<<

New Approaches for ab initio Calculations of Molecules with Strong Electron Correlation

Stefan Knecht ETH Zürich, Laboratorium für Physikalische Chemie, Schweiz www.reiher.ethz.ch/the-group/people/person-detail.html?persid=193620 [email protected]

| 1 … summarized in our most recent review on this topic:

http://arxiv.org/abs/1512.09267 … to appear soon in Chimia

| 2 Acknowledgment

ETH Zürich ▪ Prof. Johannes Neugebauer § Prof. Markus Reiher (U Münster) § Sebastian Keller ▪ Thomas Dresselhaus (U Münster) § Christopher Stein ▪ Prof. Hans Jørgen Aa. Jensen § Dr. Yingjin Ma (SDU Odense) § Andrea Muolo ▪ Prof. Jochen Autschbach (U at Buffalo) § Stefano Battaglia § Dr. Erik Hedegaard § Dr. Arseny Kovyrshin

| 3 | 4 What we are aiming for

§ Understanding the spectroscopy § Rationalizing the magnetic and small-molecule activation properties of f-element

(CO, CO2, N2, …) by U-complexes complexes

I. Castro-Rodriguez and K. Meyer, Chem. Commun. 13, 1353 (2006) EPR inactive EPR active

S. C. Bart et al., JACS, 130, 12356 (2008) | 5 General remarks

§ Relativity (spin-orbit coupling) and electron correlation à to be treated on equal footing à SOC in general not a perturbation for f-elements § Large number of open- and near-degenerate electronic shells (like in f-elements or 3d-metals) require à multiconfigurational methods à large active spaces

| 6 What about DFT?

à DFT is likely to fail for 3d- and f-element complexes à little progress for 3d-complexes albeit intense research in past decades à not much is known for f-elements à difficult to find a systematic improvability for DFT

| 7 Wave function heaven: systematic improvability

“FCI heaven”

© original figure by T. Fleig

| 8 From traditional to new wave function parametrizations

§ Instead of standard CI-type calculations by diagonalization/projection …

= Ci1,i2...iN i1 i2 iN | i i1,i2...iN | i⌦| i⌦···⌦ | i P § … construct CI coefficients from correlations among orbitals

= Ci1,i2...iN i1 i2 iN | i i1,i2...iN | i⌦| i⌦···⌦ | i P à tensor construction of expansion coefficients: DMRG | 9 state-average: Y. Ma, S. Knecht, S. Battaglia, S. Keller, S. Knecht, A. Muolo, NEVPT2: S. Knecht, S. Keller, S. Keller, R. Lindh, M. Reiher, in preparation M. Reiher, in preparation C. Angeli, M. Reiher, in progress

Analytic gradients for DMRG Spin-orbit coupling/relativity DMRG + dynamical correlation

state-specific: Y. Ma, S. Knecht, DMRG-srDFT M. Reiher, in preparation E. Hedegård et al, JCP, 142, 224108 (2015) CASPT2: S. Knecht, S. F. Keller, QCMAQUIS T. Shiozaki, M. Reiher, in progress First 2nd generation quantum- chemical DMRG code

ü MPS/MPO formalism ü Convergence acceleration techniques ü Works with 1-,2-,4-component Hamiltonians ü Parallelized: MPI/OMP ü Interfaces: Molcas, Dalton, , Bagel QCMaquis S. Keller et al, JCP, 143, 244118 (2015) S. Keller and M. Reiher, JCP, 144, 134101(2016) www.reiher.ethz.ch//maquis.html

FDE-DMRG 2nd order: Y. Ma, S. Knecht, T. Dresselhaus et al., JCP, 142, 044111 (2015) S. Keller, M. Reiher, in preparation

DMRG + environment effects State-interaction: SOC, NACE, … DMRG-SCF: orbital optimization

S. Knecht, S. Keller, J. Autschbach, | 10 M. Reiher, in preparation Matrix product states (MPS) representation: SVD of FCI tensor

matrix FCI tensor representation

matrix product

σi/ni physical index singular value decomposition M(m x n) = U(m x m) s(m x n) V(n x n)* ai-1 ai virtual index rank-3 tensor MPS representation

| 11 Matrix product states (MPS) representation: SVD of FCI tensor

FCI tensor representation

n1n2...nL FCI = C n1n2 ...nL | i nk | i {P}

singular value decomposition M(m x n) = U(m x m) s(m x n) V(n x n)*

MPS representation

n1 nL 1 nL n2 FCI = A1,a1 Aa1,a2 ...AaL 2,aL 1 AaL 1,1 n1n2 ...nL | i n a | i { k}{ j } P | 12 à optimization and reduction of dimensionality to of A matrices MPS optimization: DMRG

