International Authorship and Collaboration in Biorxiv Preprints Richard J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Editor on Journal of Cell Science Michael Way (Editor-In-Chief)
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs229740. doi:10.1242/jcs.229740 EDITORIAL New Editor on Journal of Cell Science Michael Way (Editor-in-Chief) As someone who has worked on things related to the actin cytoskeleton my whole research career, the nucleus was not something I paid much attention to. Yes, there were scattered historical reports of actin in the nucleus long before I started my PhD, but no one believed actin was really there of course – it was all an artefact of fixation, you know. Nuclear actin was taboo and no one talked about it at the meetings I went to as a student and postdoc. How wrong we were – today nuclear actin is alive and kicking, although there are definitely more questions than answers concerning what it is actually doing there. We now appreciate that the nucleus contains a wide assortment of proteins associated with the cytoplasmic actin cytoskeleton including myosin motors and actin nucleators such as the Arp2/3 complex. In addition, it should not be forgotten that many chromatin-associated complexes including SWI/SNF and INO80/ SWR also contain multiple actin-related proteins, as well as actin itself. It strikes me that maybe we should all be paying more attention to the nucleus and not just because it contains my favourite proteins! Maybe that’s why, in recent years, we’ve been seeing more submissions to JCS that are focused on different aspects of the nucleus and that traditionally appeared in journals with ‘molecular’ in their titles. -
Theory of Cytoskeletal Reorganization During Crosslinker-Mediated Mitotic Spindle Assembly
bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Theory of cytoskeletal reorganization during crosslinker-mediated mitotic spindle assembly A. R. Lamson, C. J. Edelmaier, M. A. Glaser, and M. D. Betterton Abstract Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which micro- tubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mech- anisms of this process include regulated filament polymerization, crosslinking, and motor-protein activity. Remarkably, using passive crosslinkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization due to dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive crosslink- ers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include crosslinker-binding kinetics and other stochastic effects. Our results show that rapid crosslinker reorganization to microtubule overlaps facilitates crosslinker-driven spindle assembly, a testable prediction for future experiments. Combin- ing these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization. 1 bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. -
Journal of Cell Science & Therapy
Journal of Cell Science & Therapy 2021 Conference Announcement Mark on Your Calendar, Stem Cell 2021 is coming soon!! Ahmed Hegazi Pursued by the Successful Completion of the Stem Cell discuss the latest developments in the field of Stem Cell and Conference, we are facilitating its next version “International Regenerative Medicine as well. Current studies of Stem cell Conference on Stem Cell” in Osaka, Japan on March 16-17, are examining how undifferentiated organisms might be 2021. utilized to anticipate or fix sicknesses and wounds, for The theme attracts for the Stem Cell 2021 is “Frontiers in example, Parkinson's illness, type 1 diabetes, coronary illness, Stem Cells & Turning Ideas into Reality”. spinal string damage, strong dystrophy, Alzheimer's malady, Welcoming all of you for our Stem Cell 2021 involves strokes, osteoarthritis, vision and hearing misfortune. extraordinary delight, warmth and passion. We anticipate all Immature microorganisms could likewise be utilized to of you sharing your knowledge and information, look into supplant or repair tissue harmed by ailment or damage. thoughts and to make a sprinkle with new upgrades at this 2- days occasion. This time we have introduced some contemporary and recently updated and advanced highlights of Life sciences in Stem Cell 2021. Stem Cell 2021 wish to bring all the medicinal science, chemical engineering & tissue regeneration professionals and scientists under material science fields for our Smart Materials Meeting to collaborate and share their insight and their most Cancer Stem Cells, Bio-Makers Of Cancer Stem Cells, Stem current research to the whole Material Science Community. Cell Biology & Advances, Advanced In Tissue Regeneration, Also this time, Our International Conference on Stem Cell Embryonic Stem Cell, Reprogramming In Stem Cell & will be aims to haven for Multinational organizations, Transplantation, Treatment Of Diseases By Stem Cell entrepreneurs across the globe, the researchers and Therapeutics, Stem Cell Banking, Novel Stem Cell Therapy, academicians. -
