bioRxiv preprint doi: https://doi.org/10.1101/770735; this version posted September 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 Mechanical Roles of Vinculin/β-catenin interaction in Adherens Junction 2 3 Cristina Bertocchi1, Andrea Ravasio1, Hui Ting Ong2, Yusuke Toyama2,3, Pakorn Kanchanawong2,4 4 1 5 Pontificia Universidad Católica de Chile, Santiago Chile, 8330025. 6 2 Mechanobiology Institute, Singapore. National University of Singapore, Republic of Singapore, 7 117411. 8 3Department of Biological Sciences, National University of Singapore, Singapore, Republic of 9 Singapore, 117543. 10 4Department of Biomedical Engineering. National University of Singapore, Republic of Singapore, 11 117411. 12 13 Correspondence:
[email protected] or
[email protected] 14 15 Summary 16 Mechanical force transmission through the adherens junctions (AJs) are highly regulated 17 processes essential for multicellular organization of tissues. AJ proteins such as E-cadherin, α- 18 catenin, and vinculin have been shown to be sensing or bearing mechanical forces being transmitted 19 between the actin cytoskeleton and the intercellular contacts. However, the molecular organization 20 and connectivity of these components remains not well understood. Using a super-resolution 21 microscopy approach, we report that vinculin, once activated, could form a direct structural 22 connection with β-catenin, which can bypass α-catenin, one of the main mechanotransducers in AJs. 23 Direct vinculin/β-catenin interaction is capable of supporting mechanical tension and contributes to 24 the stabilization of the cadherin-catenin complexes.