NASA --] Reference NASA-RP-131219930022548 Publication '] 1312 ......

....1 August 1993

-1 Spectral Classification With the ] InternationalUltravioletExplorer: ] AnAtlasof B-TypeSpectra 1

• Janet Rountree and

] George Sonnebom _t,'GL_LIBRARRES_RCHNAY SC__i':_ HAMPTON,V/_RGIIilA l ! FoP.l___Nc_

.... ._1

__] IMASA

The 1981 Conference On Remote Sensing Education May 18-22, 1981 Session STAFFNEEDSFOREFFECTIVEREMOTESENSINGEXPLORATION by James R. Davis Phillips Petroleum Company Bartlesville, Oklahoma

Remote sensing is assuming a role in the search for natural resources. Research has shown that satellite imagery may be important in locating certain types of petroleum and mineral deposits.

Either direct or indirect indications of natural resource occurrences have to be detectibl, from standard or enhanced imagery data. These indications are the result of geochemical alteration of _oils or geochemical stress on vegetation in affected areas as compared to the surrounding unaffected area.

Traditional mapping of geological structure can be accomplished using satellite imagery data. In petroleum exploration this may be helpful in remote underdeveloped countries, but probably will not be utilized extensively in well mapped areas such as the U. S., Canada, and Europe.

In the case of petroleum, it is generally accepted that petroleum migrates to the surface where it can interact geochemically and geobotanically. Petroleum ranging from asphalt to methane is encountered as seeps or microseeps in soils above petroleum trapped at depth. Tonal anomalies have been reported on Landsat imagery, for example, from Wyoming. It is believed that iron depletion and the presence of hydrocarbons in the soil over the Patrick Draw field may be the cause of the stressed sagebrush at that location (N. L. Froman, 1976 and R. W. Marrs and R. Gaylord, 1981). At other locations such anomalies have been attributed to development roads and well locations developed after the discovery of an oil field.

Tonal anomalies inRailroad Valley, Nevada provide an interesting case for the use of enhanced imagery to clarify an anomaly. Oil was discovered in the Eocene at 4000 feet below the valley floor. The anomalies do not coincide with the outline of the known production. This case would provide a good case to investigate both geochemically and geobotanically.

34 .]

•] Re.,,ferencs, e I][I31176]@iililini][ll014064131]I Publication ] 1312

] 1993

] Spectral Classification With the .] International Ultraviolet Explorer: An Atlas of B-Type Spectra i -] -] -] - Janet Rountree and ] George Sonneborn p Goddard Space Flight Center ] Greenbelt, Maryland 1 ] ] .]

National Aeronautics and Space Administration

- InformationScientific andBranchTechnical IMASA

The 1981 Conference On Remote Sensing Education May 18-22, 1981 Session STAFFNEEDSFOREFFECTIVEREMOTESENSINGEXPLORATION by James R. Davis Phillips Petroleum Company Bartlesville, Oklahoma

Remote sensing is assuming a role in the search for natural resources. Research has shown that satellite imagery may be important in locating certain types of petroleum and mineral deposits.

Either direct or indirect indications of natural resource occurrences have to be detectibl, from standard or enhanced imagery data. These indications are the result of geochemical alteration of _oils or geochemical stress on vegetation in affected areas as compared to the surrounding unaffected area.

Traditional mapping of geological structure can be accomplished using satellite imagery data. In petroleum exploration this may be helpful in remote underdeveloped countries, but probably will not be utilized extensively in well mapped areas such as the U. S., Canada, and Europe.

In the case of petroleum, it is generally accepted that petroleum migrates to the surface where it can interact geochemically and geobotanically. Petroleum ranging from asphalt to methane is encountered as seeps or microseeps in soils above petroleum trapped at depth. Tonal anomalies have been reported on Landsat imagery, for example, from Wyoming. It is believed that iron depletion and the presence of hydrocarbons in the soil over the Patrick Draw field may be the cause of the stressed sagebrush at that location (N. L. Froman, 1976 and R. W. Marrs and R. Gaylord, 1981). At other locations such anomalies have been attributed to development roads and well locations developed after the discovery of an oil field.