Estimated Costs of Implementing an Open Access Policy at a Private Foundation
bioRxiv preprint doi: https://doi.org/10.1101/128413; this version posted August 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Estimated costs of implementing an open access policy at a private foundation 1 2 Carly Strasser and Eesha Khare 1 Gordon and Betty Moore Foundation, Palo Alto, California, USA 2 Harvard University, Cambridge, Massachusetts, USA Corresponding author: Carly Strasser1 Email address: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/128413; this version posted August 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Background: The Gordon and Betty Moore Foundation (GBMF) was interested in understanding the potential effects of a policy requiring open access to peer-reviewed publications resulting from the research the foundation funds. Methods: We collected data on more than 2000 publications in over 500 journals that were generated by GBMF grantees since 2001. We then examined the journal policies to establish how two possible open -
Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites
bioRxiv preprint doi: https://doi.org/10.1101/075176; this version posted September 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites Ruixin Zhoua, Kaustuv Basub, Hyman Hartmanc, Christopher J. Matochad, S. Kelly Searsb, Hojatollah Valib,e, and Marcelo I. Guzman*,a *Corresponding Author: [email protected] aDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506, USA; bFacility for Electron Microscopy Research, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada; cEarth, Atmosphere, and Planetary Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; dDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA; eDepartment of Anatomy & Cell Biology, 3640 University Street, Montreal H3A 0C7, Canada The authors declare no competing financial interest. Number of text pages: 20 Number of Figures: 9 Number of Tables: 0 bioRxiv preprint doi: https://doi.org/10.1101/075176; this version posted September 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract How primordial metabolic networks such as the reverse tricarboxylic acid (rTCA) cycle and clay mineral catalysts coevolved remains a mystery in the puzzle to understand the origin of life. -
New Doors to Open…And So Many! | Journal of Cell Science
New doors to open…and so many! | Journal of Cell Science Advertisement California Institute of Technology Log in Advanced search Home Articles About us For authors Journal info Contacts EDITORIAL New doors to open…and so many! Previous Article Next Article D.M. Glover Journal of Cell Science 2000 113: 359-360; This Issue Article Info & metrics Email Summary Share The pursuit of science is a wonderful journey of Citation Tools discovery along which there are a myriad of avenues to Alerts be explored. There have always been so many objects of fascination, so many questions to ask along the way, © Request Permissions We use cookies to help us improve this website. Learn more so many possibilities to understand new principles, that making the decision about which problem to address Article navigation and then having the self-discipline to explore it in depth Top challenge all who practice the art. How then are we, as Article cell biologists, to cope with the mountain of information Info & metrics that is accumulating as we enter the twenty-first https://jcs.biologists.org/content/113/3/359.long[8/10/2020 3:19:01 PM] New doors to open…and so many! | Journal of Cell Science century? We now have the potential to decipher the primary sequences of every single cellular protein for Related articles several model organisms. Just how are we to put this Web of Science PubMed information into an intelligible framework for Google Scholar understanding cell physiology? The turn of a century is a time at which we can permit ourselves the luxury of Cited by.. -
New Editor on Journal of Cell Science Sharon A
