Mechanical Roles of Vinculin/Β-Catenin Interaction in Adherens

Total Page:16

File Type:pdf, Size:1020Kb

Mechanical Roles of Vinculin/Β-Catenin Interaction in Adherens bioRxiv preprint doi: https://doi.org/10.1101/770735; this version posted September 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 Mechanical Roles of Vinculin/β-catenin interaction in Adherens Junction 2 3 Cristina Bertocchi1, Andrea Ravasio1, Hui Ting Ong2, Yusuke Toyama2,3, Pakorn Kanchanawong2,4 4 1 5 Pontificia Universidad Católica de Chile, Santiago Chile, 8330025. 6 2 Mechanobiology Institute, Singapore. National University of Singapore, Republic of Singapore, 7 117411. 8 3Department of Biological Sciences, National University of Singapore, Singapore, Republic of 9 Singapore, 117543. 10 4Department of Biomedical Engineering. National University of Singapore, Republic of Singapore, 11 117411. 12 13 Correspondence: [email protected] or [email protected] 14 15 Summary 16 Mechanical force transmission through the adherens junctions (AJs) are highly regulated 17 processes essential for multicellular organization of tissues. AJ proteins such as E-cadherin, α- 18 catenin, and vinculin have been shown to be sensing or bearing mechanical forces being transmitted 19 between the actin cytoskeleton and the intercellular contacts. However, the molecular organization 20 and connectivity of these components remains not well understood. Using a super-resolution 21 microscopy approach, we report that vinculin, once activated, could form a direct structural 22 connection with β-catenin, which can bypass α-catenin, one of the main mechanotransducers in AJs. 23 Direct vinculin/β-catenin interaction is capable of supporting mechanical tension and contributes to 24 the stabilization of the cadherin-catenin complexes. These findings suggest a multi-step model for 25 the force-dependent reinforcement of AJs whereby α-catenin may serve as the initial catalytic 26 activator of vinculin, followed by vinculin translocation to form a direct link between E-cadherin- 27 bound β-catenin and the actin cytoskeleton. 28 29 Keywords: vinculin, β-catenin, α-catenin, adherens junctions, mechanotransduction, super- 30 resolution microscopy 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 bioRxiv preprint doi: https://doi.org/10.1101/770735; this version posted September 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 46 Introduction 47 Within epithelial tissues, forces between cells are borne by specialized cell-cell contact 48 structures. The propagation of such forces are essential for developmental morphogenesis, tissue 49 homeostasis, and collective cell migration [1-4], and thus is subject to complex cell-type- and 50 context- specific spatiotemporal regulations. The Adherens Junctions (AJs) are prominent adhesive 51 structures in epithelia that physically couple neighbouring cells via Ca2+-dependent homophilic 52 interaction between the extracellular domains of classical cadherins [5-7]. The cadherin receptors in 53 AJs are, in turn, coupled with the actomyosin cytoskeleton via an extensive ensemble of cytoplasmic 54 proteins [8], thereby integrating the mechanobiological processes of cell-cell adhesions with many 55 important cellular pathways[9]. In recent years, the functions of AJs are increasingly better 56 understood across multiple length scales, particularly at the tissues and molecular levels[2]. 57 However, several aspects of AJ functions, especially at the nanoscale regime where AJ proteins are 58 collectively organized into supramolecular assembly, have been largely unexplored until recently 59 [10]. Hence, processes occurring at this length scale, including how mechanical force transmission 60 are mediated and regulated through AJs, remain less well understood. 