… … active subsystem active orbitals environment nl nl+1 § Search for which minimizes

§ Introduce Lagrangian multiplier λ and solve

§ by optimizing the entries of (two sites combined) at a time while keeping all others fixed

| 13 MPS optimization: DMRG

§ To minimize L we take

§ Find lowest eigenvalue + eigenvector of the effective H

which can be written as

| 14 MPS optimization: DMRG

… … active subsystem active orbitals environment nl nl+1

§ Perform SVD of v reshaped into = U S V+ § Truncate sum of singular values to the largest m values (ßà eigenvalues of reduced density matrix) nl § Reshape U into Aal 1,al n + l+1 § Multiply S with V and reshape into Aal,al+1 § Move on to sites l+1 and l+2 until end of lattice is reached; then inverse direction | 15 MPS optimization: DMRG - summary

S. Keller and M. Reiher, Chimia, 68, 200-203 (2014) § DMRG algorithm: protocol for the iterative improvement of the A matrices § Scaling determined by the number of renormalized basis states m § Orbital ordering is crucial but can be optimized § Sum of discarded singular values can be used as a quality measure and/or for extrapolation of energies § Start guess for environment is important, recipes: Ö. Legeza and J. Solyom, Phys. Rev. B, 68, 195116 (2003) Y. Ma, S. Keller, C. Stein, S. Knecht, R. Lindh, M. Reiher, in preparation | 16 Properties of DMRG

DMRG CASCI § Variational § Variational § Size consistent § Size consistent § (approximate) FCI for a CAS § FCI for a CAS § Polynomial scaling (~L4 m3) § Factorial scaling § MPS wave function § Linearly parametrized wave § For large m invariant wrt orbital function rotations § Invariant wrt orbital rotations

| 17 non-relativistic DMRG ßà relativistic DMRG

§ 1-component Hamiltonian § 2-/4-component Hamiltonian § Spin is a good quantum number § Spin is not a good quantum number § real algebra à (Kramers) pairs of spinors: § Local site dimension d == 4 , ¯ , ¯ = Kˆ , Kˆ = i⌃ Kˆ { p p} p p y 0 § Quaternion symmetry scheme for

D2h* and sub-double groups: Real, complex or quaternion algebra § Local site dimension d == 2

and

S. Knecht, Ö. Legeza, and M. Reiher, J. Chem. Phys., 140, 041101 (2014) S. Battaglia, S. Keller, S. Knecht, A. Muolo, M. Reiher, in preparation | 18 A 2nd generation relativistic QC-DMRG code S. Battaglia, S. Keller, S. Knecht, A. Muolo, M. Reiher, in preparation § MPS representation of wave function

§ MPO representation of Hamiltonian

§ Full support for linear symmetry, D2h* and sub-double groups exploiting an operator string classification (ΔMk)

| 19 state-average: Y. Ma, S. Knecht, S. Battaglia, S. Keller, S. Knecht, A. Muolo, NEVPT2: S. Knecht, S. Keller, S. Keller, R. Lindh, M. Reiher, in preparation M. Reiher, in preparation C. Angeli, M. Reiher, in progress

Analytic gradients for DMRG Spin-orbit coupling/relativity DMRG + dynamical correlation

state-specific: Y. Ma, S. Knecht, DMRG-srDFT M. Reiher, in preparation E. Hedegård et al, JCP, 142, 224108 (2015) CASPT2: S. Knecht, S. F. Keller, QCMAQUIS T. Shiozaki, M. Reiher, in progress First 2nd generation quantum- chemical DMRG code

ü MPS/MPO formalism ü Convergence acceleration techniques ü Works with 1-,2-,4-component Hamiltonians ü Parallelized: MPI/OMP ü Interfaces: Molcas, Dalton, Dirac, Bagel QCMaquis S. Keller et al, JCP, 143, 244118 (2015) S. Keller and M. Reiher, JCP, 144, 134101(2016) www.reiher.ethz.ch/software/maquis.html

