at1 er odcpe h oeua ehnssta govern that mechanisms molecular the decipher to years the 15 during effort last Considerable proteins. (GABARAP) protein associated rnfr mMi,Germany. Main, am Frankfurt hlp Wild glance Philipp a at interactome LC3 The GLANCE A AT SCIENCE ß 1 or (LC3) 3 chain as known members light six comprises family the Atg8 the ubiquitin-like eukaryotes, the higher biogenesis. this including In and initiation proteins, to autophagosome orchestrate that Central key Atg8, of modifier lysosome. set distinct the a in is to material pathway autophagosomes, intracellular ubiquitin- targets termed the is which pathway vesicles, autophagy, – latter by The pathways fed pathway. degradation lysosomal partly the two and system with proteasome endowed eukaryotic end, are this To homeostasis. achieve cells constant to cell their a for requires order components in turnover cellular all of synthesis Continuous ABSTRACT Ato o orsodne([email protected]) correspondence for *Author am Frankfurt 60438 Frankfurt, University Germany. Goethe Main, (BMLS), Sciences Life Molecular nttt fBohmsr I oteUiest,TedrSenKi7 60590 7, Theodor-Stern-Kai University, Goethe II, Biochemistry of Institute 04 ulse yTeCmayo ilgssLd|Junlo elSine(04 2,39doi:10.1242/jcs.140426 3–9 127, (2014) Science Cell of Journal | Ltd Biologists of Company The by Published 2014. 1, ,DvdG McEwan G. David *, 2 oeua inln,Bcmn nttt for Institute Buchmann Signaling, Molecular c aiouyi cd(GABA)-receptor- acid -aminobutyric 1 n vnDikic Ivan and 1,2 n h copnigpse,w rsn h urn C protein LC3 autophagy. gaining of for current regulation vital be the the to into continues the insight present and been article has we of Glance which poster, network, a interaction at understanding accompanying Science Cell the our this In and family. advanced protein this of significantly functioning has autophagy h yooe(iuhm ta. 08 aaoaae l,2009; al., et Nakatogawa 2008; double-membraned al., to of et it (Mizushima formation deliver lysosome and the cargo the sequester is degradation. which for process autophagosomes, vesicles, organelles this that and to pathway complexes Central catabolic protein conserved large evolutionary targets an is Autophagy Introduction AIM motif, LIR Atg8, GABARAP, LC3, Autophagy, WORDS: KEY oesai u losre saqaiycnrlsse upon system control quality a conditions. stress as protein extracellular serves cellular and achieving intracellular also in role but vital a homeostasis such, plays As only membrane. subsequently not lysosomal the is autophagy across material cytosol degraded the into This recycled 2007). Klionsky, and Xie 3

Journal of Cell Science ELSINEA GLANCE A AT SCIENCE CELL speee ytoNtria -eie,wihvr mn the among vary 4 which a-helices, N-terminal that fold two ubiquitin-like by common preceded a shares is family family protein Atg8 Atg8 the The of faces six The iedmi hti rcddb hr -emnletnin The extension. (PtdEth) N-terminal phosphatidylethanolamine short to ubiquitin- Atg8 a of C-terminal by attachment genes preceded a covalent is for 17 these by that characterized of of domain required is like One subset machinery which maturation. Atg8, a autophagy encodes and genes, core formation Atg the autophagosome these constitutes Among genes 1993). Tsukada 2009; Ohsumi, al., et and functionally (Nakatogawa are eukaryotes which higher of yeast of in date, conserved many using to genes, identification, screens (Atg) the Wattiaux, autophagy-related genetic to 38 and led is however, autophagy Duve in 1990s, content (De defective early mutants fashion cytosolic the random that In a underlying 1966). in view its over neglected, the regarding turned been knowledge solely and of long mechanisms lack has the molecular to importance owing physiological mainly its 1960s, con o n neato atesta a enoitd A omitted. in to S1. been found Table be PubMed had can material interactors on supplementary that Atg8 the reported search partners all of literature interaction list comprehensive any primary the addition, for a In and databases. account conducted STRING article also and interactions currently Mint annotated we Glance BioGRID, largely the the the a of on in is based listed overview at interactome eukaryotes an LC3 Science provide higher established we Cell poster, in (GABARAP, this accompanying proteins In the Atg8 unknown. of proteins of relevance the biological expansion The and (MAP1LC3A, (GABA)-receptor-associated GABARAPL2). GABARAPL1, LC3) LC3C, family LC3B, collectively acid (MAP1LC3) LC3A, and names -associated 3 respectively, short the MAP1LC3C; chain comprising MAP1LC3B, light has homologs gene protein-1 Atg8-encoding human yeast sole juncture the six (Shpilka crucial Interestingly, recruitment 2012). a cargo al., at et and it formation places autophagosome membrane during autophagosomal the at omnyepotdt oio uohg lxadautophagy and flux autophagy are respectively. monitor inhibition, conjugation captured or LC3–PtdEth the to induction and with exploited behavior together commonly unique degraded This are importantly, the material. they and, with fusion membrane where after isolation from LC3-II) even lysosome, the autophagosomes as LC3 with of associated known of sites remain (also both de-conjugation to proteins the localize LC3 in priming PtdEth-conjugated the functions because PtdEth. also ubiquitin reversible E3 Atg4 is Furthermore, type poster). lipidation enzyme and (see RING LC3 lipidation LC3 ubiquitylation, for their as for process promoting the thus the scaffold – requires to a or ligases PtdEth) similar as of LC3- – acts group GABARAPs the that amino of group the complex and carboxyl and Atg5–Atg12/Atg16 the residue between step Atg7 bond glycine final covalent the enzyme the the The of through E1 Atg3. formation (the mediated enzyme the E2-conjugating is of GABARAP-specific PtdEth action residue. to glycine by concerted C-terminal processed a attachment expose initially to Subsequently, are Atg4 protease members cysteine family the the Atg8 to the ligases, to Similar to ubiquitin orthologs (PtdEth). conjugation covalent phosphatidylethanolamine mammalian their lipid the is membrane autophagy and in Atg8 function their for exert step indispensable An machinery lipid-conjugation The 1. Box lhuhteiiildsoeyo uohg ae akt the to back dates autophagy of discovery initial the Although c -aminobutyric neato ates h I oi saWx sequence, WxxL a is motif LIR The LIR-containing multiple partners. on based established interaction the Atg19, been in yeast then in identified since and first and below) was (see sequence p62/SQSTM1 LIR receptor (AIM) The autophagic motif 2007). Atg8-interacting al., the et yeast as (Pankiv to in referred which commonly (LIR), more region is LC3-interacting contain hydrophobic proteins short LC3-binding a verified experimentally the of region Many LC3-interacting the of Characteristics lhuhterpeiemd fato nitaellrprotein intracellular in action of GABARAP mode entire precise AAA the their machinery-associated of although fusion interaction SNARE ATPase the reported with 2004), the subfamily al., this in is Supporting et as 1998). Leil notion well al., et 2006; as (Legesse-Miller ER-to-Golgi al., transport intra-Golgi in et the participates (Chen GABARAPL2 in membrane For whereas plasma involved complex Golgi processes. the the are from to trafficking receptors GABARAPL1 transmembrane membrane of and with translocation in GABARAP co-purify implicated instance, subfamily GABARAP first to The Gelfand, 1994). was and to Hammarback, reported (Kuznetsov proposed and Atg8 Mann was 1987; initially to studied and binding 1B extensively their was and influence