61 The ternary complex of epithelial (E-) cadherin, β-catenin, and α-catenin, is widely 62 considered to be the main conduit of mechanical force in AJs [11]. The coupling of actomyosin 63 contractility into intramolecular tension in E-cadherin and α-catenin has been demonstrated using 64 Forster Resonance Energy Transfer (FRET) probes [12-14]. Moreover, cell biological and single- 65 molecule force spectroscopy studies have revealed a tension-dependent conformational changes in 66 α-catenin which gates the recruitment of vinculin, an adaptor protein that reinforces the connection 67 between AJs and the actin cytoskeleton[15, 16]. These proteins were observed by super-resolution 68 microscopy to form a compact cadherin-catenin compartment proximal to the plasma membrane, 69 with vinculin being centrally located between the cadherin-catenin compartment and the actin 70 cytoskeletons [17]. Furthermore, vinculin was found to be conformationally extended upon 71 mechanical and biochemical signals to modulate the AJ nanostructure as well as mechanical tension, 72 consistent with the molecular clutch model [17]. However, given the multi-functional context- 73 dependent roles of many AJ components [18, 19], the wealth of intra-AJ interaction partners[4], and 74 the high-density organization and dynamic plasticity of AJs, these findings could still represented 75 only the most prominent modes of action. Furthermore, the understanding of how these principal 76 AJ components function as an integrated system is still obscure. 77 Biochemical evidences thus far indicate that the linkage between cadherins and the 78 contractile actin cytoskeleton is indirect [8]. While recent studies have focused largely on the force 79 transmission hierarchy of E-cadherin/β-catenin/α-catenin/vinculin/actin, we note that several 80 alternate pathways may also participate in connecting cadherin with actin, including myosin VI [20], 81 EPLIN [21], α-actinin [22], and afadin [23, 24]. Additionally, β-catenin may interact directly with 82 vinculin [25], which could potentially form an alternate bypass connection from cadherin to the actin 83 cytoskeleton. Collectively, these suggest that in AJs a mixture of different mechanical connectors, 84 rather than a single dominant tether, may couple the cadherin receptors and actomyosin 85 cytoskeletons. However, these alternate interactions have been comparatively under-studied. In 86 this report, we investigated the alternate force transmission pathways in AJs using an integrated 87 approach of super-resolution microscopy, laser nanoscissor, and live-cell microscopy. We found that 88 vinculin, once activated, could form a mechanical connection directly to β-catenin, bypassing α- 89 catenin. However, α-catenin may be required for vinculin activation. These data is suggestive of a 90 multi-step mechanochemical dynamics whereby α-catenin may catalyse vinculin activation in a bioRxiv preprint doi: https://doi.org/10.1101/770735; this version posted September 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 3 91 force-dependent manner, followed by the translocation of vinculin to β-catenin to form a more 92 direct mechanical connection, potentially underpinning AJ reinforcement. 93 94 Results and Discussion 95 96 Super-resolution microscopy reveals an alternate nanoscale organization of vinculin in the absence 97 of α-catenin 98 In a recent study, we have demonstrated the use of cadherin biomimetic substrate system 99 to facilitate ultra-high resolution imaging of cadherin-based adhesions [17], Fig. 1A. The use of such 100 platform, in conjunction with surface-generated structured illumination microscopy [26, 27], permits 101 sub-20 nm precision analysis along the vertical (z)-axis perpendicular to the plasma membrane. This 102 helped elucidate the nanoscale stratification of proteins into distinct layers, and permit the 103 investigation of conformation changes in proteins such as vinculin [17]. Using this strategy to 104 investigate MDCK (Madin-Derby Canine Kidney) epithelial cells, we investigated the dependence of 105 the nanoscale architecture of E-cadherin-based adhesions on α-catenin, comparing control cells with 106 a stable cell line expressing α-catenin shRNA[28]. As shown in Fig. 1B-C, the fluorophore z-position 107 relative to the substrate surface (z = 0Dnm) was analysed pixel-wise, with the median value, zcentre, 108 for adhesion regions of interest (ROIs) used as the representative protein z-position. In both of 109 these conditions, immunostaining showed that endogenous vinculin localizes to the cadherin-based 110 adhesions (Fig. 1E-F). Using fluorescent protein (FP) fusion as probes, we found that E-cadherin (C- 111 terminal GFP fusion) was located at similar z-positions. In contrast, a