From Pyridine Adduct of Borabenzene to (In)Finite Graphene Architectures Functionalized with N→B Dative Bonds

Total Page:16

File Type:pdf, Size:1020Kb

From Pyridine Adduct of Borabenzene to (In)Finite Graphene Architectures Functionalized with N→B Dative Bonds From Pyridine Adduct of Borabenzene to (in)finite Graphene Architectures Functionalized with N!B Dative Bonds. Prototype Systems of Strong One and Two Photon Quantum Transitions Triggering Large Nonlinear Optical Responses Panaghiotis Karamanis, Nicolás Otero, Demetrios Xenides, Hassan Denawi, Marcos Mandado, Michel Rérat To cite this version: Panaghiotis Karamanis, Nicolás Otero, Demetrios Xenides, Hassan Denawi, Marcos Mandado, et al.. From Pyridine Adduct of Borabenzene to (in)finite Graphene Architectures Functionalized with N!B Dative Bonds. Prototype Systems of Strong One and Two Photon Quantum Transitions Triggering Large Nonlinear Optical Responses. Journal of Physical Chemistry C, American Chemical Society, 2020, 124, pp.21063-21074. 10.1021/acs.jpcc.0c05190. hal-02935781 HAL Id: hal-02935781 https://hal.archives-ouvertes.fr/hal-02935781 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Journal of Physical Chemistry This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. From Pyridine Adduct of Borabenzene to (in)finite Graphene Architectures Functionalized with N→B Dative Bonds. Prototype Systems of Strong One and Two Photon Quantum Transitions Triggering Large Nonlinear Optical Responses Journal: The Journal of Physical Chemistry Manuscript ID jp-2020-05190a.R2 Manuscript Type: Article Date Submitted by the n/a Author: Complete List of Authors: Karamanis, Panaghiotis; Institut des Sciences Analytiques et de Physico- chimie pour l'Environnement et les Materiaux, Otero, Nicolás; University of Vigo - Lagoas Marcosende Campus Xenides, Demetrios; University of Patras Denawi, Hassan; Aix-Marseille Universite, IPREM Mandado, Marcos; Universidade de Vigo, Physical Chemistry Rérat, Michel; IPREM / UPPA, STEE ACS Paragon Plus Environment Page 1 of 44 The Journal of Physical Chemistry 1 2 3 4 5 6 7 From Pyridine Adduct of Borabenzene to (in)finite Graphene Architectures Functionalized with 8 N→B Dative Bonds. Prototype systems of Strong One and Two Photon Quantum Transitions 9 10 Triggering Large Nonlinear Optical Responses. 11 12 13 14 15 16 17 18 19 Panaghiotis Karamanis,*a Nicolás Otero,b Demetrios Xenides,c Hassan Denawi,a Marcos 20 21 Mandadob and Michel Rérata 22 23 24 25 26 27 28 a 29 CNRS/ UNIV Pau & Pays Adour, Institut Des Sciences Analytiques et de Physico-Chimie pour 30 31 l'environnement et les Materiaux –, UMR5254, 64000, Pau, France. Hélioparc Pau Pyrénées 2avenue 32 33 du Président Angot, 64053 PAU Cedex 09 – France. 34 35 b 36 Department of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310.Vigo, 37 Spain 38 cDepartment of Chemistry, University of Patras, GR-26500, Greece 39 40 41 42 *corresponding author: [email protected] 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 1 59 60 ACS Paragon Plus Environment The Journal of Physical Chemistry Page 2 of 44 1 2 3 4 5 Abstract. 6 7 The synthesis and optoelectronics properties of polyaromatic hydrocarbons (PAHs) doped with boron and 8 nitrogen units (BN) monopolize the interest of increasing numbers of researchers the past few years. The 9 10 key-concept fueling these attempts lies on the prospect of engineering novel organic compounds of versatile 11 physical and chemical properties using well known all-carbon systems as scaffolds. Among the various BN 12 13 doped PAHs synthesized so far one could distinguish two categories. The most common one, comprises 14 systems in which BN units replace aromatic CC bonds. The second one, in which this study aims to, refers 15 16 to systems wherein the BN unit replaces intercyclic CC bonds linking two independent aromatic sextets 17 18 within the framework of a given PAH. In this work, starting from a reference molecule belonging to the 19 latter category, namely the pyridine-adduct of borazine, we open the subject of polyaromatic hydrocarbons 20 21 doped with intercyclic boron nitrogen bonds. Our results, based on state of the art ab-initio and DFT 22 wavefunction methods, suggests that intercyclic BN bonds, referred in the literature as “N→B dative 23 24 bonds”, if successfully incorporated to (in)finite polyaromatic sections may alter the optical absorption 25 26 profiles of the parental systems in a greater extent than typical BN aromatic units. Specifically, we predict 27 and comprehensively interpret the capacity of N→B dative bonds to switch-on extra-strong one- and two- 28 29 photon quantum transitions followed by intense transfer of charge. The strong excited states alternation 30 triggered by the presence of N→B dative bonds, may unleash exceptionally high non-linear-optical (NLO) 31 32 optical responses and could find a prosper ground in organic optoelectronic technologies. 