: 95 °C for 2 min, 30 cycles of 95 °C for metal-contaminated soil (Jentschke and Godbold 2000;Van 30 s, 50 °C for 30 s, 72 °C for 1 min and 72 °C for 10 min. The Tichelen et al. 2001). The mechanisms by which fungi are purified PCR products were directly sequenced. Sequencing able to deal with these metals are numerous and varied in their reactions were performed, and the sequences were automati- action, e.g. solubilization, extracellular metal sequestration cally determined in the genetic analyzer (1ST Base, Malaysia) and precipitation, metal binding to the fungal cell walls or using the PCR primers mentioned above. Sequences of each sequestration (Gadd 1993, 2004).Theefficiencyofprotection sclerodermatoid fungus and previously published sequences differs between distinct isolates of ectomycorrhizal fungi and from GenBank were aligned using Clustal X (Thomson et al. different toxic metals (Meharg and Cairney 2000). Moreover, 1997). Phylogenetic analysis was performed using PAUP* many ectomycorrhizal fungi have the ability to solubilize 4.0b10 (Swofford 2002) with the maximum-parsimony analy- insoluble toxic metal minerals, e.g. Al, Cd, Cu, Pb and Zn, sis. In analysis, all characters were equally weighted and gaps and tolerate metals in pure culture (Tam 1995; Blaudez et al. were treated as missing data. Heuristic search with tree- 2000; Ray et al. 2005; Fomina et al. 2005). The purpose of this bisection–reconnection branch swapping was implemented study was to investigate the ability of the sclerodermatoid with 1,000 replicates of random-addition sequence. Maxtrees fungi, Astraeus odoratus, Phlebopus portentosus, Pisolithus was set to auto-increase. Collapse of branch occurred if max- albus and Scleroderma sinnamariense, collected from north- imum length was zero. Bootstrap analysis was conducted with ern Thailand, to produce IAA in vitro. The optimal conditions 1,000 replicates under the heuristic search (Felsenstein 1985). for IAA production and the biological effects of fungal IAA Tree length, consistency index (CI), retention index (RI), were examined. Moreover, the ability of these fungi to solu- rescaled consistency index (RC), and homoplasy index (HI) bilize insoluble toxic metal minerals and to tolerate metal in were calculated for all the trees generated under different solid culture was investigated. optimality criteria.
Recommended publications
  • Covered in Phylloboletellus and Numerous Clamps in Boletellus Fibuliger
    PERSOONIA Published by the Rijksherbarium, Leiden Volume 11, Part 3, pp. 269-302 (1981) Notes on bolete taxonomy—III Rolf Singer Field Museum of Natural History, Chicago, U.S.A. have Contributions involving bolete taxonomy during the last ten years not only widened the knowledge and increased the number of species in the boletes and related lamellate and gastroid forms, but have also introduced a large number of of new data on characters useful for the generic and subgeneric taxonomy these is therefore timely to fungi,resulting, in part, in new taxonomical arrangements. It consider these new data with a view to integratingthem into an amended classifi- cation which, ifit pretends to be natural must take into account all observations of possible diagnostic value. It must also take into account all sufficiently described species from all phytogeographic regions. 1. Clamp connections Like any other character (including the spore print color), the presence or absence ofclamp connections in is neither in of the carpophores here nor other groups Basidiomycetes necessarily a generic or family character. This situation became very clear when occasional clamps were discovered in Phylloboletellus and numerous clamps in Boletellus fibuliger. Kiihner (1978-1980) rightly postulates that cytology and sexuality should be considered wherever at all possible. This, as he is well aware, is not feasible in most boletes, and we must be content to judgeclamp-occurrence per se, giving it importance wherever associated with other characters and within a well circumscribed and obviously homogeneous group such as Phlebopus, Paragyrodon, and Gyrodon. (Heinemann (1954) and Pegler & Young this is (1981) treat group on the family level.) Gyroporus, also clamp-bearing, considered close, but somewhat more removed than the other genera.
    [Show full text]
  • How Many Fungi Make Sclerotia?
    fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011).