FDE-DMRG 2nd order: Y. Ma, S. Knecht, T. Dresselhaus et al., JCP, 142, 044111 (2015) S. Keller, M. Reiher, in preparation

DMRG + environment effects State-interaction: SOC, NACE, … DMRG-SCF: orbital optimization

S. Knecht, S. Keller, J. Autschbach, | 20 M. Reiher, in preparation QC-DMRG at work..

Applications of relativistic DMRG

| 21 Relativistic DMRG with variational SOC: spectroscopic constants of TlH

§ Comparison with relativistic CI and CC methods § 4-component Dirac-Coulomb Hamiltonian § MO integrals through interface to Dirac § Dyall.cv3z basis set § Active space: all MP2 NOs with occupations between 1.98 and 0.0001 à DMRG-CI with a CAS(14,94)

S. Knecht, Ö. Legeza, and M. Reiher, J. Chem. Phys., 140, 041101 (2014) S. Battaglia, S. Keller, S. Knecht, A. Muolo, M. Reiher, in preparation

| 22 Spectroscopic constants of TlH

-1 -1 Method Re (Å) we (cm ) xewe (cm ) 4c-DMRG[512]-CI 1.873 1411 27 (extrapolated) 4c-CISD 1.856 1462 23 4c-CISDTQ 1.871 1405 20 4c-CCSD 1.871 1405 19 4c-CCSD(T) 1.873 1400 24 4c-CCSDT 1.873 1398 22 4c-CCSDTQ 1.873 1397 22 experiment1 1.872 1390.7 22.7

1R.-D. Urban et al., Chem. Phys. Lett., 158, 443 (1989)

| 23 Relativistic DMRG with variational SOC: Spin and magnetic properties of a [Dy]-complex

S. Battaglia, S. Keller, S. Knecht, A. Muolo, M. Reiher, in preparation § Lanthanide complexes are ubiquitous as contrast agents in magnetic resonance imaging (signal enhancing)

§ Symmetrized [Dy]-DOTA complex (C4*-double group) § Study convergence of (approximate) spin and magnetization density wrt the active orbital space: from CAS(9in7) to CAS(47,57) § cc-pVTZ basis sets § All-electron X2C Hamiltonian

| 24 Relativistic DMRG with two-step SOC: Magnetic properties of neptunyl S. Knecht, S. Keller, J. Autschbach, M. Reiher, in preparation § Study magnetic properties of a prototypical 5f1 molecule § Comparison with CASSCF/CASPT2-SO reference data § MPS-state-interaction approach (à “RASSI” in CI world) ANO-RCC-VTZ basis set, no symmetry, Cholesky decomposition for two-electron integrals, m = 256 for all DMRG-SCF calculations

| 25 QC-DMRG at work..

Going beyond DMRG(-SCF): dynamical electron correlation

| 26 DMRG(-SCF) + dynamical correlation

§ DMRG(-SCF) is an efficient approach to take into account static correlation effects § Dynamical correlation is missing to a large extent § Requires excitations from the inactive/active to the active/secondary orbital space

secondary space

inactive space | 27 Going beyond DMRG-SCF: dynamical electron correlation

§ DMRG can in principle be combined with any post-HF approach (“diagonalize-the-perturb” ansatz): § (Internally-contracted) multi-reference CI § Multi-reference CC § Multi-reference perturbation theory to 2nd order (MRPT2): CASPT2, NEVPT2, … àCASSCF/CASPT2 is one of the most successful and versatile approaches in (landmark CASPT2 paper has more than 1200 citations!) § Conceptually different approach: short-range DFT-long-range DMRG E. D. Hedegård, S. Knecht, J. S. Kielberg, H. J. Aa. Jensen, M. Reiher, J. Chem. Phys., 142, 224108 (2015)

| 28 Dynamical correlation through MRPT2: CASPT2 or NEVPT2?