most 1A date, the protein microtubule-associated LC3B, to 2001). system protein al., nervous GABARAPL1 central et whereas the in lung, (Xin LC3C predominant abundant the are less GABARAPL2 in each et the and example, Wang expression between For 2000; pronounced 2001). al., variations al., has et slight et Sagiv Xin 2000; only 1999; al., al., al., display et (Kabeya et and ubiquitously member Wang expressed family tissues 2000; are al., proteins all These et 2001). in Sagiv al., animals 2000; of et al., metazoan Xin diversification 1999; et in (Kabeya this found plants only with and (Ubls) subfamilies, modifiers GABARAP ubiquitin-like and LC3 oal,bt h oeo h bqii odadN-terminal LC3-mediated and for into fold indispensable ubiquitin cargoes are the extension recognition. autophagic of cargo the core in proteins. of adaptor the residues for activities sites recruitment both docking role Notably, as hemifusion key selective serve a and play and autophagosomes, proteins the LC3 tethering Moreover, in 2011). autophagosomes al., membrane of et size (Weidberg the GABARAP its LC3– control to and biogenesis, through proposed been LC3 autophagosome has GABARAP During other PtdEth LC3C, GABARAPL1). not LC3A, the did (i.e. and of ATG5–ATG12/ATG16L1 however, individually members study, contribution subfamily the This possibly the 2010). of al., address autophagy, et maturation, dissociation (Weidberg of complex GABARAPL2 stage autophagosome the early and involving mediate an downstream, LC3B at further whereas, GABARAPs act of elongation, LC3s addressed autophagosome roles al. during that et suggested distinct Weidberg and manner. potentially redundant autophagy the apparently in participate an proteins in GABARAP the and by LC3 poster). numerous lipids biogenesis and to 1 autophagosome Box conjugated (see during directly machinery conjugation are role ubiquitin-like proteins vital and family these Atg8 a Tsukada the because that 2009; shown play been al., has members it et then, Since (Nakatogawa 1993). crucial Ohsumi, autophagy its highlighting during deleted, is role Atg8 when autophagy et defective Kittler 2000). 2006; al., al., et et Sagiv (Chen 2001; elucidated al., be to remains trafficking oee,teqeto htitiusms eerhr swhy is researchers most intrigues that question the However, functionally to leads yeast in paralogs Atg8 of lack The N ehlaemd-estv uinpoen(NSF), protein fusion -ethylmaleimide-sensitive ora fCl cec 21)17 – doi:10.1242/jcs.140426 3–9 127, (2014) Science Cell of Journal

Journal of Cell Science 08 oae l,20) rpohnrsdei energetically is lower the residue whereas tryptophan residue, al., phenylalanine A et or 2008). tyrosine (Ichimura LIR- over member al., the favored family et of Atg8 Noda pockets) the L 2008; on and (LDS) (W site accommodated pockets docking are position hydrophobic last to two the (for aromatic in appears within The acid 2012). residue amino residues al., aliphatic aromatic et the (Alemu and the determinant charged crucial which most the in negatively be poster) by see examples, preceded N-terminally GLANCE A AT SCIENCE CELL rtisrvae ihycnevdLRmtfi t3ta is this that though, Atg3 Consistently yeast in counterpart. of motif 2010). mammalian LIR the al., autophagy interaction conserved in et highly absent validated core a Yamaguchi revealed functionally 2010; LIR-containing proteins the al., another et Interestingly, is (Behrends component mammals) and remains this of 2012). al., relevance the et functional preferentially than (Alemu the elusive rather members although members proteins, subfamily complex LC3 GABARAP ULK the with ULK that interact the Detailed revealed autophagosome. ensure nascent the analyses that to tethered motifs firmly the is LIR RB1CC1/FIP200 complex addition, functional and In contain (yeast) 2012). Atg13 (mammals) al., components later et complex in (Nakatogawa yet Atg1 ULK1 for autophagy formation, role of autophagosome a suggesting stages of decreased, induction is autophagy the the overall in in are Atg1 degradation impaired of case LIR-dependent not variants the its deficient In in Atg8-binding 2012). Interestingly, results al., vacuole. also motifs, et this Nakatogawa LIR 2012; Atg1, al., canonical of et et (Alemu harbor Kraft autophagosomes 2012; Atg1 kinase with al., (as association Atg1 yeast ULK1 their both facilitate and the that which ULK2) shown to been as (ULK) has equivalent well it kinase functionally Recently, complex. is kinase UNC-51-like by which regulated serine/threonine are complex, formation mammalian autophagosome of the events initial a LDS The contain that the machinery motif autophagy LIR of core the of independently Members GABARAP proteins and 2010). LC3-interacting al., mutants, LC3B et of (Behrends LDS not fraction to using substantial does by bind a al. members et Atg8 that family the Behrends revealed of by Atg8 Characterization established sequence. with network, LIR pointed be a interaction LC3C should require an it necessarily the Finally, that with 2012). al., out bonds et Muhlinen hydrogen (von additional surface as CLIR creates motif, CLIR binding the orientation the LC3C-exclusive LC3C an of sequences, of as aromatic LIR rotation evolved LDS the common have the to with lacks Although appears interaction contain. CLIR the its LIRs CLIR), enables as typical regulates (termed that known aliphatic motif LVV residue (also three the acids, NDP52 LIR of solely amino receptor Consisting atypical LC3C. autophagy with One CALCOCO2) the Stehmeier 2006; of 2009). al., et interaction Hecker Muller, small SUMO-interacting 2011a; between al., the and et that (Chang and (SIM) of (SUMO) motif of reminiscent phospho-regulation modifier is that noting ubiquitin-related interaction 2013; worth al., LIR–LC3 is et It Rogov LC3 the 2008). 2007; of al., al., domain et et (Pankiv Ubl Shvets K50) the and basic and K49 with R11, extension serine/threonine interaction (R10, N-terminal electrostatic the or in in engage and/or residues to shown residues These been motif. core acidic have hydrophobic the of preceding sites for presence phosphorylation compensated be the can residue by phenylalanine or tyrosine affinity h 2lk nyeAg konb hsnm nbt yeast both in name this by (known Atg3 enzyme E2-like The b srn ihrsett h canonical the to respect with -strand uohg receptors Autophagy eohg eetr D5,p2SSM n optineurin and p62/SQSTM1 NDP52, three of recruitment receptors the for signal xenophagy key the a of provides ubiquitylation surface Subsequently, cell bacterial the 2012). the senses al., in et which Furthermore, absent (Thurston galectin-8, naturally interior to are 2013). that binding glycans its galactoside-containing by al., cytosolic triggered vacuole-escaped initially et clustering is NBR1 to NDP52 subsequent of (Deosaran of and translocation domain to peroxisomes UBA recruitment of the specific non-specific and its the facilitates domain both of J combination membrane-binding the has it that instance, demonstrated For target cargoes. been 2009; cooperatively respective their al., might to domains et receptors Additional Thurston autophagy 2011). 