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 2 59 60 ACS Paragon Plus Environment Page 3 of 44 The Journal of Physical Chemistry 1 2 3 1. Introduction 4 5 6 Polyaromatic hydrocarbons (PAHs) doped with one or more B-N units have attracted tremendous 7 attention1,2,3,4,5,6 in the recent years owed to their potential applications in areas expanding from organic 8 7,8,9 10 9 optoelectronics and energy to molecular biology. The driving scientific hypothesis behind these 10 attempts is that the replacement of a CC bond with a BN unit may alter the electronic structure and 11 12 electrooptic behavior of the parental system without distorting its spatial structure nor changing its total 13 number of electrons. Therefore, starting from a simple PAH one might fabricate an entirely new chemical 14 15 space11 of BN doped isosteres profiting of the available permutations in terms of doping sites and 16 12 17 orientation of the embedded units. A representative example can be found in the work of, Liu et al. 18 demonstrating that six BN isosteres of identical planar shape but different optical absorption profiles could 19 20 be engineered using the molecule of naphthalene as scaffold. Also, very recently Bonifazi and co-workers13 21 succeeded in replacing the carbon atoms at the zigzag periphery of a benzo[fg]tetracenyl derivative with a 22 23 “NBN triads” and they demonstrated their potential in forming strong H-bonded complexes. 24 25 One of the key molecular properties that should be directly affected from BN doping is the molecular 26 dipole moment. This can be easily understood considering the electronegativity difference between boron 27 28 and nitrogen which should create a local separation of charge within a given PAH. Therefore, upon BN 29 doping a nonpolar PAH can be immediately converted to a polar molecule preserving its spatial structure 30 31 and thermodynamic stability. Going a step further, if multi-BN doping14 is applied, one can potentially tune 32 or cancel the polarity of the final product by controlling the occurring additive effects via the relative 33 34 orientation of the embedded BN units. 35 15,16,17 36 Bearing in mind the Taylor expansion in Eq(1) that describes the induced dipole moment (Δμ) of 37 a molecule in the presence of a uniform homogenous static electric field (F), it can be easily deducted that 38 39 BN doping should impact an entire “ecosystem” of molecular properties widely known as the linear (α) 40 dipole polarizabilities and the first and second dipole hyperpolarizabilities (β, γ). 41 42 1 1 F F 2 F 3 .... (1) 43 2 6 44 45 These field dependent molecular properties are of vital scientific and technological importance in the realm 46 47 of photonics since they govern the non-linear optical behavior of molecules and materials.18 48 Based on the above hypothesis and relying on previous experience in nanographene systems,19,20,21 in 49 50 this work we open the subject of the non-linear optical properties of PAHs and nanographenes doped with 51 boron nitrogen dative bonds. A dative bond22,23 denoted in the literature as D→A, is formed between two 52 53 fragments, one playing the role of an electron donor (D) and the other role an acceptor (A). In terms of 54 55 simplified valence bond theory, within a dative bond, the donor atom offers an entire “pair of electrons” to 56 57 58 3 59 60 ACS Paragon Plus Environment The Journal of Physical Chemistry Page 4 of 44 1 2 3 the occurring bonding while the acceptor contributes with a vacant orbital. The major feature that 4 5 distinguishes a dative bond from a covalent one is that, upon rupture, the former should preferably yield 6 two neutral species of vanishing spin polarization or in some cases two spin polarized charged species.22 7 8 Instead, a covalent bond should deliver either two spin-polarized fragments or two oppositely charged 9 10 species. At the atomic level, D→A dative bonds feature stronger polarities and greater lengths than typical 11 covalent bonds, but they are also characterized by lesser stability. Nevertheless, the past decades a series of 12 24,25,16 13 stable polyaromatic molecules have been successfully synthesized and studied proving the viability 14 of dative bonds between boron and nitrogen, especially when an N→B unit participates in polyaromatic 15 16 networks.