CASPT2 NEVPT2 - H(0):Fock-type zeroth-order + H(0): Dyall Hamiltonian Hamiltonian (full HCAS-CI for active orbitals, + Size-extensive Fock-type for core/secondary + Multi-state formulation possible orbitals) + - Prone to intruder states Size-extensive + - Requires 3-particle (and partial No intruder-state problem 4-particle) reduced density + Multi-state formulation possible matrix within the active orbital - Requires 4-particle reduced space density matrix within the active orbital space

| 29 Higher-order n-particle reduced density matrices

§ 3-particle (transition) and 4-particle reduced density matrices (RDMs) need to be calculated accurately § Compressed MPS wave function for RDM calculation

S. Guo, M. A. Watson, W. Hu, Q. Sun, G. K.-L. Chan, J. Chem. Theory Comput., doi:10.1021/acs.jctc.5b01225 § Cumulant approximation of higher–order n-RDMs à loss of N-representability of the n-RDM (possible)!

| 30 Y. Kurashige, J. Chalupsky, T. N. Lan, T. Yanai, J. Chem. Phys. 141, 174111 (2014) Singlet-triplet gap of methylene

S. Knecht, E. D. Hedegaard, S. Keller, A. Kovyrshin, Y. Ma, A. Muolo, C. Stein, M. Reiher, arXiv: 1512.09267 3 1 § CH2 (bent C2v structure): X B1 - a A1 splitting is a benchmark test for correlation methods § cc-pVTZ basis, m=1024 for all DMRG-SCF calculations

| 31 QC-DMRG at work..

DMRG in DFT-embedding

| 32 DMRG embedded in a quantum environment: DMRG in DFT-embedding environment

active subsystem

T. Dresselhaus, J. Neugebauer, S. Knecht, S. Keller, Y. Ma, M. Reiher, J. Chem. Phys., 142, 044111 (2015)

§ frozen density embedding (FDE) scheme is used with a freeze-and-thaw strategy for a self-consistent polarization of the orbital-optimized wave function and the environmental densities

| 33 DMRG embedded in a quantum environment: DMRG in DFT-embedding chain of HCN molecules

active subsystem

T. Dresselhaus, J. Neugebauer, S. Knecht, S. Keller, Y. Ma, M. Reiher, J. Chem. Phys., 142, 044111 (2015)

| 34 QC-DMRG at work..

State-specific DMRG(-SCF) gradients

| 35 State-specific DMRG(-SCF) gradients: resonance Raman spectra of uracil Y. M a , S . Knecht, M. Reiher, in preparation § Resonance Raman (RR) spectroscopy is a selective spectroscopic technique à resonance conditions act like a filter such that only certain peaks are selectively enhanced in the vibrational spectrum § Benchmark data for RR spectrum of uracil of the bright

excited state (S2) in gas phase available J. Neugebauer and B. A. Hess, JCP, 120, 11564 (2004) § RR in the short-time approximation requires only knowledge about the excited-state gradient at the minimum structure

| 36 State-specific DMRG(-SCF) gradients: resonance Raman spectra of uracil Y. M a , S . Knecht, M. Reiher, in preparation

§ Within the short-time approximation the relative intensity ij for the j-th mode is given by

: harmonic vibrational frequency : normal mode displacement § Independent mode displaced harmonic oscillator model: obtain intensity from partial derivative of the excited-state electronic energy wrt normal mode qj at qj=0:

| 37 State-specific DMRG(-SCF) gradients: be(C5-H11)/ resonance Raman spectra of uracil be(C6-H12) C5-C6 C4-O10

§ Comparison of DMRG-SCF RR spectra with other ab initio approaches aug-cc-pVTZ basis, m=1000 in all DMRG calculations

| 38 State-specific DMRG(-SCF) gradients: be(C5-H11)/ resonance Raman spectra of uracil be(C6-H12) C5-C6 C4-O10

§ Rydberg-type orbitals play a non-negligible role for the intensities in the RR spectrum § Unbalanced treatment of static and dynamical correlation can lead to unphysical intensities

§ Entanglement analysis of S2: considerable σ bonding and valence π/π∗ orbital entanglement

| 39 Outlook

Analytic gradients for DMRG Spin-orbit coupling/relativity DMRG + dynamical correlation

QCMAQUIS First 2nd generation quantum- chemical DMRG code

ü MPS/MPO formalism ü Convergence acceleration techniques ü Works with 1-,2-,4-component SOET, … Hamiltonians ensemble DFT ü Parallelized: MPI/OMP see talk by B. Senjean see talk by M. Alam ü Interfaces: Molcas, Dalton, Dirac, Bagel QCMaquis S. Keller et al, JCP, 143, 244118 (2015) S. Keller and M. Reiher, JCP, 144, 134101(2016) www.reiher.ethz.ch/software/maquis.html

DMRG + environment effects State-interaction: SOC, NACE, … DMRG-SCF: orbital optimization| 2 Thank you for your kind attention

| 41