2009b; al., al., (UBAN) et et NEMO’ Wild (Kirkin and in optineurin ABIN finger in in binding domain zinc ‘ubiquitin domain ubiquitin-binding the UBA the and as NDP52 NBR1, such degradation, and for p62/SQSTM1 destined in is selectivity the that confers cargo and that and the linkages to (UBD) chain LC3, ubiquitin domain different with ubiquitin-binding sense can a the motif of possess autophagosomes several LIR receptors Indeed, ubiquitylated. known both their often is of which their with substrate, is cargo interaction simultaneously common NBR1, an in interact FUNDC1, have through all BNIP3L, to they p62/SQSTM1, BNIP3, feature ability both A (i.e. of in optineurin). yeast NDP52, characterized discovery been and the have mammals receptors Since autophagy interaction homologs. additional direct the Atg8 to their cargo through tethering with al., to autophagosomes by et proposed engulfing autophagy of Kraft are selective in site 2007; receptors role Autophagy al., major et 2007). a have al., Komatsu 2009a; et the Pankiv al., pexophagy, 2010; et by (Kirkin and (xenophagy), cell bacteria protein mitochondria, the and peroxisomes) proteins, of of autophagy of autophagy selective mitophagy, removal selective (e.g. Selective organelles specific the 2007). ribosomes, al., the (aggrephagy), et Pankiv to aggregates 2007; (Bjørkøy refers al., p62/SQSTM1 autophagy et selective autophagy Komatsu in receptor 2005; interest al., new autophagy et of deluge the selective a of sparked identification mammalian the any without However, first process bulk selectivity. a substrate be to apparent thought been long had Autophagy rmt h erimn fAg,a ela t ciiyto activity its as well may as interaction Atg8. Atg4, from moiety motif-dependent of lipid the recruitment LIR removing the is al., this et it promote (Satoo lacking, that Atg4 currently of is center conceivable evidence catalytic experimental helps the Although into which 2009). out change, reach LC3- conformational Atg4– to the a LC3B the that revealed undergoes of Atg4 by enzyme structures free bound to Crystal Atg8–LC3B comparison moiety. in PtdEth-conjugated complex PtdEth LC3B retrieves the it off glycine cleaving (2) C-terminal its primes and exposing latter it by The residue PtdEth (1) the to biogenesis: characterized. conjugation and autophagosome for well Atg8 Atg7 during been roles E1-like ATG5, two has the 2010); serves (ATG4, with Atg4 al., LC3 protease et system of cysteine (Behrends interaction lipidation reported the been however, Atg8 have ATG16L1) the ATG7, of other components 2010). delivering all selectively to vacuole. by al., the opposed role to for biosynthetic as enzymes a precursor et serves, autophagy, yeast-specific dispensable pathway of the types (Yamaguchi Cvt but for the Remarkably, autophagy essential pathway, be starvation-induced (Cvt) to appears cytoplasm-to-vacuole sequence LIR neatoso h t8fml ebr ihalother all with members family Atg8 the of Interactions ora fCl cec 21)17 – doi:10.1242/jcs.140426 3–9 127, (2014) Science Cell of Journal Salmonella b 5 -

Journal of Cell Science ufc rtis uha DC rmtfsn become mitofusin, or VDAC1 as such al., 2009). et al., proteins, et autophagic Kanki Okamoto mitochondrial 2010; for 2012; surface outer al., mitophagy, et al., primed Parkin-mediated Novak during 2012; et However, and al., et (Hanna placed Liu mitochondria 2009; membrane already of mitochondrial are outer clearance In BNIP3L are that 2009). BNIP3, mammals) al., proteins yeast; et in Zheng in FUNDC1 2011; (Atg32 and al., receptors et mitophagy Wild contrast, 2009; al., et (Thurston GLANCE A AT SCIENCE CELL ihL3ado AAA rtis B12,truhits through TBC1D25, 6 proteins. Cdc16) GABARAP Bub2, (Tre2, and/or TBC LC3 the with is of consists GAPs proteins which GTPase-activating of family, of is family action GTP One the whereby (GAPs). by activity, GDP- GDP, GTPase Small their into through intrinsic converted off their between 2008). switched of are cycling activation They al., state. the a (‘on’) et GTP-bound through and is (‘off’) activated (Itoh complex and are structures ATG12–ATG5/ATG16 GTPases ATG16L1 the pre-autophagosomal with of to recruitment interacts in PtdIns3 that involved to Rab33B 2010). binding al., Golgi-resident GOLD et and (Pankiv exclusive proteins FYVE motor in the kinesin to results between coupling located and is domains, which and LIR, endosomes W-type phosphatidylinositol late and coiled-coil to (PtdIns3 LC3 3-phosphate with localizes and 2004). interacts 1) and al., (FYVE autophagosomes protein et FYCO1 containing (Gutierrez protein domain overexpressed Rab7-interacting is dominant-negative The endosome/lysosome Rab7 late the GTPase the when small of of form degradation inhibited GDP-bound) example, also is (constitutively the For can substrates GTPases pathway. within autophagy these autophagy fusion of the and some influence Therefore, trafficking pathway. enable interaction, that endocytic GTPases the Rab protein At small pathways. the effector lie both pathways between endocytic of crosstalk possess interaction heart a multiple maturation facilitate share that also endosome such, partners as and and, autophagy resemblances striking of processes The and maturation the trafficking vesicle autophagosome in and involved proteins stimulus) LC3-binding are the members upon family a depending mechanisms. these the molecular require instance, underlying how towards will (for determine specificity members utilized to the family effort elucidate GABARAP concerted clearly and LC3 To different 2010). (Behrends an al., proteins Atg8 or display proteins, et lipid-conjugated Atg7, the difference and Atg8 to no Atg3 affinity including lipid-conjugated decreased either partners, the interaction show 13 15 with whereas that interaction association found GABARAP enhanced proteins, al. GABARAP and and et LC3 LC3 conjugated Behrends or 28 By free remains 2011). either of to al., LC3B partners binding their et with (Shvets the in autophagosomes interaction comparing LC3B to the attached and reported only once GABARAPL2 been intact but has both form, it with as unlipidated interacts specificity, p62 determines could that that conjugation factor LC3 Muhlinen Moreover, interact the (von 2010). to al., LC3B be et shown with Novak 2012; weakly been al., only et for has and optimized BNIP3L is GABARAPL1 the whereas NDP52 with LC3C, in sequence open affect to LIR an binding remains the to still example, members For family issue. shown GABARAP or LC3 been certain mitochondria. has stressed to Parkin BNIP3 of translocation and ubiquitylated h pcfct fteLRmtfi uohg eetr towards receptors autophagy in motif LIR the of specificity The nte ml Taeta sivle natpayi the is autophagy in involved is that GTPase small Another P .Isitrcinwt C smdae ya by mediated is LC3 with interaction Its ). , 6mmes fwih1 a interact can 14 which of members, 36 P and I eune Bridti ta. 03.Teersde r prime are residues These 2013). directly al., in et found (Birgisdottir acid be sequences amino LIR aromatic can 2008). critical al., residues the et threonine Noda preceding 2013; or al., majority serine et acids the (Birgisdottir Additionally, of motifs amino region LIR acidic known flanking of as upstream the notion, predominate LIR this clearly The supports interaction. of LC3–LIR sequence N-terminal the acids complex consensus aid amino in motif acidic core p62/SQSTM1 the hydrophobic of that the revealed motif have LIR LC3 the with of studies Structural of interactions regulation LC3 the in modifications Post-translational uohgcsbtae Mtuooe l,21) aiginto Taking of 2011). degradation al., the et for promoting affinity (Matsumoto its substrates increases thereby p62 autophagic of be cargo, of domain can phosphorylation UBA ubiquitylated substrate example, the within their For Ser403 phosphorylation. with by receptors regulated autophagy of interaction 2010). into al., recruitment et LC3 (Cherra inhibiting by autophagosomes function to been these LC3 appears affect of it have but negatively role investigation LC3B, further physiological needs The and events phosphorylation N-termini. LC3A their of namely within removal