© 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 303 doi:10.1242/jcs.200345 EDITORIAL New Editor on Journal of Cell Science Sharon A. Ahmad (Executive Editor) and Michael Way (Editor-in-Chief) We are delighted to announce the appointment of Guangshuo Ou as an Editor on Journal of Cell Science. Guangshuo obtained his PhD in cell and developmental biology from the University of California, Davis. His thesis work, conducted under the guidance of Dr Jon Scholey, focused on ciliogenesis in Caenorhabditis elegans neurons and elucidated how microtubule-based motor proteins are used to build neuronal cilia. Guangshuo received his postdoctoral training with Dr Ron Vale at the University of California, San Francisco, where he developed imaging techniques to study neuroblast migration and division in C. elegans larvae and discovered a new myosin-based mechanism underlying neuroblast asymmetric division. In 2011 he was recruited by the Chinese government with the Junior One Thousand Talent Plan Award as an investigator at the Institute of Biophysics Chinese Academy of Sciences. In 2013 his group relocated to the School of Life Sciences at Tsinghua University in Beijing, and he became a principal investigator of the Joint Center for Life Sciences at Tsinghua and Peking Universities. He continues to study neuroblast development using C. elegans as a model organism. Guangshuo has had a long-standing interest in understanding the molecular and cellular mechanisms of cell division and cell migration in developmental systems. Guangshuo has developed imaging methods to follow neuroblast development in a living nematode larva, and his laboratory devised the somatic CRISPR– Cas9 technique to generate conditional knockouts in order to dissect the underlying molecular regulation. -
Downloads Presented on the Abstract Page
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063578; this version posted April 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A systematic examination of preprint platforms for use in the medical and biomedical sciences setting Jamie J Kirkham1*, Naomi Penfold2, Fiona Murphy3, Isabelle Boutron4, John PA Ioannidis5, Jessica K Polka2, David Moher6,7 1Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom. 2ASAPbio, San Francisco, CA, USA. 3Murphy Mitchell Consulting Ltd. 4Université de Paris, Centre of Research in Epidemiology and Statistics (CRESS), Inserm, Paris, F-75004 France. 5Meta-Research Innovation Center at Stanford (METRICS) and Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, CA, USA. 6Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada. 7School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada. *Corresponding Author: Professor Jamie Kirkham Centre for Biostatistics Faculty of Biology, Medicine and Health The University of Manchester Jean McFarlane Building Oxford Road Manchester, M13 9PL, UK Email: [email protected] Tel: +44 (0)161 275 1135 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.27.063578; this version posted April 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
S. John Calise Department of Oral Biology [email protected] Graduate Program in Biomedical Sciences
Contact: University of Florida Health Science Center NSF Graduate Research Fellow P.O. Box 100424 Doctoral Candidate Gainesville, FL 32610-0424 Laboratory of Edward K.L. Chan, PhD 352-273-8851 (lab) S. John Calise Department of Oral Biology [email protected] Graduate Program in Biomedical Sciences EDUCATION University of Florida Ph.D. in Medical Sciences (in progress) Aug 2015 – present Gainesville, FL Graduate Program in Biomedical Sciences Concentration: Molecular Cell Biology Mentor: Edward K.L. Chan, PhD Awarded NSF Graduate Research Fellowship University of Florida B.S. in Business Administration Aug 2007 – May 2011 Gainesville, FL Major: Finance Graduated with Honors PREVIOUS RESEARCH POSITIONS University of Florida Laboratory Manager / Technician Sept 2011 – Aug 2015 Gainesville, FL Laboratory of Edward K.L. Chan, PhD Department of Oral Biology HONORS AND AWARDS (GRADUATE AND PROFESSIONAL) 2013, 1st Place, Dresden Prize for the Study of Autoantibodies, 11th Dresden Symposium on Autoantibodies 2014, 2nd Place, Oral & Poster Communication, 12th International Workshop on Autoantibodies and Autoimmunity 2015, University of Florida Graduate School Grinter Fellowship Award (stipend supplement for 3 years) 2015, American Society for Cell Biology Graduate Student Travel Award 2016, Pre-doctoral fellowship under Department of Oral Biology NIH/NIDCR Training Grant 2T90DE021990-06 2017, American Society for Cell Biology Early Career Meeting Grant 2017, Nominated for Associate Membership, Sigma Xi Scientific Research Honor Society 2017, National -
Systems Biology Behind Immunoprotection of Both Sheep and Goats After 2 Sungri/96 PPRV Vaccination