    [Show full text]
  • Evolution of Gilled Mushrooms and Puffballs Inferred from Ribosomal DNA Sequences
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12002–12006, October 1997 Evolution Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences DAVID S. HIBBETT*†,ELIZABETH M. PINE*, EWALD LANGER‡,GITTA LANGER‡, AND MICHAEL J. DONOGHUE* *Harvard University Herbaria, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; and ‡Eberhard–Karls–Universita¨t Tu¨bingen, Spezielle BotanikyMykologie, Auf der Morgenstelle 1, D-72076 Tu¨bingen, Germany Communicated by Andrew H. Knoll, Harvard University, Cambridge, MA, August 11, 1997 (received for review May 12, 1997) ABSTRACT Homobasidiomycete fungi display many bearing structures (the hymenophore). All fungi that produce complex fruiting body morphologies, including mushrooms spores on an exposed hymenophore were grouped in the class and puffballs, but their anatomical simplicity has confounded Hymenomycetes, which contained two orders: Agaricales, for efforts to understand the evolution of these forms. We per- gilled mushrooms, and Aphyllophorales, for polypores, formed a comprehensive phylogenetic analysis of homobasi- toothed fungi, coral fungi, and resupinate, crust-like forms. diomycetes, using sequences from nuclear and mitochondrial Puffballs, and all other fungi with enclosed hymenophores, ribosomal DNA, with an emphasis on understanding evolu- were placed in the class Gasteromycetes. Anatomical studies tionary relationships of gilled mushrooms and puffballs. since the late 19th century have suggested that this traditional Parsimony-based
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
    CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge­ neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka­ mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic.
    [Show full text]
  • Changes in Polyamine Content and Localization of Pinus Sylvestris ADC
    Journal of Experimental Botany Advance Access published July 25, 2006 Journal of Experimental Botany, Page 1 of 10 doi:10.1093/jxb/erl049 RESEARCH PAPER Changes in polyamine content and localization of Pinus sylvestris ADC and Suillus variegatus ODC mRNA transcripts during the formation of mycorrhizal interaction in an in vitro cultivation system Karoliina Niemi1,*, Suvi Sutela2, Hely Ha¨ggman2, Carolyn Scagel3, Jaana Vuosku2, Anne Jokela2 and Tytti Sarjala4 1 Department of Applied Biology, University of Helsinki, PO Box 27, 00014 University of Helsinki, Finland 2 Department of Biology, University of Oulu, PO Box 3000, 90014 University of Oulu, Finland 3 USDA, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR 97330, USA 4 Finnish Forest Research Institute, Parkano Research Unit, 39700 Parkano, Finland Received 24 October 2005; Accepted 27 April 2006 Abstract formation and main root elongation were greatest between the first and third week in dual culture, The involvement of polyamines (PAs) in the interaction coinciding with retarded accumulation or a decrease between Pinus sylvestris L. seedlings and an ectomy- of free PAs. These results show that accumulation of corrhizal fungus Suillus variegatus (Swatz: Fr.) O. Kunze PAs in the host plant is one of the first indicators of was studied in an in vitro cultivation system. PA the establishment of ectomycorrhizal interaction be- concentrations in seedlings were analysed after 1, 3, tween P. sylvestris and S. variegatus in the in vitro and 5 weeks in dual culture with S. variegatus, and system. changes in PA pools were compared with the growth of the seedlings. Pinus sylvestris arginine decarboxy- Key words: Arginine decarboxylase, ectomycorrhizas, lase (ADC) and S.
    [Show full text]
  • Boletus Edulis and Cistus Ladanifer: Characterization of Its Ectomycorrhizae, in Vitro Synthesis, and Realised Niche
    UNIVERSIDAD DE MURCIA ESCUELA INTERNACIONAL DE DOCTORADO Boletus edulis and Cistus ladanifer: characterization of its ectomycorrhizae, in vitro synthesis, and realised niche. Boletus edulis y Cistus ladanifer: caracterización de sus ectomicorrizas, síntesis in vitro y área potencial. Dª. Beatriz Águeda Hernández 2014 UNIVERSIDAD DE MURCIA ESCUELA INTERNACIONAL DE DOCTORADO Boletus edulis AND Cistus ladanifer: CHARACTERIZATION OF ITS ECTOMYCORRHIZAE, in vitro SYNTHESIS, AND REALISED NICHE tesis doctoral BEATRIZ ÁGUEDA HERNÁNDEZ Memoria presentada para la obtención del grado de Doctor por la Universidad de Murcia: Dra. Luz Marina Fernández Toirán Directora, Universidad de Valladolid Dra. Asunción Morte Gómez Tutora, Universidad de Murcia 2014 Dª. Luz Marina Fernández Toirán, Profesora Contratada Doctora de la Universidad de Valladolid, como Directora, y Dª. Asunción Morte Gómez, Profesora Titular de la Universidad de Murcia, como Tutora, AUTORIZAN: La presentación de la Tesis Doctoral titulada: ‘Boletus edulis and Cistus ladanifer: characterization of its ectomycorrhizae, in vitro synthesis, and realised niche’, realizada por Dª Beatriz Águeda Hernández, bajo nuestra inmediata dirección y supervisión, y que presenta para la obtención del grado de Doctor por la Universidad de Murcia. En Murcia, a 31 de julio de 2014 Dra. Luz Marina Fernández Toirán Dra. Asunción Morte Gómez Área de Botánica. Departamento de Biología Vegetal Campus Universitario de Espinardo. 30100 Murcia T. 868 887 007 – www.um.es/web/biologia-vegetal Not everything that can be counted counts, and not everything that counts can be counted. Albert Einstein Le petit prince, alors, ne put contenir son admiration: -Que vous êtes belle! -N´est-ce pas, répondit doucement la fleur. Et je suis née meme temps que le soleil..