identified system, the conjugation enabling Ubl 2012). thus al., et hypoxia, (Liu Atg8, mitophagy under by with mitochondria damaged interact state, occurs or inactive stressed to the an which it in dephosphorylation, it abrogate allows keeps its (YEVL) potentially phosphorylation motif whereas Indeed, LIR could FUNDC1 members. the family site of Atg8 and with this tryptophan, of interaction place at in known residue of tyrosine phosphorylation subset a A contains motifs proteins. LIR LC3-interacting with 2013). interaction al., the et (Zhu apoptosis induces Bnip3 its state Conversely, enhances unmodified clearance. Bnip3, residues its mitochondrial of in in serine/ serine motif resulting LIR (Farre both Atg8, Atg36 the to of of flank binding motifs that phosphorylation and Ser24) LIR phosphorylation and the (Ser17 their addition, Atg32 to by In yeast 2013). adjacent the receptors, regulated residues Similarly, N-terminal threonine are pexophagy 2013). the al., in respectively, and et Arg11 (Rogov and mitophagy LC3B makes Lys51 of group its phosphate with extension charged enhances contacts negatively 178–181) the additional confirmed that studies was at showed crystallography which and that is 2011), (NMR) resonance al., magnetic LIR et nuclear by (Wild (the LC3B of can with Ser177 phosphorylation interaction (McEwan that that shown at manner have compartmentalized receptors we optineurin Indeed, a 2011). autophagy in Dikic, and of and regulated rapidly inactivation) proceed (PTM) (or modification activation post-translational for candidates Ppvce l,2012). al., autophagy increasing et starvation-induced by (Popovic and switch trafficking out-competed molecular endosomal a be as between TBC1D5 of can with, implicating component LC3, and a of co-localization concentrations VPS29, Interestingly, complex, with 2012). retromer interact and also al., the can to, et LIR N-terminal (Popovic binding its proteins are both Atg8 efficient and C-terminus mammalian the for at motifs, other the LIR required and two N-terminus contains the TBC1D5 and at 2011). trafficking one al., retrograde et in of (Itoh involved Rab33B maturation is towards homologs activity Atg8 the GAP with its regulate interaction and direct can a Rab33B, through autophagosomes towards activity GAP neetnl,ntol h I–C neato u lothe also but interaction LIR–LC3 the only not Interestingly, autophagy the of members two in sites phosphorylation note, Of abrogate also can motif LIR the of phosphorylation Importantly, ora fCl cec 21)17 – doi:10.1242/jcs.140426 3–9 127, (2014) Science Cell of Journal , 5 fidentified of 25% ´ tal., et

Journal of Cell Science jrø,G,Lmr,T,Beh . uzn . eadr . vran A., Overvatn, M., Perander, H., Outzen, A., Brech, T., W. Lamark, J. G., Harper, Bjørkøy, and T. P. Johansen, and T. S. Lamark, B., Gygi, A. Birgisdottir, E., M. Sowa, C., Behrends, D. Kang, and T. Uchiumi, T., Saigusa, Y., Kurihara, Y., Hirota, T., Kanki, Y., Aoki, B., K. Larsen, B., A. Birgisdottir, M., K. Torgersen, T., Lamark, A., E. Alemu, euaetertafcig uclua oaiainand/or localization perspectives and and Conclusions subcellular fold ubiquitin trafficking, a harbor that degradation. their LC3–LIR proteins to regulate of binding and phosphorylation mechanism control general that a to constitute UBDs SUMO–SIM conceivable as well therefore as motifs Ubl-binding above-discussed is it interactions, the account GLANCE A AT SCIENCE CELL les . rn,H,Kbr . asr . ln,M,Sco,J,Kr,R and R. Kern, J., Suckow, M., Klink, C., Kaiser, I., Kober, H., Kranz, M., Albers, Fro S., P. Aguilar, References at http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.140426/-/DC1 online available material Supplementary material Supplementary as available online are http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.140426/-/DC2 the panels in poster at Individual downloading files jcs.biologists.org. for JPEG at available article is this poster of the version of version high-resolution glance A a at science Cell interests. competing no declare authors The I.D. interests to agreement Competing and grant D.G.M (ERC) (to Council Frankfurt Research therapy European Cell an and and University Gene I.D.); Goethe for the Centrum the of LOEWE Forschungsgemeinschaft; Complexes’ Frankfurt; Deutsche ‘Macromolecular from Excellence the grants of by Cluster of supported was role work This the deciphering Funding at autophagy. aimed in proteins be LC3/GABARAP individual should studies Thus, the specialization. functional future to and most regard redundancy which with both eukaryotes, reflects higher knowledge likely in of family lack Atg8 the clear stress of a diversification various also mitochondrial under is damage, There and DNA PTM-driven stress). hypoxia, space, starvation, and elucidating (e.g. LC3- time the conditions determine fully in far in to network effort is particular, substantial interaction interest network a require LC3 in overshadowing will currently presented interactions complete; the the are this, from of which said LC3 Having functions, because autophagy-unrelated autophagy. their less is neglect It and investigated not pathway. partners this to towards interacting bias current important the strong autophagy, a therefore to family bears this interactome link LC3 not did proteins of LC3 that studies the first substantiated mind very been the in yet Although functionally. not bear and/or have Harperbiochemically should interactions the reported One these by 2010). of conducted many al., been et has (Behrends laboratory that network high- GABARAP LC3 mammalian from and the stems particular in interactome and LC3 studies interaction assembled throughput the of majority The tnak .adJhne,T. Johansen, and H. Stenmark, autophagy. selective system. autophagy human the of organization mitophagy. mediates Atg32 on 114 Cell Serine sequence of Phosphorylation complex: (2011). ULK the of assembly motifs. T. (LIR) for 39290. Johansen, region scaffolds and LC3-interacting V. for as Kirkin, requirements act A., proteins Øvervatn, H., family Olsvik, A., Jain, neatn proteins. interacting M. metabolism al. Koegl, sphingolipid et with M. eisosome the Mann, trafficking. P., of endosomal Walter, links and reveals R., E-MAP Shamir, membrane H., Braberg, A., 22 3206-3217. , 20) uoae es w-yrdsreigfrncerreceptor- nuclear for screening two-hybrid yeast Automated (2005). lc,F,Rha,M,Sae,M,Uisy . Olivera-Couto, I., Ulitsky, M., Shales, M., Rehman, F., hlich, ¨ MCP .Cl Sci. Cell J. 4 a.Src.Ml Biol. Mol. Struct. Nat. 205-213. , 126 20) 6/QT1frspoenaggregates protein forms p62/SQSTM1 (2005). 3237-3247. , Nature 21) h I oi rca for crucial - motif LIR The (2013). 17 901-908. , .Bo.Chem. Biol. J. 466 68-76. , 21) plasma- A (2010). 21) Network (2010). 21) ATG8 (2012). 