Recommended publications
  • Chapter 2 Aromatic Heterocycles
    Chapter 2 Aromatic Heterocycles 2.1 Six-atom, six-π-electron heterocycles Aza derivatives of benzene N N N N N N N pyridine pyridazine pyrimidine pyrazine N N N N N N N N N N N N N 1,2,3-triazine 1,2,4-triazine 1,3,5-triazine 1,2,4,5-tetrazine π-Electron populations for azines 0.942 0.965 0.734 N 1.029 0.795 1.051 N N N N 0.816 0.533 N 0.787 N N 0.584 N N 1.368 1.467 1.426 1.240 1.449 Other heterobenzenes B B Si O S P H H borabenzene 1H-borata- silabenzene pyrylium thiopyrylium phospha- benzene cation cation benzene 2.2 Five-atom, six-π-electron heterocycles 2π-Electron populations for pyrrole, furan and thiophene 1.090 1.067 1.046 1.087 N 1.078 1.071 1.5647 O 1.710 S H 1.760 02-Aro-hetero Chinpiao Chen 2008/2/22 10:03:00 AM 7 Aromatic five-membered heterocycles with two or more heteroatoms N N N N N N N N N N N O S S H H H isothiazole oxazole thiazole 1H-pyrazole 1H-imidazole 1H-tetrazole 2.3 Benzo-fused ring systems Benzo-fused six-membered nitrogen heteroaromatics N N N N N N quinoline isoquinoline cinnoline quinazoline N N N N N N N N N N quinoxaline phthalazine 1,2,3-benzotriazine 1,2,4-benzotriazine Five-membered benzo-fused heterocycles NH N O S H indole benzofuran benzo[b]thiophene isoindole N N O N N N O N H H isobenzofuran benzimidazole 1,2-benzisoxazole 1H-benzotriazole Other fused heterocycles N N N N N N N N N H N N phenanthridine pteridine purine quinolizinium cation indolizine 02-Aro-hetero Chinpiao Chen 2008/2/22 10:03:00 AM 8 2.4 Some criteria of aromaticity in heterocycles Bond lengths Typical lengths (Å) of single and
    [Show full text]
  • Syntheses of Elusive Unsaturated Silacycles Gary Thomas Burns Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 Syntheses of elusive unsaturated silacycles Gary Thomas Burns Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Burns, Gary Thomas, "Syntheses of elusive unsaturated silacycles " (1981). Retrospective Theses and Dissertations. 7402. https://lib.dr.iastate.edu/rtd/7402 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • NBO Applications, 2008
    NBO 2008 (Jan-Dec) - 910 references Compiled by Emily Wixson; Updated by Ariel Neff 4/16/13 Adalsteinsson, H.; Debusschere, B. J.; Long, K. R.; Najm, H. N. Components for atomistic-to-continuum multiscale modeling of flow in micro- and nanofluidic systems Scientific Programming, (16): 297-313 2008. Adcock, W.; Trout, N. A. Diastereofacial selectivity in some 4-substituted (X) 2-adamantyl derivatives: electronic versus steric effects Journal of Physical Organic Chemistry, (21): 68-72 2008. Agapito, F.; Nunes, P. A.; Costa Cabral, B. J.; Borges dos Santos, R. A.; Martinho Simoes, J. A. Energetic differences between the five- and six-membered ring hydrocarbons: Strain energies in the parent and radical molecules Journal of Organic Chemistry, (73): 6213-6223 2008. Aguilar-Castro, L.; Tlahuextl, M.; Mendoza-Huizar, L. H.; Tapia-Benavides, A. R.; Tlahuext, H. Hydrogen bond studies in substituted N-(2-hydroxyphenyl)-2-[(4- methylbenzenesulfonyl)amino]acetamides Arkivoc: 210-226 2008. Alajarin, M.; Cabrera, J.; Pastor, A.; Sanchez-Andrada, P.; Bautista, D. Polar hetero-Diels-alder reactions of 4-alkenylthiazoles with 1,2,4-triazoline-3,5-diones: An experimental and computational study Journal of Organic Chemistry, (73): 963-973 2008. Albertin, G.; Antoniutti, S.; Baldan, D.; Castro, J.; Garcia-Fontan, S. Preparation of benzyl azide complexes of iridium(III) Inorganic Chemistry, (47): 742-748 2008. Alcoba, D. R.; Ona, O. Determination of energies and electronic densities of functional groups according to partitionings in the physical space Journal of Physical Chemistry A, (112): 10023-10028 2008. Alia, J. D.; Vlaisavljevich, B. Prediction of molecular properties including symmetry from quantum-based molecular structural formulas, VIF Journal of Physical Chemistry A, (112): 9784-9795 2008.