    [Show full text]
  • Diversity and Genetic Marker for Species Identification of Edible Mushrooms
    Diversity and Genetic Marker for Species Identification of Edible Mushrooms Yuwadee Insumran1* Netchanok Jansawang1 Jackaphan Sriwongsa1 Panuwat Reanruangrit2 and Manit Auyapho1 1Faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand 4Faculty of Engineering, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand Abstract Diversity and genetic marker for species identification of edible mushrooms in the Koak Ngam forest, Muang, Maha Sarakham, Thailand was conducted in October 2012 to October 2013. A total of 31 species from 15 genera and 7 families were found. The genetic variation based on the Internal Transcribed Spacer (ITS) sequences for 11 species, representing four genera of the edible mushrooms. The ITS sequences revealed considerable genetic variation. R. luteotacta, A. princeps and X. subtomentosus showed high levels of genetic differentiation. These findings indicated that the Thai samples could be genetically distinct species. Therefore, further molecular and morphological examinations were needed to clarify the status of these species. A phylogenetic analysis revealed that X. subtomentosus was polyphyletic. The results were consistent with previous studies suggesting that classifications of these genera need re-examining. At the species level, the level of genetic divergence could be used for species identification. Keywords: Species diversity, Genetic marker, Edible mushrooms * Corresponding author : E–mail address: [email protected] ความหลากหลายและเครื่องหมายพันธุกรรมในการจําแนกเห็ดกินได
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Revista Completa
    Nº 21. BOLETÍN DE LA SOCIEDAD MICOLÓGICA BIOLOGÍA VEGETAL FACULTAD DE CIENCIAS EXPERIMENTALES JAÉN (ESPAÑA) – 2012 LACTARIUS 19 (2010) - Nº 21. BOLETÍN DE LA SOCIEDAD MICOLÓGICA BIOLOGÍA VEGETAL FACULTAD DE CIENCIAS EXPERIMENTALES JAÉN (ESPAÑA) – 2012 Edita: Asociación Micológica “LACTARIUS” Facultad de Ciencias Experimentales. 23071 Jaén (España) 400 ejemplares Publicado en noviembre de 2012 Este boletín contiene artículos científicos y comentarios sobre el mundo de las “Setas” Depósito legal; J 899- 1991 LACTARIUS ISSN: 1132-2365 ÍNDICE LACTARIUS 21 (2012). ISSN: 1132 – 2365 pág. 1.- SETAS DE OTOÑO EN JAÉN. AÑO 2011. ….. 3-14 REYES GARCÍA, JUAN DE DIOS; JIMÉNEZ ANTONIO, FELIPE; GUERRA DUG, THEO; RUS MARTÍNEZ, MARÍA DEL ALMA Y FERNÁNDEZ LÓPEZ, CARLOS. 2.- ESPECIES INTERESANTES XIX. ….. 15-27 JIMÉNEZ ANTONIO, FELIPE, REYES GARCÍA, JUAN DE DIOS. 3.- HYPHOLOMA SUBERICAEUM F. VERRUCOSUM, ….. 28-33 UNA RARA FORMA ENCONTRADA EN GRANADA. BLEDA PORTERO, JESÚS Mª. 4.- MYCENA PSEUDOCYANORRHIZA ROBICH, EN LA ….. 34-39 PENÍNSULA IBÉRICA PÉREZ-DE-GREGORIO, M. À. 5.- APORTACIONES AL CATÁLOGO MICOLÓGICO DEL PARQUE NATURAL SIERRA DE LAS NIEVES ….. 40-47 (SERRANÍA DE RONDA, MÁLAGA) BECERRA PARRA, MANUEL 6.- DOS AGROCYBE POCO CITADOS EN EL NORTE ….. 48-55 PENINSULAR FERNÁNDEZ SASIA, ROBERTO 7.- HONGOS CLASE ZYGOMICETES. DOS HONGOS ….. 56-59 INTERESANTES LACTARIUS 21 (2012) VACAS VIEDMA, JOSÉ MANUEL 8.- ORQUÍDEAS DEL TÉRMINO MUNICIPAL DE ….. 60-81 LINARES (JAÉN) PÉREZ GARCÍA, FRANCISCO JOSÉ. 9.- A PROPÓSITO DE LAS SETAS…. UN CUENTO EN ….. 82-86 EL “COLE”. “LA LUZ EN LA NOCHE”. VACAS MUÑOZ, RAQUEL 10.- NUESTRAS RECETAS. ….. 87-89 TORRUELLAS ROLDÁN, MERCEDES 11.- LAS SETAS Y LA OBRA ….. 90-92 CRIVILLÉ PÉREZ, Mª DOLORES 12.- “DELICIOSAS Y MUY SENCILLAS”.