drastic difference was observed 112 in the z-position of vinculin. As shown in Fig, 1C-D and Supplementary Table S1, in control MDCK, 113 vinculin is positioned proximal to the cadherin-catenin compartment (z <60 nm), but upon α-catenin 114 depletion, vinculin localizes to a much higher z-position (z>80 nm), coinciding with the actomyosin 115 compartment, probably via the association with actin or actin-regulatory proteins such as VASP or α- 116 actinin [29, 30]. As we have shown earlier [17], we found that the central position of vinculin is 117 restored upon re-expression of α-catenin indicative of the role of α-catenin in the central placement 118 of vinculin. 119 Next we sought to investigate the alternate localization of vinculin. Since vinculin is able to 120 switch between the compact and the extended
Recommended publications
  • New Editor on Journal of Cell Science Michael Way (Editor-In-Chief)
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs229740. doi:10.1242/jcs.229740 EDITORIAL New Editor on Journal of Cell Science Michael Way (Editor-in-Chief) As someone who has worked on things related to the actin cytoskeleton my whole research career, the nucleus was not something I paid much attention to. Yes, there were scattered historical reports of actin in the nucleus long before I started my PhD, but no one believed actin was really there of course – it was all an artefact of fixation, you know. Nuclear actin was taboo and no one talked about it at the meetings I went to as a student and postdoc. How wrong we were – today nuclear actin is alive and kicking, although there are definitely more questions than answers concerning what it is actually doing there. We now appreciate that the nucleus contains a wide assortment of proteins associated with the cytoplasmic actin cytoskeleton including myosin motors and actin nucleators such as the Arp2/3 complex. In addition, it should not be forgotten that many chromatin-associated complexes including SWI/SNF and INO80/ SWR also contain multiple actin-related proteins, as well as actin itself. It strikes me that maybe we should all be paying more attention to the nucleus and not just because it contains my favourite proteins! Maybe that’s why, in recent years, we’ve been seeing more submissions to JCS that are focused on different aspects of the nucleus and that traditionally appeared in journals with ‘molecular’ in their titles.
    [Show full text]
  • How Microtubules Control Focal Adhesion Dynamics
    JCB: Review Targeting and transport: How microtubules control focal adhesion dynamics Samantha Stehbens and Torsten Wittmann Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Directional cell migration requires force generation that of integrin-mediated, nascent adhesions near the cell’s leading relies on the coordinated remodeling of interactions with edge, which either rapidly turn over or connect to the actin cytoskeleton (Parsons et al., 2010). Actomyosin-mediated the extracellular matrix (ECM), which is mediated by pulling forces allow a subset of these nascent FAs to grow integrin-based focal adhesions (FAs). Normal FA turn- and mature, and provide forward traction forces. However, in over requires dynamic microtubules, and three members order for cells to productively move forward, FAs also have to of the diverse group of microtubule plus-end-tracking release and disassemble underneath the cell body and in the proteins are principally involved in mediating micro- rear of the cell. Spatial and temporal control of turnover of tubule interactions with FAs. Microtubules also alter these mature FAs is important, as they provide a counterbalance to forward traction forces, and regulated FA disassembly is the assembly state of FAs by modulating Rho GTPase required for forward translocation of the cell body. An important signaling, and recent evidence suggests that microtubule- question that we are only beginning to understand is how FA mediated clathrin-dependent and -independent endo­ turnover is spatially and temporally regulated to allow cells cytosis regulates FA dynamics. In addition, FA-associated to appropriately respond to extracellular signals, allowing for microtubules may provide a polarized microtubule track for coordinated and productive movement.