287 o.Biol. Mol. 39275- , oe .M,Gzo . nrw,B n rnl .J. C. Brandl, and B. Andrews, J., Guzzo, M., S. Hoke, o .H,Cag .E n un,W P. W. Huang, and and E. H. S. Chang, H., I. Rikka, K. Dikic, and Ho, K., P. Bayer, K., Giang, Haglund, M., M., Rabiller, M., C. A. Hecker, Orogo, N., M. Quinsay, A., R. Hanna, Munafo G., M. Gutierrez, otno . ayhioa . ely . i,Y,Ser .D,Sve,C S., C. Sevier, D., E. Spear, Y., Kim, J., Bellay, A., A., Baryshnikova, Brech, M., B., Costanzo, K. Larsen, K., Finley, P., Isakson, T., Lamark, H., T. Clausen, J., Mountzouris, M., Balasubramani, G., Uechi, Y. M., S. L. Kulich, Liu-Chen, 3rd, J., and S. Y. Cherra, Wang, P., Huang, Y., Chen, G., J. Li, A., C., Wipat, Chen, M., Taschuk, S., Oexle, G., S. Addinall, C., Lawless, Y., H. Chang, esrn . asn .B,Ha . agn,G,Wn,Y,Km . aak T., Lamark, S., Kim, Y., Wang, G., Sargent, R., Hua, B., K. Larsen, E., Deosaran, R. Wattiaux, and C. Duve, De re,F,OHr,T,Bakel .adEn,C A. C. Enns, and A. Blackwell, T., O’Hare, F., Green, Farre McBroom-Cerajewski, S., Climie, P., Taylor, H., Li, F., Elisma, P., Chu, M., R. Ewing, Chandrasha P., Wild, L., Y. Deribe, t,T,Cia . zw,R,Ysia . atr,M n aai Y. Sakaki, and M. Hattori, M., Yoshida, R., Ozawa, T., Chiba, T., Ito, hn,C . ak .T,Hag .S,Jn,J . io .H,Ko .Y,H,C. Ho, Y., H. Kuo, H., P. Liao, C., J. Jeng, S., Y. Trojan, Huang, T., and M. Naik, S. C., C. Zeuzem, Chang, S., Passmann, F., Wolpert, B., Adryan, A., Brieger, ’gsio . oasa . acotl,M,Egl .K n saa,V. Askanas, and K. W. Engel, M., Cacciottolo, A., Nogalska, C., D’Agostino, ohe,H,Llwk,M,Sez,U,Wetr . todce . om U., Worm, M., Stroedicke, S., Waelter, W., U., Wu, Stelzl, J., Zhang, M., W., Lalowski, Fu, T., H., Cai, Goehler, G., Xie, W., Zuo, L., Bao, W., Cao, C., Gao, H. T. Stevens, and M. Ryan, C., G. Finnigan, ciua . iiao . aa,T,Stm,Y,Sioih,Y,Ihhr,N., Ishihara, Y., Ichimura,Y.,Kumanomidou,T.,Sou,Y.S.,Mizushima,T.,Ezaki,J.,Ueno,T., Shimonishi, Y., Satomi, T., Takao, T., Kirisako, Y., M., Ichimura, R. Devay, E., Hummel, A., Cassidy-Stone, R., S. Collins, S., Hoppins, ra nlsslnsteSchrmcscrvsa AASI n NuA4 and SAGA/SLIK cerevisiae Saccharomyces the links analysis array idn ieo t8as fet t eea uohg euainfunction. regulation autophagy general its affects also Atg8 of Autophagy site binding and motifs. SUMO2-interacting and reticulum SUMO1- of endoplasmic remove selectively to autophagy. via protein mitochondria Bnip3 with interacts mammalian B. in A. pathway Gustafsson, autophagic the of progression normal cells. the for required ig . o,J . ofgi . otfv,S tal. et S. Mostafavi, K., Toufighi, cell. L., a of J. landscape and Koh, bodies/ALIS H., p62 Ding, of al. formation et the A. autophagy. facilitate by Simonsen, to degradation interact G., their ALFY Bjørkøy, and H., SQSTM1 Stenmark, A., Øvervatn, T. C. Chu, phosphorylation. and W. B. Day, yeast. budding in senescence D. telomere-initiated (Bethesda) Lydall, affecting and pathways J. D. Wilkinson, argi . a,K,Lpict-cwrz .e al. peroxisomes. et for J. receptor Lippincott-Schwartz, autophagy K., Law, M., Jauregui, 28 rnfri eetrwt GABARAP. with receptor transferrin al. et M. spectrometry. Li, mass L., by O’Connor, interactions protein-protein D., human M. Robinson, L., J. M. Fetchko, HDAC6. L., deacetylase Buerkle, I., al. Kratchmarova, et N., Milutinovic, Y., Kalaidzidis, E1itrcswt h ap podrcpo n nacsepeso fthe of expression enhances and receptor opioid kappa receptor. the with interacts GEC1 and binding paralog-selective SUMO in phosphorylation al. SIM et modulation. J. Daxx apoptosis N. Huang, of H., C. roles Lin, L., Y. Hsieh, C., MLH1. protein repair mismatch associated cell huntingtin-induced on J. effect protective a has and death. autophagy by degraded 21) bomlte fNR,anvlatpayascae rti,i muscle myositis. in inclusion-body protein, sporadic autophagy-associated of novel a fibers NBR1, of Abnormalities (2011). neato ewr ik I1 nehne fhnigi grgto,to aggregation, huntingtin of enhancer an GIT1, al. disease. links et Huntington’s C. network Haenig, M., Knoblich, interaction S., K. Lindenberg, A., Droege, degradation. in al. Dishevelled et promoting function X. ATPase Zhang, vacuolar in composition cerevisiae. sphingolipid their Saccharomyces implicates coordinates screen receptors pexophagy Atg11. and and Atg8 with mitophagy interaction of Phosphorylation opeesv w-yrdaayi oepoeteyatpoeninteractome. protein yeast the USA Sci. explore Acad. to Natl. Proc. analysis two-hybrid comprehensive autophagy. selective in p62 of M. Komatsu, mechanism and sorting K. Tanaka, T., Yamane, E., Kominami, al. lipidation. et protein M. mediates Ohsumi, system E., like Kominami, I., and Tanida, N., S. Mizushima, J. mitochondria. in Weissman, organization Biol. membrane M., Cell inner J. for Schuldiner, required complex B., scaffold-like Westermann, J. L., Nunnari, L. Lackner, processes. cellular multiple to Tra1 component ,J . uknod . unt,S .adSbaai S. Subramani, and F. S. Burnett, A., Burkenroad, C., J. ´, 435-492. , 21) yokltlsafligpoen neatwt Lynch-Syndrome with interact proteins scaffolding Cytoskeletal (2010). .Cl Sci. Cell J. 20) euaino pdra rwhfco eetrtafcigb lysine by trafficking receptor factor growth epidermal of Regulation (2009). .Cl Biol. Cell J. .Bo.Chem. Biol. J. 5 1 195 461-471. , 21) iohnra-oue eei neato a eel a reveals map interaction genetic mitochondrial-focused A (2011). 197-208. , ora fCl cec 21)17 – doi:10.1242/jcs.140426 3–9 127, (2014) Science Cell of Journal 323-340. , .Cl Biol. Cell J. 117 21) uohg eaieyrgltsWtsgaln by signalling Wnt regulates negatively Autophagy (2010). 171 21) irtbl-soitdpoen1lgtcan3(LC3) 3 chain light 1 protein Microtubule-associated (2012). Science 2687-2697. , c.Signal. Sci. o.Cell Mol. o.Cell Mol. .B,Bero B., D. , ´ 603-614. , 281 21) euaino h uohg rti C by LC3 protein autophagy the of Regulation (2010). 98 Genetics 7983-7993. , 16) ucin flysosomes. of Functions (1966). .Bo.Chem. Biol. J. 327 190 4569-4574. , 15 42 Autophagy MORep. EMBO 425-431. , 533-539. , 2 853-865. , 62-74. , ra84. , 21b.Gnm-ieaayi oidentify to analysis Genome-wide (2011b). ,W n oob,M I. M. Colombo, and W. n, ´ a.Cl Biol. Cell Nat. ESLett. FEBS .Cl Sci. Cell J. 187 e,A,Crk . cmd,M H., M. Schmidt, J., Curak, A., ker, Nature 771-783. , 20) uaina h cargo-receptor the at Mutation (2009). .Bo.Chem. Biol. J. caNeuropathol. Acta Proteomics 287 6 330-344. , 14 21) eoewd enhancer genome-wide A (2011). 21a.Srcua n functional and Structural (2011a). 408 .Bo.Chem. Biol. J. M Genet. BMC 19094-19104. , 441-449. , 518 20) ag-cl apn of mapping Large-scale (2007). 126 488-492. , 20) soito fhuman of Association (2002). 12 101-106. , 939-952. , 781-790. , 20) ytmtcgenetic Systematic (2008). 21) B1at san as acts NBR1 (2013). o.Ss.Biol. Syst. Mol. 20) tutrlbssfor basis Structural (2008). 10 281 3343-3355. , 21) h genetic The (2010). 16117-16127. , 20) Specification (2006). nu e.Physiol. Rev. Annu. 9 20) ubiquitin- A (2000). 122 283 46. , 20) protein A (2004). 20) a7is Rab7 (2004). 627-636. , 22847-22857. , 21) p62/ (2010). 3 20) A (2001). 89. , (2013). (2006). G3 7

Journal of Cell Science i,J,Hag .P,Srmag .E n losy .J. D. Klionsky, and E. P. Stromhaug, P., W. Huang, J., Kim, A. Navon, and Z. Elazar, N., J. Amar, D. E., Klionsky, Kario, and M. Baba, Y., Cao, K., Wang, T., Kanki, Y. Chong, P., J. Lambert, A., Baryshnikova, H., Friesen, S., Duffy, Kaluarachchi ees-ilr . ai,Y,Prt .adEaa,Z. Elazar, and A. Porat, Y., Sagiv, A., Legesse-Miller, E., N. Bruns, J., Liu, B., D. Lombard, R., Mostoslavsky, L., Cao, H., I. Lee, and H. D. Wolf, M., Bredschneider, D., Bernreuther, E., Schaeffeler, T., Lang, J., I. Li, V. Gelfand, A., and Ignatchenko, A. S. X., Kuznetsov, Guo, G., Zhong, H., Yu, G., Cagney, J., N. L. Krogan, E. Eskelinen, Y., Muehe, P., Schlotterhose, E., Welter, S., K. Bremer, Hofmann, R., Krick, and G., M. Semplicio, Peter, S., C., S. Kraft, Lee, E., Siergiejuk, E., Kalie, M., Kijanska, C., Kraft, I., Takahashi, H., Nakatogawa, W., S. Suzuki, N., N. Noda, N., Kondo-Okamoto, own,A,Rcesn .N,Mta . uc-eals .adMla .J. T. Melia, and O. Julca-Zevallos, I., V., Motta, Schmid, N., M., D. E. Richerson, Quan, A., E., Jotwani, Oh, V., Denic, R., S. Collins, C., M. M. Fukuda, Jonikas, and S. Waguri, T., M. Uemura, Fukuda, E., and Kanno, T. T., Yoshimori, Itoh, A., Yamamoto, E., Kanno, N., Fujita, T., Itoh, GLANCE A AT SCIENCE CELL 8 Mizushima, T., Hara, T., Ueno, S., Y. Sou, M., Koike, S., Waguri, M., Komatsu, E. Kominami, and Y. Ohsumi, M., Ohsumi, T., Ueno, I., Tanida, M., Komatsu, Ha C., Raiborg, K., Søreng, H., Knævelsrud, and