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.252056; this version posted August 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Systems Biology behind immunoprotection of both Sheep and Goats after 2 Sungri/96 PPRV vaccination 3 Sajad Ahmad Wani1,2#, Manas Ranjan Praharaj3#, Amit R Sahu1, Raja Ishaq Nabi 4 Khan1, Kaushal Kishor Rajak1, Dhanavelu Muthuchelvan4, Aditya Sahoo5, Bina 5 Mishra1, R. K. Singh1*, Bishnu Prasad Mishra1* and Ravi Kumar Gandham3* 6 1 ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, India 7 2 The Ohio State University, Columbus, OH, United States 8 3 DBT-National Institute of Animal Biotechnology, Hyderabad, India 9 4 ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, India 10 5 ICAR- Directorate of Foot and Mouth Disease, Mukteswar, India 11 # Equal Contributors 12 * Corresponding Authors: Ravi Kumar Gandham, [email protected] 13 Bishnu Prasad Mishra, [email protected] 14 Raj Kumar Singh, [email protected] 15 16 Abstract 17 Immune response is a highly coordinated cascade involving all the subsets of 18 PBMCs. In this study, RNA-Seq analysis of PBMC subsets - CD4+, CD8+, CD14+, 19 CD21+ and CD335+ cells from day 0 and day 5 of Sungri/96 Peste des Petits 20 Ruminants vaccinated sheep and goats was done to delineate the systems biology 21 behind immune - protection of the vaccine in sheep and goats. Assessment of the 22 immune response processes enriched by the differentially expressed genes in all the 23 subsets suggested a strong dysregulation towards development of early inflammatory 24 microenvironment, which is very much required for differentiation of monocytes to 25 macrophages, and for activation and migration of dendritic cells into the draining lymph 26 nodes. -
Publication Rate and Citation Counts for Preprints Released During the COVID-19 Pandemic: the Good, the Bad and the Ugly
Publication rate and citation counts for preprints released during the COVID-19 pandemic: the good, the bad and the ugly Diego Añazco1,*, Bryan Nicolalde1,*, Isabel Espinosa1, Jose Camacho2, Mariam Mushtaq1, Jimena Gimenez1 and Enrique Teran1 1 Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador 2 Colegio de Ciencias e Ingenieria, Universidad San Francisco de Quito, Quito, Ecuador * These authors contributed equally to this work. ABSTRACT Background: Preprints are preliminary reports that have not been peer-reviewed. In December 2019, a novel coronavirus appeared in China, and since then, scientific production, including preprints, has drastically increased. In this study, we intend to evaluate how often preprints about COVID-19 were published in scholarly journals and cited. Methods: We searched the iSearch COVID-19 portfolio to identify all preprints related to COVID-19 posted on bioRxiv, medRxiv, and Research Square from January 1, 2020, to May 31, 2020. We used a custom-designed program to obtain metadata using the Crossref public API. After that, we determined the publication rate and made comparisons based on citation counts using non-parametric methods. Also, we compared the publication rate, citation counts, and time interval from posting on a preprint server to publication in a scholarly journal among the three different preprint servers. Results: Our sample included 5,061 preprints, out of which 288 were published in scholarly journals and 4,773 remained unpublished (publication rate of 5.7%). We found that articles published in scholarly journals had a significantly higher total citation count than unpublished preprints within our sample (p < 0.001), and that preprints that were eventually published had a higher citation count as preprints Submitted 25 September 2020 20 January 2021 when compared to unpublished preprints (p < 0.001). -
Tracking the Popularity and Outcomes of All Biorxiv Preprints
1 Meta-Research: Tracking the popularity and outcomes of all bioRxiv 2 preprints 3 Richard J. Abdill1 and Ran Blekhman1,2 4 1 – Department of Genetics, Cell Biology, and Development, University of Minnesota, 5 Minneapolis, MN 6 2 – Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, 7 MN 8 9 ORCID iDs 10 RJA: 0000-0001-9565-5832 11 RB: 0000-0003-3218-613X 12 13 Correspondence 14 Ran Blekhman, PhD 15 University of Minnesota 16 MCB 6-126 17 420 Washington Avenue SE 18 Minneapolis, MN 55455 19 Email: [email protected] 1 20 Abstract 21 The growth of preprints in the life sciences has been reported widely and is 22 driving policy changes for journals and funders, but little quantitative information has 23 been published about preprint usage. Here, we report how we collected and analyzed 24 data on all 37,648 preprints uploaded to bioRxiv.org, the largest biology-focused preprint 25 server, in its first five years. The rate of preprint uploads to bioRxiv continues to grow 26 (exceeding 2,100 in October 2018), as does the number of downloads (1.1 million in 27 October 2018). We also find that two-thirds of preprints posted before 2017 were later 28 published in peer-reviewed journals, and find a relationship between the number of 29 downloads a preprint has received and the impact factor of the journal in which it is 30 published. We also describe Rxivist.org, a web application that provides multiple ways 31 to interact with preprint metadata. 32 Introduction 33 In the 30 days of September 2018, four leading biology journals – The Journal of 34 Biochemistry, PLOS Biology, Genetics and Cell – published 85 full-length research 35 articles.