    [Show full text]
  • Theory of Cytoskeletal Reorganization During Crosslinker-Mediated Mitotic Spindle Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Theory of cytoskeletal reorganization during crosslinker-mediated mitotic spindle assembly A. R. Lamson, C. J. Edelmaier, M. A. Glaser, and M. D. Betterton Abstract Cells grow, move, and respond to outside stimuli by large-scale cytoskeletal reorganization. A prototypical example of cytoskeletal remodeling is mitotic spindle assembly, during which micro- tubules nucleate, undergo dynamic instability, bundle, and organize into a bipolar spindle. Key mech- anisms of this process include regulated filament polymerization, crosslinking, and motor-protein activity. Remarkably, using passive crosslinkers, fission yeast can assemble a bipolar spindle in the absence of motor proteins. We develop a torque-balance model that describes this reorganization due to dynamic microtubule bundles, spindle-pole bodies, the nuclear envelope, and passive crosslink- ers to predict spindle-assembly dynamics. We compare these results to those obtained with kinetic Monte Carlo-Brownian dynamics simulations, which include crosslinker-binding kinetics and other stochastic effects. Our results show that rapid crosslinker reorganization to microtubule overlaps facilitates crosslinker-driven spindle assembly, a testable prediction for future experiments. Combin- ing these two modeling techniques, we illustrate a general method for studying cytoskeletal network reorganization. 1 bioRxiv preprint doi: https://doi.org/10.1101/419135; this version posted March 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Catenin Controls Vinculin Binding
    ARTICLE Received 4 Feb 2014 | Accepted 25 Jun 2014 | Published 31 Jul 2014 DOI: 10.1038/ncomms5525 Force-dependent conformational switch of a-catenin controls vinculin binding Mingxi Yao1,*, Wu Qiu2,3,*, Ruchuan Liu2,3, Artem K. Efremov1, Peiwen Cong1,4, Rima Seddiki5, Manon Payre5, Chwee Teck Lim1,6, Benoit Ladoux1,5,Rene´-Marc Me`ge5 & Jie Yan1,3,6,7 Force sensing at cadherin-mediated adhesions is critical for their proper function. a-Catenin, which links cadherins to actomyosin, has a crucial role in this mechanosensing process. It has been hypothesized that force promotes vinculin binding, although this has never been demonstrated. X-ray structure further suggests that a-catenin adopts a stable auto-inhibitory conformation that makes the vinculin-binding site inaccessible. Here, by stretching single a- catenin molecules using magnetic tweezers, we show that the subdomains MI vinculin- binding domain (VBD) to MIII unfold in three characteristic steps: a reversible step at B5pN and two non-equilibrium steps at 10–15 pN. 5 pN unfolding forces trigger vinculin binding to the MI domain in a 1:1 ratio with nanomolar affinity, preventing MI domain refolding after force is released. Our findings demonstrate that physiologically relevant forces reversibly unfurl a- catenin, activating vinculin binding, which then stabilizes a-catenin in its open conformation, transforming force into a sustainable biochemical signal. 1 Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore. 2 Department of Physics, National University of Singapore, Singapore 117542, Singapore. 3 College of Physics, Chongqing University, No. 55 Daxuecheng South Road, Chongqing 401331, China. 4 Singapore-MIT Alliance for Research and Technology, National University of Singapore, Singapore 117543, Singapore.
    [Show full text]
  • Journal of Cell Science & Therapy
    Journal of Cell Science & Therapy 2021 Conference Announcement Mark on Your Calendar, Stem Cell 2021 is coming soon!! Ahmed Hegazi Pursued by the Successful Completion of the Stem Cell discuss the latest developments in the field of Stem Cell and Conference, we are facilitating its next version “International Regenerative Medicine as well. Current studies of Stem cell Conference on Stem Cell” in Osaka, Japan on March 16-17, are examining how undifferentiated organisms might be 2021. utilized to anticipate or fix sicknesses and wounds, for The theme attracts for the Stem Cell 2021 is “Frontiers in example, Parkinson's illness, type 1 diabetes, coronary illness, Stem Cells & Turning Ideas into Reality”. spinal string damage, strong dystrophy, Alzheimer's malady, Welcoming all of you for our Stem Cell 2021 involves strokes, osteoarthritis, vision and hearing misfortune. extraordinary delight, warmth and passion. We anticipate all Immature microorganisms could likewise be utilized to of you sharing your knowledge and information, look into supplant or repair tissue harmed by ailment or damage. thoughts and to make a sprinkle with new upgrades at this 2- days occasion. This time we have introduced some contemporary and recently updated and advanced highlights of Life sciences in Stem Cell 2021. Stem Cell 2021 wish to bring all the medicinal science, chemical engineering & tissue regeneration professionals and scientists under material science fields for our Smart Materials Meeting to collaborate and share their insight and their most Cancer Stem Cells, Bio-Makers Of Cancer Stem Cells, Stem current research to the whole Material Science Community. Cell Biology & Advances, Advanced In Tissue Regeneration, Also this time, Our International Conference on Stem Cell Embryonic Stem Cell, Reprogramming In Stem Cell & will be aims to haven for Multinational organizations, Transplantation, Treatment Of Diseases By Stem Cell entrepreneurs across the globe, the researchers and Therapeutics, Stem Cell Banking, Novel Stem Cell Therapy, academicians.