A. Triller, R., Olsen, M., J. Fritschy, G., Schiavo, P., I. Rostaing, T., Dikic, J. and Kittler, I. Novak, G., D. Shvets, McEwan, V., A., J. Kirkin, Bruun, L., J. Nunn, G., Bjørkøy, S., Y. Sou, T., Lamark, V., Kirkin, T., Noda, T., Kirisako, A., Yamamoto, T., Ueno, N., Mizushima, Y., Kabeya, e,J . i . e,J . e,S . en,J . e,H . hn,H,Zhou, H., Chang, R., H. Lee, H., J. Jeong, H., S. Lee, Y., J. Lee, Q., Li, S., J. Lee, hcpiti h erdto fa RDMtarget. ERAD-M an of 11491. degradation the in checkpoint mitophagy. during selectivity 109. confers that protein mitochondrial B. Andrews, genomics. and functional D. Figeys, T., sks . l,F .adFne,T. autophagy. Finkel, of regulation and the W. in Sirt1 F. deacetylase Alt, vacuole. M., the Tsokos, to vesicles autophagic of delivery 3597-3607. for essential are M. Thumm, al. et P. cerevisiae. A. Saccharomyces yeast Tikuisis, the N., in complexes Datta, S., Pu, Atg8. ubiquitin-like with concert in biogenesis M. Thumm, and beyond. and recognition mediated autophagy. regulates Atg8 protein al. ubiquitin-like et J. the I. to Hansmann, kinase M., Verma, Atg1/ULK1 directly A., Brezovich, and K. I., degron Stoffel, Okamoto, autophagic and as Y. acts Ohsumi, 32 mitophagy. F., initiates protein Inagaki, Autophagy-related A., (2012). Hashimoto, M., Matsunami, 1163. yolsi nlso oyfraini uohg-eiin mice. autophagy-deficient in al. formation et body S. inclusion Murata, cytoplasmic J., Ezaki, J., Iwata, N., formation. complex E1-E2 and homodimerization activity 9846-9854. for E1 its required for is essential Apg7p/Cvt2p is an and of region C-terminal The (2001). formation. autophagosome promotes Biol. al. SNX18 Cell et protein P. J. T. PX-BAR Neufeld, the of H., by Stenmark, transport remodeling E., intracellular T. Rusten, the K., in Liestøl, protein this for role a receptors. suggest GABA(A) NSF with interact J. S. Moss, autophagy. selective al. et P. substrates. Wild, ubiquitinated H., of T. degradation Clausen, autophagosomal G., a D. to McEwan, E., components targeting formation. vesicle vacuole novo de to to Chem. cytoplasm prior compartment and membrane perivacuolar autophagy multiple of after membranes autophagosome in localized T. is Yoshimori, Apg8p, processing. and yeast Y. of Ohsumi, homologue E., Kominami, vitro. in dynamics membrane Atg8-mediated Biol. the of Cell study Methods in the to folding Approaches (2012). protein al. for et required S. J. genes reticulum. Weissman, of endoplasmic P., Walter, characterization B., Comprehensive Schwappach, J., Weibezahn, autophagosomal regulates and Rab33B-GAP, Atg16L maturation. autophagosome-resident with novel interacts Rab33B GTPase formation. autophagosome small modulates Golgi-resident (2008). hrceiaino oe o oeua egtpoenivle nintra-Golgi in involved protein weight molecular low novel traffic. a of characterization al. et control. C. death Liang, cell J., S. Gao, C., F. 3374-3379. 1 protein microtubule-associated of (LC-3) chain light new (MAP-1). a as identification 31 3691-3703. , .Bo.Chem. Biol. J. 277 ESLett. FEBS 763-773. , .Cl Biol. Cell J. MOJ. EMBO 202 19) u2 n u7,tonvlmcouueascae proteins microtubule-associated novel two Aut7p, and Aut2p (1998). 20) h uclua itiuino AAA n t blt to ability its and GABARAP of distribution subcellular The (2001). 331-349. , a.Cl Biol. Cell Nat. 21) d4/9 n h1p7rglt autophagosome regulate Shp1/p47 and Cdc48/p97 (2010). 108 .Bo.Chem. Biol. J. o.Cl.Neurosci. Cell. Mol. o.Cell Mol. Cell 212 273 19 93-116. , Science 192 5720-5728. , 145-148. , 3105-3109. , 149 839-853. , 936-948. , 34 323 11 259-269. , 20) LPmdae uohg euainin regulation autophagy FLIP-mediated (2009). 18) 8kamcouueascae protein: microtubule-associated kDa 18 (1987). 21) xlrn h es ctlm using acetylome yeast the Exploring (2012). a.Cl Biol. Cell Nat. 287 1355-1362. , 1693-1697. , o.Bo.Cell Biol. Mol. 10631-10638. , 20) oesai eeso 6 control p62 of levels Homeostatic (2007). 21) eetv uohg:ubiquitin- autophagy: Selective (2010). 20) oefrteNAD-dependent the for role A (2008). 18 20) lbllnsaeo protein of landscape Global (2006). br,K,Rsuo,F,Beh A., Brech, F., Rasmuson, K., ˚berg, 13-25. , .Cl Biol. Cell J. 21) e autophagy-related new A (2011). rc al cd c.USA Sci. Acad. Natl. Proc. 12 20b.Arl o bqii in ubiquitin for role A (2009b). 20) C,amammalian a LC3, (2000). 20a.Arl o B1in NBR1 for role A (2009a). 836-841. , Nature .Bo.Chem. Biol. J. 19 2916-2925. , o.Cell Mol. 190 19) slto and Isolation (1998). 21) idn fthe of Binding (2012). 20) Convergence (2002). 440 20) t3 sa is Atg32 (2009). .Bo.Chem. Biol. J. Membrane (2013). 965-973. , 21) AL,a OATL1, (2011). e.Cell Dev. 637-643. , Cell MOJ. EMBO 33 286 131 505-516. , 11479- , (2009). 17 .Biol. J. 1149- , EMBO 98- , 105 276 17 , , , yanAdre,J,Wn,H,Ce,L,Ktlr .T,Ms,S .adOlsen, and J. S. Moss, T., J. Kittler, L., Chen, H., Wang, J., Rogov,Nymann-Andersen, A., Rozenknop, P., Wild, J., Zhang, G., D. McEwan, V., Kirkin, I., Novak, oa .N,Kmt,H,Nktgw,H,Sto . dci . si,J., Ishii, W., Adachi, K., Satoo, H., Nakatogawa, H., Kumeta, N., N. Noda, emn .C,Shlfed .L,Km,A . emn . cvr .G., E. McIver, M., Newman, J., A. Kemp, L., C. Scholefield, C., A. Newman, Y. Ohsumi, and Y. Kamada, K., Suzuki, H., Nakatogawa, S. Suzuki, S., Kakuta, M., Sakoh-Nakatogawa, S., Ohbayashi, H., Nakatogawa, Mohrlu J. D. Klionsky, Mohrlu and M. A. Cuervo, B., I. Levine, N., Dikic, Mizushima, and G. D. McEwan, oly .M,Ntal .M n etm,E H. E. Hettema, and M. J. Nuttall, M., A. Motley, ehrc,K . ilas .C,Ln,J . Ordo D., J. Lane, C., A. Williams, and J., G. K. Spedale, Petherick, D., Russo, G., Galizzi, I., Deidda, C., Cascio, R., Passantino, avzn . riel . rni,V . asla . ua,J,Rbs V., Ribas, J., Duran, F., Mansilla, A., V. Francis, M., Orpinell, C., Mauvezin, akv . lue,T . aak . rc,A,Bun .A,Ote,H., Outzen, A., J. Bruun, A., Brech, T., Lamark, H., T. A., Clausen, Overvatn, T., S., Pankiv, Lamark, A., J. Bruun, A., Brech, A., E. Alemu, S., X. Pankiv, W. Zong, and Z. Dou, E., Ullman, A., J. Pan, H. Koga, Y., Masuho, E., Kominami, T., Ueno, S., Yuasa, J., Yan, N., Okazaki, asmt,G,Wd,K,Ouo . uoaa .adNkn,N. Nukina, and M. Kurosawa, M., Okuno, K., Wada, G., Matsumoto, A. J. Hammarback, and S. S. Mann, kmt,K,KnoOaoo .adOsm,Y. Ohsumi, and N. Kondo-Okamoto, K., Okamoto, ees-ilr . ai,Y,Gomn .adEaa,Z. Elazar, and R. Glozman, Y., Sagiv, A., Legesse-Miller, i,B,Lrsn . aalr,A,Ho . ln,D,Gata,J and J. Grantham, D., Oling, X., Hao, A., Caballero, L., Larsson, B., W. Liu, R. Olsen, and S. C. Chang, W., Z. Chen, A., T. Leil, i,L,Fn,D,Ce,G,Ce,M,Zeg . og . a . h,C,Wang, C., Zhu, Q., Ma, P., Song, Q., Zheng, M., Chen, G., Chen, D., Feng, L., Liu, .W. R. Lo V., uohg eetrfrmtcodilclearance. mitochondrial for receptor autophagy F. Inagaki, autophagy. selective and during Atg8/LC3 Y. by recognition Ohsumi, Y., Fujioka, signalling. smdae i uohg fTxb1Np2adnncnnclNF- non-canonical and Tax1bp1/Ndp52 of autophagy via mediated S. is Wilkinson, and A. Kamal, yeast. from 10 lessons mechanisms: autophagy in diversity autophagosome facilitate to motif interacting family Atg8 the formation. via Ohsumi, Atg8 and protein H. Yamamoto, like N., N. Noda, Y. C., Kondo-Kakuta, H., Kirisako, W., 2868. hg ipa cenn fappielibrary. peptide a of the screening display for phage partner D. interaction Willbold, direct a protein. associated as receptor chain A 14537-14543. type heavy acid clathrin gamma-aminobutyric of Identification self-digestion. cellular through disease fights acetylation. and ubiquitylation phosphorylation, eoioe o erdto nSchrmcscerevisiae. Saccharomyces in degradation for peroxisomes olr,T . mrt .J,Bto,J,Mlk . aakv,C tal. et C. Paraskeva, K., Malik, J., Batson, J., H. Smartt, J., T. Collard, lipofuscinosis. ceroid neuronal in involved P. Guarneri, oatrDRrgltsatpayi amla n rspiacells. Drosophila and mammalian in autophagy Rep. regulates DOR cofactor Palacı oAg/C ofcltt erdto fuiutntdpoenageae by aggregates protein ubiquitinated of degradation facilitate to autophagy. Atg8/LC3 T. Johansen, to and G. Bjørkøy, A., Øvervatn, transport. vesicle end-directed plus microtubule mediate Biol. to PI3P and T. LC3 Johansen, and G. Bjørkøy, membranes. intracellular light at 1 caspase-8 Biol. protein of microtubule-associated activation a 3-mediated chain through apoptosis induces degradation elongation. possible axonal brain: 12. in the transport in vesicular proteins of related role 3 chain light M. protein microtubule-associated Muramatsu, and eie43popoyaino 6/QT1rgltsslcieautophagic selective regulates p62/SQSTM1 proteins. ubiquitinated of of phosphorylation clearance 403 MAP1B. Serine and MAP1A of subunit binding microtubule 269 A 3. chain nhrdrcpo t3 eitsdgaaino iohnravaselective via mitochondria of degradation mediates autophagy. Atg32 receptor anchored receptors. 