    [Show full text]
  • Borinine (Borabenzene): Its Structure and Vibrational Spectrum
    Borinine (Borabenzene): Its Structure and Vibrational Spectrum. A Quantumchemical Study Gerhard Raabe, Wolfgang Schleker, Eberhard Heyne, and Jörg Fleischhauer Lehr- und Forschungsgebiet Theoretische Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen Z. Naturforsch. 42a, 352-360 (1987); received December 31, 1986 Recently we reported the results of some semiempirical and ab initio studies in which we compared the electronic structure of the hitherto unknown borinine with those of benzene and pyridine. The results of our calculations led us to the conclusion that the elusive nature of borabenzene is caused by its high reactivity, which might at least in part be due to the pronounced a acceptor properties of a low-lying er* molecular orbital. We now present the results of further ab initio and semiempirical (MNDO) investigations in which we performed full geometry optimizations for the molecule using two different basis sets (STO-3G, 4-31G) and also calculated the vibrational spectra of the 10B and "B isotopomeric borabenzene molecules at the 4-31 G level of ab initio theory and with the semiempirical MNDO method. The calculated vibrational spectrum might be helpful to the experimentalist in identifying the molecule, for example trapped in a rare gas matrix among the side products. The calculated orbital energies can be useful in identifying the molecule by means of its photoelectron spectrum. 1. Introduction Further it was found, that among its doubly occu- pied orbitals there are three of n symmetry. This Although a lot of borabenzene complexes are last result was confirmed by an STO-3G single known [1], and even though it was possible to trap point calculation using the MNDO optimized struc- the molecule with pyridine [2, 3] to our knowledge ture [4], If we accept three doubly occupied molec- no preparation and characterization of the unsub- ular orbitals of n symmetry in a planar perimeter as stituted neutral borinine* has been reported until a criterion for aromaticity, we have to consider the today.
    [Show full text]
  • Design, Synthesis and Mechanistic Studies of Boron and Phosphorus Heterocycles and Their Applications in Asymmetric Catalysis
    Design, Synthesis and Mechanistic Studies of Boron and Phosphorus Heterocycles and Their Applications in Asymmetric Catalysis by Shuang Qiao B.A. Chemistry, Harvard University (1994) Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY at the Massachusetts Institute of Technology June 1999 ©Massachusetts Institute of Technology, 1999 All rights reserved Signature of Author Depar ent of Chemistry Vay 24, 1999 Certified by Gregory C. Fu Thesis Supervisor Accepted by Dietmar Seyferth Chairman, Departmental Committee on Graduate Students ASSACHUSETTS INSTITUTE OF TECHINOLOGY L "iAR7E -r. 9 - This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Satoru Masamune I I --- -1 -116, - 011 tmp. - - - -r~s-~ Chairman Professor Gregory C. Fu Thesis Supervisor Professor Peter H. Seeberger 2 Design, Synthesis and Mechanistic Studies of Boron and Phosphorus Heterocycles and Their Applications in Asymmetric Catalysis by Shuang Qiao Submitted to the Department of Chemistry on May 24, 1999 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT In Part I of this thesis, detailed synthetic and mechanistic studies of borabenzene and boratabenzene complexes are discussed. A comprehensive mechanistic study of nucleophilic aromatic substitution reactions of borabenzene-PMe3 complexes strongly favors an associative pathway, an addition-elimination mechanism, over all the other potential alternatives. Boratabenzenes are found to be capable of undergoing nucleophilic aromatic substitutions as well. Structurally interesting complexes have been synthesized and characterized. In Part II, a new approach to chiral phosphines in asymmetric catalysis is discussed.