    [Show full text]
  • New Doors to Open…And So Many! | Journal of Cell Science
    New doors to open…and so many! | Journal of Cell Science Advertisement California Institute of Technology Log in Advanced search Home Articles About us For authors Journal info Contacts EDITORIAL New doors to open…and so many! Previous Article Next Article D.M. Glover Journal of Cell Science 2000 113: 359-360; This Issue Article Info & metrics Email Summary Share The pursuit of science is a wonderful journey of Citation Tools discovery along which there are a myriad of avenues to Alerts be explored. There have always been so many objects of fascination, so many questions to ask along the way, © Request Permissions We use cookies to help us improve this website. Learn more so many possibilities to understand new principles, that making the decision about which problem to address Article navigation and then having the self-discipline to explore it in depth Top challenge all who practice the art. How then are we, as Article cell biologists, to cope with the mountain of information Info & metrics that is accumulating as we enter the twenty-first https://jcs.biologists.org/content/113/3/359.long[8/10/2020 3:19:01 PM] New doors to open…and so many! | Journal of Cell Science century? We now have the potential to decipher the primary sequences of every single cellular protein for Related articles several model organisms. Just how are we to put this Web of Science PubMed information into an intelligible framework for Google Scholar understanding cell physiology? The turn of a century is a time at which we can permit ourselves the luxury of Cited by..
    [Show full text]
  • New Editor on Journal of Cell Science Sharon A
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 303 doi:10.1242/jcs.200345 EDITORIAL New Editor on Journal of Cell Science Sharon A. Ahmad (Executive Editor) and Michael Way (Editor-in-Chief) We are delighted to announce the appointment of Guangshuo Ou as an Editor on Journal of Cell Science. Guangshuo obtained his PhD in cell and developmental biology from the University of California, Davis. His thesis work, conducted under the guidance of Dr Jon Scholey, focused on ciliogenesis in Caenorhabditis elegans neurons and elucidated how microtubule-based motor proteins are used to build neuronal cilia. Guangshuo received his postdoctoral training with Dr Ron Vale at the University of California, San Francisco, where he developed imaging techniques to study neuroblast migration and division in C. elegans larvae and discovered a new myosin-based mechanism underlying neuroblast asymmetric division. In 2011 he was recruited by the Chinese government with the Junior One Thousand Talent Plan Award as an investigator at the Institute of Biophysics Chinese Academy of Sciences. In 2013 his group relocated to the School of Life Sciences at Tsinghua University in Beijing, and he became a principal investigator of the Joint Center for Life Sciences at Tsinghua and Peking Universities. He continues to study neuroblast development using C. elegans as a model organism. Guangshuo has had a long-standing interest in understanding the molecular and cellular mechanisms of cell division and cell migration in developmental systems. Guangshuo has developed imaging methods to follow neuroblast development in a living nematode larva, and his laboratory devised the somatic CRISPR– Cas9 technique to generate conditional knockouts in order to dissect the underlying molecular regulation.