80 GABA(A) and (GABARAP) protein receptor-associated Nystro neurons. in membrane plasma Neurosci. the processes. to J. receptors GABAA trafficking traffics protein associated membrane multiple in Chem. Biol. participates J. factor, autophagic eitshpxaidcdmtpayi amla cells. mammalian in al. 177-185. mitophagy et hypoxia-induced W. mediates Qi, R., aggregates. protein of transport 458-467. , 815-823. , 21) h uohg-eae rti iaeAg neat ihteubiquitin- the with interacts Atg1 kinase protein autophagy-related The (2012). 11492-11497. , e,J,Sage,T,Hfmn,Y,Weea,K,Mtrg,A and A. Mataruga, K., Wiesehan, Y., Hoffmann, T., Stangler, J., der, ¨ Ha T., Stangler, Y., Hoffmann, J., der, ¨ 188 31 11 r . ooi,D,Ociit,A tal. et A. Occhipinti, D., Popovic, F., hr, ¨ n . oa . eea,A .adZrao A. Zorzano, and A. A. Teleman, P., Boya, M., ´n, m T.¨m, 20) uui pcfct n neato oanbtenGABA(A) between domain interaction and specificity Subunit (2002). 3158-3170. , 37-44. , 253-269. , .Bo.Chem. Biol. J. LSONE PLoS .Bo.Chem. Biol. J. e.Cell Dev. 24 21) dniyn rti ateso L8 nE-eietprotein ER-resident an CLN8, of partners protein Identifying (2013). 21) h oaioei eurdfrsgeainadretrograde and segregation for required is polarisome The (2010). 20b.Ietfcto fcleiui salgn fGBRPby GABARAP of ligand a as calreticulin of Identification (2007b). 275 11429-11438. , ora fCl cec 21)17 – doi:10.1242/jcs.140426 3–9 127, (2014) Science Cell of Journal 32966-32973. , 21) iohnra ue-ebaepoenFUNDC1 protein outer-membrane Mitochondrial (2012). 17 7 e50672. , 87-97. , 20) neato fteUc5-iekns and kinase Unc-51-like the of Interaction (2000). 287 282 28503-28507. , 21) B1kns dito nln acrcells cancer lung in addiction kinase TBK1 (2012). 24131-24145. , 21) h he ukteso Autophagy: of Musketeers Three The (2011). 21) YO saRb fetrta id to binds that effector Rab7 a is FYCO1 (2010). Cell o.Cell Mol. 140 19) oeua hrceiaino light of characterization Molecular (1994). 257-267. , ici.Bohs Acta Biophys. Biochim. nl .adWlbl,D. Willbold, and K. ¨nel, 20) 6/QT1bnsdirectly binds p62/SQSTM1 (2007). 20) tutrlbsso target of basis Structural (2008). ESJ. FEBS Nature 44 21) e3acoe t3 tags Atg36 Pex3-anchored (2012). ri e.Ml ri Res. Brain Mol. Res. Brain rnsCl Biol. Cell Trends 279-289. , MORep. EMBO ´n ez-Mora ˜ 21) niiino protein of Inhibition (2011). ee Cells Genes 21) i saselective a is Nix (2010). 451 274 20) AA receptor- GABAA (2004). a.Rv o.Cl Biol. Cell Mol. Rev. Nat. 20) u7,asoluble a Aut7p, (2000). 1069-1075. , 20) Mitochondria- (2009). 20) yaisand Dynamics (2009). 5543-5555. , n . ulkn J., Huelsken, P., ´n, 21) h nuclear The (2010). MOJ. EMBO a.Cl Biol. Cell Nat. 20) Autophagy (2008). 11 Biochemistry 45-51. , 1833 13 21 .Neurochem. J. .Bo.Chem. Biol. J. 1211-1218. , 195-201. , 529-540. , 31 o.Cell. Mol. (2007a). 2852- , (2013). (2011). EMBO .Cell J. 85 ,1- 46 14 k B , ,

Journal of Cell Science tll . om . aosi . ang . rmek .H,Gelr H., Goehler, H., F. Brembeck, C., Haenig, M., Lalowski, U., Worm, U., Stelzl, thee,P n ulr S. Muller, and P. Stehmeier, Z. Elazar, and R. Scherz-Shouval, Z. E., Elazar, Fass, E., and Shvets, H. Weidberg, A., Abada, Z. E., Elazar, Shvets, and N. Mizushima, T., Shpilka, hrfor . a y,D,Csaz,M,Brsnkv,A,Fisn H., Friesen, A., Baryshnikova, M., Costanzo, D., Dyk, van Y. Ohsumi, S., N., Sharifpoor, Mizushima, Y., Fujioka, H., Kumeta, N., P., N. J. Noda, Macagno, K., P., Satoo, J. Morton, G., D. McEwan, B., Serrels, E., Sandilands, aco . ua,J,Garcı Z. J., Duran, Elazar, A., Sancho, and A. Porat, A., Legesse-Miller, Y., Sagiv, N., Li, A., Dricot, T., Hirozane-Kishikawa, T., Hao, K., Venkatesan, F., J. Rual, Ugolino, M., C. Peterhoff, S., Kaushik, L., Mah, D., Srinivasan, C., Rothenberg, R., Kato, A., Rozenknop, A., Kniss, P., Wild, E., Fiskin, H., Suzuki, V., V. Rogov, aia . aiaMyk,E,Un,T n oiai E. Kominami, and T. Ueno, E., Tanida-Miyake, I., Tanida, Y. Ohsumi, and M. Morimoto, C., Kondo, K., Suzuki, I. Dikic, and C. Behrends, W., J. Harper, I., Novak, M., Akutsu, D., Popovic, ELSINEA GLANCE A AT SCIENCE CELL ez . it . any . asil,T . usn .S,Kih,J R., J. Knight, S., R. Judson, A., T. Mansfield, G., Cagney, L., Giot, P., Uetz, J. Kendrick-Jones, A., N. Bright, D., S. Arden, J., B. Waxse, A., D. Tumbarello, Y. Ohsumi, and F. M. Randow, and Tsukada, A. Foeglein, N., Muhlinen, F. von Randow, P., M. and Wandel, N. L., T. Muhlinen, Thurston, von S., Bloor, G., Ryzhakov, L., T. Thurston, todce . eke,M,Shehr,A,Kepn .e al. et S. Koeppen, A., Schoenherr, M., Zenkner, M., Stroedicke, oue onc h UOsse oC2signaling. CK2 to system SUMO the connect modules autophagosomes. into p62/SQSTM1 recruit LC3 of Sci. residue autophagosomes. Phe52 into and recruitment p62 in GATE-16 and Autophagy LC3B of involvement glance. a at autophagy 21) ucinlwrn fteyatknm eeldb lblaayi of analysis al. global et B. by Papp, revealed L., kinome C. yeast Myers, the motifs. B., of network VanderSluis, genetic Y., wiring J. Functional Youn, (2012). C., A. Douglas, autophagy. during delipidation and 1341-1350. processing following LC3 of F. survival al. mechanism et cell Inagaki, M. cancer and Vidal, Y., promotes W. Src Langdon, signalling. of G., FAK V. reduced targeting Brunton, Autophagic C., (2011). Stevens, K., McLeod, . ag . uro .M,Nxn .A n otio .J. M. Monteiro, and A. R. Nixon, M., A. Cuervo, S., Fang, J., Lo Salmonella. 459-466. G., of clearance D. autophagic phosphorylation-triggered McEwan, M., Kawasaki, n p3n1cnttt eaongn aiyecdn ulrgltr of regulators dual encoding family al. gene et metazoan transcription. D. and Sala, a autophagy M., constitute Royo, Tp53inp1 R., DeSalle, and J., M. Macias, T., GOS- v-SNARE Golgi the and NSF 28. with interacts modulator, transport membrane network. interaction protein-protein al. human et the N. Nature of Ayivi-Guedehoussou, map M., proteome-scale Dreze, a D., Towards autophagy. F. Gibbons, F., chaperone-mediated G. Berriz, by degraded is Genet. and Mol. Hum. autophagy in functions fapamnoiaeb uohgcptwy:ietfcto fanvlreceptor, novel a of identification Atg34p. pathways: autophagic by alpha-mannosidase of modifiers. ATG8 endocytic human of to binding regulation direct autophagy: Biol. by in pathways autophagy proteins and GTPase-activating Rab (2012). ua rti-rti neato ewr:arsuc o noaigthe annotating for resource a network: interaction proteome. protein-protein human J. EMBO Autolysosomal okhn . aaa,V,Siiaa,M,Pcat .e al. et P. Pochart, M., Srinivasan, V., Narayan, the D., with Lockshon, fusion and maturation autophagosome lysosome. Tom1-dependent mediate F. Buss, and cells cerevisiae. defend Saccharomyces to 169-174. of autophagy mutants for autophagy-defective vesicles the damaged restricts invasion. targets bacterial NDP52 8 against receptor Galectin (2012). autophagy and bacteria. adaptor ubiquitin-coated of TBK1 proliferation The (2009). MAP- and GABARAP, GATE-16, for Apg12p, enzyme human LC3. Protein-activating including a is substrates Apg7p multiple cerevisiae Saccharomyces of homolog MOJ. EMBO 121 32 .Bo.Chem. Biol. J. 437 1733-1744. , 2685-2695. , .Bo.Chem. Biol. J. 32 Cell a.Cl Biol. Cell Nat. 1173-1178. , 7 1903-1916. , 683-688. , 19 21) uohg eetr ikmoi It uohgsmsto autophagosomes to VI myosin link receptors Autophagy (2012). 