    [Show full text]
  • AR TICLE New Sequestrate Fungi from Guyana: Jimtrappea Guyanensis
    IMA FUNGUS · 6(2): 297–317 (2015) doi:10.5598/imafungus.2015.06.02.03 New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., ARTICLE Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales) Matthew E. Smith1, Kevin R. Amses2, Todd F. Elliott3, Keisuke Obase1, M. Catherine Aime4, and Terry W. Henkel2 1Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA; corresponding author email: Terry.Henkel@humboldt. edu 3Department of Integrative Studies, Warren Wilson College, Asheville, NC 28815, USA 4Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN 47907, USA Abstract: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus Key words: cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected Boletineae in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Caesalpinioideae Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea Dipterocarpaceae (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) ectomycorrhizal fungi and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and gasteroid fungi micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Guiana Shield Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera. Article info: Submitted: 31 May 2015; Accepted: 19 September 2015; Published: 2 October 2015. INTRODUCTION 2010, Gube & Dorfelt 2012, Lebel & Syme 2012, Ge & Smith 2013).
    [Show full text]
  • Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine Are Influenced by Age of the Seedlings
    Article Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine are Influenced by Age of the Seedlings Maria Rudawska * and Tomasz Leski Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; [email protected] * Correspondence: [email protected] Abstract: Scots pine (Pinus sylvestris L.) is the most widely distributed pine species in Europe and is relevant in terms of planted areas and harvest yields. Therefore, each year the demand for planting stock of Scots pine is exceedingly high, and large quantities of seedlings are produced annually throughout Europe to carry out reforestation and afforestation programs. Abundant and diverse ectomycorrhizal (ECM) symbiosis is critical for the success of seedlings once planted in the field. To improve our knowledge of ECM fungi that inhabit bare-root nursery stock of Scots pine and understand factors that influence their diversity, we studied the assemblages of ECM fungi present across 23 bare-root forest nurseries in Poland. Nursery stock samples were characterized by a high level of ECM colonization (nearly 100%), and a total of 29 ECM fungal taxa were found on 1- and 2- year-old seedlings. The diversity of the ECM community depended substantially on the nursery and age of the seedlings, and species richness varied from 3–10 taxa on 1-year-old seedlings and 6–13 taxa on 2-year-old seedlings. The ECM fungal communities that developed on the studied nursery stock were characterized by the prevalence of Ascomycota over Basidiomycota members on 1-year-old seedlings. All ecological indices (diversity, dominance, and evenness) were significantly affected by age of the seedlings, most likely because dominant ECM morphotypes on 1-year-old seedlings (Wilcoxina mikolae) were replaced by other dominant ones (e.g., Suillus luteus, Rhizopogon roseolus, Thelephora terrestris, Hebeloma crustuliniforme), mostly from Basidiomycota, on 2-year-old seedlings.
    [Show full text]