    [Show full text]
  • Vinculin Regulates Cell-Surface E-Cadherin Expression by Binding to -Catenin
    Research Article 567 Vinculin regulates cell-surface E-cadherin expression by binding to -catenin Xiao Peng, Laura E. Cuff, Cort D. Lawton and Kris A. DeMali* Department of Biochemistry, University of Iowa Roy J. Carver College of Medicine, Iowa City, IA 52242, USA *Author for correspondence ([email protected]) Accepted 23 November 2009 Journal of Cell Science 123, 567-577 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.056432 Summary Vinculin was identified as a component of adherens junctions 30 years ago, yet its function there remains elusive. Deletion studies are consistent with the idea that vinculin is important for the organization of cell-cell junctions. However, this approach removes vinculin from both cell-matrix and cell-cell adhesions, making it impossible to distinguish its contribution at each site. To define the role of vinculin in cell-cell junctions, we established a powerful short hairpin-RNA-based knockdown/substitution model system that perturbs vinculin preferentially at sites of cell-cell adhesion. When this system was applied to epithelial cells, cell morphology was altered, and cadherin-dependent adhesion was reduced. These defects resulted from impaired E-cadherin cell-surface expression. We have investigated the mechanism for the effects of vinculin and found that the reduced surface E-cadherin expression could be rescued by introduction of vinculin, but not of a vinculin A50I substitution mutant that is defective for -catenin binding. These findings suggest that an interaction between -catenin and vinculin is crucial for stabilizing E-cadherin at the cell surface. This was confirmed by analyzing a -catenin mutant that fails to bind vinculin.
    [Show full text]
  • S. John Calise Department of Oral Biology [email protected] Graduate Program in Biomedical Sciences
    Contact: University of Florida Health Science Center NSF Graduate Research Fellow P.O. Box 100424 Doctoral Candidate Gainesville, FL 32610-0424 Laboratory of Edward K.L. Chan, PhD 352-273-8851 (lab) S. John Calise Department of Oral Biology [email protected] Graduate Program in Biomedical Sciences EDUCATION University of Florida Ph.D. in Medical Sciences (in progress) Aug 2015 – present Gainesville, FL Graduate Program in Biomedical Sciences Concentration: Molecular Cell Biology Mentor: Edward K.L. Chan, PhD Awarded NSF Graduate Research Fellowship University of Florida B.S. in Business Administration Aug 2007 – May 2011 Gainesville, FL Major: Finance Graduated with Honors PREVIOUS RESEARCH POSITIONS University of Florida Laboratory Manager / Technician Sept 2011 – Aug 2015 Gainesville, FL Laboratory of Edward K.L. Chan, PhD Department of Oral Biology HONORS AND AWARDS (GRADUATE AND PROFESSIONAL) 2013, 1st Place, Dresden Prize for the Study of Autoantibodies, 11th Dresden Symposium on Autoantibodies 2014, 2nd Place, Oral & Poster Communication, 12th International Workshop on Autoantibodies and Autoimmunity 2015, University of Florida Graduate School Grinter Fellowship Award (stipend supplement for 3 years) 2015, American Society for Cell Biology Graduate Student Travel Award 2016, Pre-doctoral fellowship under Department of Oral Biology NIH/NIDCR Training Grant 2T90DE021990-06 2017, American Society for Cell Biology Early Career Meeting Grant 2017, Nominated for Associate Membership, Sigma Xi Scientific Research Honor Society 2017, National
    [Show full text]
  • Talin-1 Is the Principal Platelet Rap1 Effector of Integrin Activation
    Regular Article PLATELETS AND THROMBOPOIESIS Talin-1 is the principal platelet Rap1 effector of integrin activation 1,2, 3,4, 1, 1 1 1 1 Frederic Lagarrigue, * David S. Paul, * Alexandre R. Gingras, * Andrew J. Valadez, Hao Sun, Jenny Lin, Monica N. Cuevas, Downloaded from http://ashpublications.org/blood/article-pdf/136/10/1180/1756644/bloodbld2020005348.pdf by UNIV OF NC/ACQ SRVCS user on 20 October 2020 Jailal N. Ablack,1 Miguel Alejandro Lopez-Ramirez,1,5 Wolfgang Bergmeier,3,4 and Mark H. Ginsberg1 1Department of Medicine, University of California, San Diego, La Jolla, CA; 2Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), Universite´ Paul Sabatier (UPS), Universite´ de Toulouse, Toulouse, France; 3UNC Blood Research Center and 4Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC; and 5Department of Pharmacology, University of California, San Diego, La Jolla, CA KEY POINTS Ras-related protein 1 (Rap1) is a major convergence point of the platelet-signaling path- ways that result in talin-1 binding to the integrin b cytoplasmic domain and consequent l Blockade of Rap1 binding to talin-1 F0 integrin activation, platelet aggregation, and effective hemostasis. The nature of the and F1 domains connection between Rap1 and talin-1 in integrin activation is an important remaining gap in phenocopies the our understanding of this process. Previous work identified a low-affinity Rap1-binding site defects in integrin in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets. activation observed in platelets lacking We recently identified an additional Rap1-binding site in the talin-1 F1 domain that makes a Rap1a/b.