    [Show full text]
  • NBO 2016 – 2008 References Compiled by Ariel Andrea on 8/31/2018
    NBO 2016 – 2008 references Compiled by Ariel Andrea on 8/31/2018 Aal, S. A. Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O-2 and CO: A density functional study International Journal of Modern Physics C, (27) 2016. 10.1142/s0129183116500753 Abbat, S.; Bharatam, P. V. Electronic structure and conformational analysis of P218: An antimalarial drug candidate International Journal of Quantum Chemistry, (116): 1362-1369. 2016. 10.1002/qua.25189 Abbenseth, J.; Finger, M.; Wurtele, C.; Kasanmascheff, M.; Schneider, S. Coupling of terminal iridium nitrido complexes Inorganic Chemistry Frontiers, (3): 469-477. 2016. 10.1039/c5qi00267b Abboud, J. L. M.; Alkorta, I.; Davalos, J. Z.; Koppel, I. A.; Koppel, I.; Lenoir, D.; Martinez, S.; Mishima, M. The Thermodynamic Stability of Adamantylideneadamantane and Its Proton- and Electron-Exchanges. Comparison with Simple Alkenes Bulletin of the Chemical Society of Japan, (89): 762-769. 2016. 10.1246/bcsj.20160026 Abdalrazaq, S. M.; Cabir, B.; Gumus, S.; Agirtas, M. S. Synthesis of metallophthalocyanines with four oxy-2,2-diphenylacetic acid substituents and their structural and electronic properties Heterocyclic Communications, (22): 275-280. 2016. 10.1515/hc-2016-0120 Abdelmoulahi, H.; Ghalla, H.; Nasr, S.; Bahri, M.; Bellissent-Funel, M. C. Hydrogen-bond network in liquid ethylene glycol as studied by neutron scattering and DFT calculations Journal of Molecular Liquids, (220): 527-539. 2016. 10.1016/j.molliq.2016.04.111 Abdelmoulahi, H.; Ghalla, H.; Nasr, S.; Darpentigny, J.; Bellissent-Funel, M. C. Intermolecular associations in an equimolar formamide-water solution based on neutron scattering and DFT calculations Journal of Chemical Physics, (145) 2016.
    [Show full text]
  • Benzene from Wikipedia, the Free Encyclopedia See Also: Benzole
    Benzene From Wikipedia, the free encyclopedia See also: Benzole Benzene is an organic chemical compound with Benzene the molecular formula C6H6. Its molecule is composed of 6 carbon atoms joined in a ring, with 1 hydrogen atom attached to each carbon atom. Because its molecules contain only carbon and hydrogen atoms, benzene is classed as a hydrocarbon. Benzene is a natural constituent of crude oil, and is one of the most elementary petrochemicals. Benzene is an aromatic hydrocarbon and the second [n]-annulene ([6]-annulene), a cyclic hydrocarbon with a continuous pi bond. It is sometimes abbreviated Ph–H. Benzene is a colorless and highly flammable liquid with a sweet smell. It is mainly used as a precursor to heavy chemicals, such as ethylbenzene and cumene, which are produced on a billion kilogram scale. Because it has a high octane number, it is an important component of gasoline, composing a few percent of its mass. Most non-industrial applications have been limited by benzene's carcinogenicity. IUPAC name Contents benzene 1 History Systematic name 1.1 Discovery 1.2 Ring formula cyclohexa-1,3,5-triene 1.3 Early applications Other names 2 Structure 3 Benzene derivatives 1,3,5-cyclohexatriene 4 Production benzol 4.1 Catalytic reforming phene 4.2 Toluene hydrodealkylation 4.3 Toluene disproportionation Identifiers 4.4 Steam cracking CAS number 71-43-2 4.5 Other sources PubChem 241 5 Uses ChemSpider 236 5.1 Component of gasoline 6 Reactions UNII J64922108F 6.1 Sulfonation, chlorination, nitration EC number 200-753-7 6.2 Hydrogenation
    [Show full text]
  • Borinine (Borabenzene): Its Structure and Vibrational Spectrum
    Borinine (Borabenzene): Its Structure and Vibrational Spectrum. A Quantumchemical Study Gerhard Raabe, Wolfgang Schleker, Eberhard Heyne, and Jörg Fleischhauer Lehr- und Forschungsgebiet Theoretische Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen Z. Naturforsch. 