122 b 1494-1504. , ctnndgaainrgltsWtatpayp2crosstalk. Wnt-autophagy-p62 regulates degradation -catenin 20) h tutr fAgBL3cmlxrvasthe reveals complex Atg4B-LC3 of structure The (2009). 19 957-968. , 276 3219-3232. , 285 .Cl Sci. Cell J. eoeRes. Genome 1701-1706. , a.Cl Biol. Cell Nat. 14 ´a-Espan Nature 30019-30025. , 1024-1035. , LSONE PLoS 20) hsh-euae UOinteraction SUMO Phospho-regulated (2009). 19) slto n hrceiainof characterization and Isolation (1993). 482 ,A,Muei,C,Aeu .A,Lamark, A., E. Alemu, C., Mauvezin, A., a, ˜ 125 r .e al. et F. hr, ¨ 414-418. , 22 2343-2348. , 14 a.Immunol. Nat. 791-801. , 7 51-60. , e34034. , 21) bqii-iepoen and proteins Ubiquitin-like (2012). 21) tutrlbssfor basis Structural (2013). 21) eetv transport Selective (2010). o.Cell Mol. 10 20) h N-terminus The (2008). 21) iscigthe Dissecting (2011). 21) DOR/Tp53inp2 (2012). 1215-1221. , 20) AE1,a GATE-16, (2000). 20) h human The (2001). ESLett. FEBS ice.J. Biochem. 21) Ubiquilin (2010). 33 MOJ. EMBO 400-409. , 20) A (2000). 20) A (2005). o.Cell. Mol. (2005). .Cell J. 454 333 28 , , , h,Y,Mse,S,Trni,M,Ln,V,Ce-ide,S,El,R,Nvk I., Novak, R., Eils, S., Chen-Lindner, V., Lang, M., Terenzio, S., Massen, Y., Zhu, hn,Y . hhaai . rc,A,Lmr,T,Jhne,T n rml,J. Brumell, and T. Johansen, T., Lamark, A., Brech, S., Shahnazari, T., Y. Zheng, e,D . rot .adBon .J. E. Brown, and D. J., Arnott, Y., Sahalie, D. Lee, K., Venkatesan, I., Lemmens, A., S., M. Zhang, Yildirim, Y., P., Sun, C., Braun, Ma, H., J., Yu, Zhu, J., Tong, J., Zheng, L., Ran, M., Ma, C., Yi, aaaiSt,H,Tnd,I,Un,T n oiai E. Kominami, and T. Ueno, I., and Tanida, Y. H., Yamazaki-Sato, Ohsumi, H., Kumeta, H., Nakatogawa, N., N. and Noda, R. M., Gong, P., Yamaguchi, Zhang, J., Jiang, Q., Fu, L., Zheng, Z., Chen, L., Yu, Y., Xin, i,Z n losy .J. D. Klionsky, and Z. Xie, i,R,Nue,S,MKea,K,Wn,F,MKea,W .adLu L. Liu, and L. W. McKeehan, F., Wang, K., McKeehan, S., Nguyen, R., Xie, ag . u,K,M,L,Tn,L,L,D,Hag . un . i . ag W., Wang, C., Li, Y., Yuan, X., Huang, D., W. Li, L., R. Tang, Olsen, L., Ma, and K., J. Huo, J., S. Wang, Moss, J., N. Brandon, K., F. Bedford, H., Wang, edeg . hes . hik,T,Sirn . hne,V n lzr Z. Elazar, and V. Shinder, F., Shimron, T., Shpilka, E., Shvets, H., Weidberg, M. Gautel, and C. Whitehouse, E., Solomon, K., Marchbank, S., Waters, id . ahn . cwn .G,Wge,S,Rgv .V,Bay .R., N. Brady, V., V. Rogov, S., Wagner, G., D. McEwan, H., Farhan, P., Wild, ag .S,Lu .Z,Yn,Y,Zag . a,J . ag . ag .M., X. Wang, H., Yang, J., J. Hao, Y., Zhang, Y., Yang, Z., Y. Liu, S., B. Wang, edeg . hik,T,Svt,E,Aaa . hmo,F n lzr Z. Elazar, and F. Shimron, A., Abada, E., Shvets, T., Shpilka, H., Weidberg, o ulnn . ktu . aehl,B . ogen . lo,S., Bloor, A., Foeglein, J., B. Ravenhill, M., Akutsu, N., Muhlinen, J., von Timm, M., Zenkner, S., Plassmann, R., Foulle, U., Stelzl, A., Vinayagam, Brodsky, and S. J. Weissman, M., L. Hendershot, C., M. Jonikas, S., Hersch, S. Vembar, N., Hampe, F., P. Ven, der van E., V. Tapia, J., F. Eppler, A., Ulbricht, n 4i h C-neatn eino np eemnsposria mitophagy pro-survival determines Bnip3 of region apoptosis. LC3-interacting versus the in R. 24 N. Brady, and and A. Hamacher-Brady, I., Dikic, uohg pathway. autophagy H. erisUiuln oteatpaymachinery. autophagy the to Ubiquilin1 recruits network. interactome yeast al. the et of N. map 322 Simonis, interaction N., protein binary Li, quality F., Gebreab, T., Hirozane-Kishikawa, regulation. al. autophagy et W. Feng, emnl1 mn cd ihnAg r seta o p8lpdto,btntfor not but lipidation, Apg8 for essential cytoplasm-to- are Apg7 conjugation. the within Apg12 acids for amino 17 crucial terminal is and interaction pathway. Atg3-Atg8 targeting vacuole the mediates receptor-associated Atg3 GABA(A) F. of Inagaki, homologues mouse two and protein. human three S. Zhao, adaptations. irtblsadmtcodi oafc uohgsmlboeei and biogenesis autophagosomal affect to mitochondria degradation. and with components autophagic microtubules bridges (MAP1S) 1S protein Microtubule-associated un .e al. et W. Guan, Nature cytoskeleton. the and receptors GABA(A)-receptor-associated GABA(A) links protein hshrlto fteatpayrcpo piernrsrcsSalmonella al. restricts et optineurin C. Choudhary, receptor O., autophagy Waidmann, the growth. J., of Korac, act Phosphorylation yet B., essential Richter, both are biogenesis. subfamilies autophagosome GATE-16/GABARAP in differently and LC3 (2010). euae acrcl rlfrto i eetvl agtn VPRBP. R. targeting M. selectively Wang, via and proliferation M. (Lond.) cell Q. cancer Zhan, regulates Q., Z. Zhang, 21) C n AE1 emn eit ebaefso processes fusion membrane mediate termini N biogenesis. GATE-16 autophagosome for and required protein autophagic LC3 to (2011). nbr1 link chains polyubiquitin and turnover. LC3 with Interactions liver. human the of network uhrod .J,Fen,S . oadr .adRno,F. for required Randow, is and NDP52, in D. motif Komander, LIR noncanonical M., autophagy. a antibacterial by S. selectively Freund, bound LC3C, J., T. Rutherford, transduction. signal E. intracellular E. investigating Wanker, Signal. for and network A. interaction M. protein Andrade-Navarro, E., H. Assmus, al. translocation. et protein P., L. Saftig, J. A., tensio Haas, on D., autophagy. relies Stadel, P., mechanotransduction Vakeel, Saccharomyces N., in interactions protein-protein of cerevisiae. analysis comprehensive 20) h dpo rti 6/QT1tresivdn atrat the to bacteria invading targets p62/SQSTM1 protein adaptor The (2009). 104-110. , 21) oanc-hprn pcfct eie h oeo i during BiP of role the defines specificity co-chaperone domain J (2010). 397 4 124 Science Genomics rs8. , ESLett. FEBS 20) lnn,epeso atrs n hoooelclzto of localization chromosome and patterns, expression Cloning, (2001). 69-72. , Nature 21) uohg-eae rti Ag)fml neatn oi in motif interacting family (Atg8) 8 protein Autophagy-related (2010). 203-214. , ur Biol. Curr. a.Cl Biol. Cell Nat. .Bo.Chem. Biol. J. ora fCl cec 21)17 – doi:10.1242/jcs.140426 3–9 127, (2014) Science Cell of Journal 333 21) ucinadmlclrmcaimo ctlto in acetylation of mechanism molecular and Function (2012). 21) oada nesadn ftepoeninteraction protein the of understanding an Toward (2011). .Bo.Chem. Biol. J. 403 74 ESLett. FEBS 228-233. , .Immunol. J. 583 408-413. , .Bo.Chem. Biol. J. Science 23 623-627. , o.Cell Mol. 1846-1852. , 430-435. , 20) uohgsm omto:cr ahnr and machinery core formation: Autophagosome (2007). .Bo.Chem. Biol. J. 9 286 o.Ss.Biol. Syst. Mol. 1102-1109. , 336 10367-10377. , 551 183 288 48 474-477. , 71-77. , 329-342. , 285 5909-5916. , 1099-1113. , 21) bqii4i naatrpoenthat protein adaptor an is Ubiquilin4 (2013). 22484-22494. , e.Cell Dev. MOJ. EMBO -nue n chaperone-assisted and n-induced 285 7 536. , 29599-29607. , MORep. EMBO 21) ouaino eie 17 serines of Modulation (2013). 21) uohg negatively Autophagy (2013). 20 29 444-454. , 1792-1802. , 20) h carboxyl The (2003). 14 21) directed A (2011). 373-381. , 21) Cellular (2013). 20) High- (2008). ln Sci. Clin. Science (2011). (2009). (2012). (2011). (1999). Sci. 9

Journal of Cell Science