    [Show full text]
  • Force-Independent Interactions of Talin and Vinculin Govern Integrin-Mediated Mechanotransduction
    bioRxiv preprint doi: https://doi.org/10.1101/629683; this version posted May 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Force-independent interactions of talin and vinculin govern integrin-mediated mechanotransduction Paul Atherton1, Franziska Lausecker1, Alexandre Carisey1, Andrew Gilmore1, David Critchley2, Igor Barsukov3, and Christoph Ballestrem1, 1Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, UK. 2Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK. 3Institute of Integrative Biology, University of Liverpool, BioSciences Building, Crown Street, Liverpool L69 7ZB, UK. Talin, vinculin and paxillin are core components of the dy- C-terminal D5 tail domain (Vt) that masks the talin binding namic link between integrins and actomyosin. Here we study site in the D1 domain (Cohen et al., 2005). Furthermore, a the mechanisms that mediate their activation and association FRET conformation sensor has shown that vinculin is in an using a mitochondrial-targeting assay, structure-based mutants, open conformation within FAs (Chen et al., 2005). For talin, and advanced microscopy. As expected, full-length vinculin and the primary auto-inhibitory interaction is between the F3 do- talin are auto-inhibited and do not interact with each other in main of the N-terminal FERM domain and R9, one of the this state. Contrary to previous models that propose a critical 13 -helical bundles (R1-R13) in the flexible C-terminal rod role for forces driving talin-vinculin association, our data show a that force-independent relief of auto-inhibition is sufficient to (Calderwood et al., 2013).
    [Show full text]
  • Chromokinesin KIF4A Teams up with Stathmin 1 to Regulate Abscission in a SUMO-Dependent Manner Sabine A
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs248591. doi:10.1242/jcs.248591 RESEARCH ARTICLE Chromokinesin KIF4A teams up with stathmin 1 to regulate abscission in a SUMO-dependent manner Sabine A. G. Cuijpers1,*, Edwin Willemstein1, Jan G. Ruppert2,‡, Daphne M. van Elsland1, William C. Earnshaw2 and Alfred C. O. Vertegaal1,§ ABSTRACT 2008). Although spastin knockdown results in a delay in MT Cell division ends when two daughter cells physically separate via disassembly, the process is not abolished, indicating the existence of abscission, the cleavage of the intercellular bridge. It is not clear how additional abscission pathway components. the anti-parallel microtubule bundles bridging daughter cells are Post-translational modifications play a major role in mitotic severed. Here, we present a novel abscission mechanism. We regulation. Important modifications include phosphorylation and identified chromokinesin KIF4A, which is adjacent to the midbody modification by small proteins including ubiquitin and small during cytokinesis, as being required for efficient abscission. KIF4A is ubiquitin-like modifier (SUMO) (Barr et al., 2004; Cubeñas-Potts regulated by post-translational modifications. We evaluated et al., 2015; Dasso, 2008; Deribe et al., 2010; Eifler and Vertegaal, modification of KIF4A by the ubiquitin-like protein SUMO. We 2015; Flotho and Melchior, 2013; Gareau and Lima, 2010; Glotzer mapped lysine 460 in KIF4A as the SUMO acceptor site and et al., 1991; Gurley et al., 1973; King et al., 1994, 1996; Li and employed CRISPR-Cas9-mediated genome editing to block SUMO Hochstrasser, 1999; Peters, 2002; Ribet et al., 2017; Pohl and conjugation of endogenous KIF4A.
    [Show full text]