42a, 352-360 (1987); received December 31, 1986 Recently we reported the results of some semiempirical and ab initio studies in which we compared the electronic structure of the hitherto unknown borinine with those of benzene and pyridine. The results of our calculations led us to the conclusion that the elusive nature of borabenzene is caused by its high reactivity, which might at least in part be due to the pronounced a acceptor properties of a low-lying er* molecular orbital. We now present the results of further ab initio and semiempirical (MNDO) investigations in which we performed full geometry optimizations for the molecule using two different basis sets (STO-3G, 4-31G) and also calculated the vibrational spectra of the 10B and "B isotopomeric borabenzene molecules at the 4-31 G level of ab initio theory and with the semiempirical MNDO method. The calculated vibrational spectrum might be helpful to the experimentalist in identifying the molecule, for example trapped in a rare gas matrix among the side products. The calculated orbital energies can be useful in identifying the molecule by means of its photoelectron spectrum. 1. Introduction Further it was found, that among its doubly occu- pied orbitals there are three of n symmetry. This Although a lot of borabenzene complexes are last result was confirmed by an STO-3G single known [1], and even though it was possible to trap point calculation using the MNDO optimized struc- the molecule with pyridine [2, 3] to our knowledge ture [4], If we accept three doubly occupied molec- no preparation and characterization of the unsub- ular orbitals of n symmetry in a planar perimeter as stituted neutral borinine* has been reported until a criterion for aromaticity, we have to consider the today.
    [Show full text]
  • Studies Into the Effects of Hexa-Hapto Spectator Ligands on the Chemistry of Ruthenium
    Studies into the Effects of Hexa-hapto Spectator Ligands on the Chemistry of Ruthenium A thesis presented to the University of London in partial fulfilment of the requirements for the degree of Doctor of Philosophy. Jonathan W. Steed. UCL UNIVERSITY COLLEGE LONDON, 1993. ProQuest Number: 10046152 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10046152 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 To my mother, who brought me unscathed through the first eighteen years of my life and little damaged thereafter, and to Coreena, of course. ABSTRACT This thesis describes the results of investigations into the chemistry of ruthenium complexes of hexa-hapto spectator ligands. Two specific systems have been examined. Chapters 2 - 5 describe aspects of the chemistry of the ruthenium(IV) chloride bridged compound [ {Ru(T|^:T|^-CioHi6)Cl(p-Cl) which contains the r|^:r|^-Z?w(allyl) ligand 2,7-dimethylocta-2,6-diene-l,8-diyl, derived from the ruthenium trichloride mediated dimérisation of isoprene. In Chapters 6 and 7 the reactivity of arenes and cyclohexadienes is examined in ruthenium complexes of the polyaromatic T|^-spectator [2.2]paracyclophane.
    [Show full text]
  • In Chemistry and Physics, the Inductive Effect Is an Experimentally
    In chemistry and physics, the inductive effect is an experimentally observable effect of the transmission of charge through a chain of atoms in a molecule by electrostatic induction.[1] The net polar effect exerted by a substituent is a combination of this inductive effect and the mesomeric effect. The electron cloud in a σ-bond between two unlike atoms is not uniform and is slightly displaced towards the more electronegative of the two atoms. This causes a permanent state of bond polarization, where the more electronegative atom has a slight negative charge (δ–) and the other atom has a slight positive charge (δ+). If the electronegative atom is then joined to a chain of atoms, usually carbon, the positive charge is relayed to the other atoms in the chain. This is the electron-withdrawing inductive effect, also known as the − I effect. Some groups, such as the alkyl group are less electron-withdrawing than hydrogen and are therefore considered as electron-releasing. This is electron releasing character and is indicated by the + I effect. As the induced change in polarity is less than the original polarity, the inductive effect rapidly dies out, and is significant only over a short distance. The inductive effect is permanent but feeble, as it involves the shift of strongly held σ-bond electrons, and other stronger factors may overshadow this effect. The inductive effect may be caused by some molecules also. Relative inductive effects have been experimentally measured with reference to hydrogen. Inductive effects can be measured through the Hammett equation. Inductive Effect can also be used to determine whether a molecule is stable or unstable depending on the charge present on the atom under consideration and the type of groups bonded to it.
    [Show full text]