Tonal anomalies inRailroad Valley, Nevada provide an interesting case for the use of enhanced imagery to clarify an anomaly. Oil was discovered in the Eocene at 4000 feet below the valley floor. The anomalies do not coincide with the outline of the known production. This case would provide a good case to investigate both geochemically and geobotanically.

34 ] SPECTRAL CLASSIFICATION WITH 1 THE INTERNATIONAL ULTRAVIOLET EXPLORER: AN ATLAS OF B-TYPE SPECTRA

] by

Janet Rountreoand George Sonnebom Laboratory for Astronomy and Solar Physics

] NASA/Goddard Space Flight Center 1 I. Introduction pose without reobserving the standard to make sure that there are no system- A set of criteria for the spectral classification of B stars in the ultraviolet atie effects. was published by Rountree & Sonneborn (1991, Paper I). In that paper it was shown that photospheric absorption lines in the 12(K)--1900A wavelength region II. Data Processing can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a The spectra comprising this Atlas were taken with the IUE short- two-dimensionalsystem consistent with the optical MK system. The stellar wind wavelength prime (SWP) spectrograph in the high-dispersion mode. The ex- lines are not used for classification on this system. Stars with peculiar wind lines traeted spectral data, produced by the standard processing provided by the IUE are distinguished from "normal" stars, and are marked with the suffix "w." The Project, were resampled to a resolution of 0.25A, normalized to a rough eontin- observational material used in Paper I consisted of high-resolution spectra from uum level between 1150---1900A, and plotted on llin. x 17in. paper on a laser the International Ultraviolet Explorer (IUE) archives, suitably resampled and dis- printer. For details of the data reduction steps, see Walborn, Niehols-Bohlin, & played. Insofaras possible, the standard stars on which the ultraviolet elassifiea- Panek (1985) and Paper I. Our data processing procedures differ from those of the tion was based were chosen from among the MK standards, previous authors only in that the continuum normalization has been made autono- ] A numberof representative spectra were shown in Paper I, in order to il- mous rather than interactive and that the plots were produced on a laser printer lustrate the classification method. But these spectral plots were reduced in scale rather than a CalComp plotter. The software needed to resample and normalize ] by approximately 50%, and thus were not suitable for practical classification the spectra is available at the IUE Regional Data Analysis Facility at Goddard work. The purpose of the present Atlas is to make available a larger number of Space Flight Center. If the user does not have access to a laser printer that aeeom-

• ofspectrastandardat thestars,scaleandusedalsofosomer classiinterestingfication. Theseindividualspectraeases.reprReadersesent a dmayenseusematrixthe smallermodatespaper,1lin. butx 17in.the originalpaper, thescalespectral(10A/em)plotsshouldmay bebepreserved.produced piecemealIt is stronglyon figures in this Atlas to classify their own IUE spectra, after processing the data as recommended that any spectra last processed before the improved extraction soft- L] described in Section II below. The recommended procedure for spectral elassifi- ware was put into production (1981 November) be reproeessed by the IUE Project cation with the Atlas is described in Section IV. before undertaking the resampling procedure.

] Although the Atlas shouldbe useful as a guideline for ultraviolet spectral classification with instruments other than 1UE,it should not be used for this pur- l

] 2

Ia) whose spectra appear here are the stars described by Walbom & Nichols- III. Description of the Atlas Bohlin (1987). These stars have not been classified on the ultraviolet system m All the stars whose spectra are presented in this Atlas were drawn from the spectral types given are the optical MK types. The supergiant spectra are re- the list in Table 2 of Paper I or from a second list of approximately 100 stars that produced in this Atlas in order to show the full range of variation of certain spee- were subsequently classified (without knowledge of their previous MK types) on tral lines as a function of stellar . the same ultraviolet system (Rountree & Sonnebom 1993, Paper II). In general, Part 2 of the Atlas, Plates 15---20,illustrates the effect of rapid stellar ro- these are stars with visual magnitudes brighter than about 6.5, having normal MK tation on the ultraviolet spectrum. Each plate in this section displays two pairs of types in the range B0---B8 III_V according to Rountree Lesh (1968), Hiltner, spectra, each pair, closely matched in spectral type, consists of the spectrum of a Garrison, & Sehild (1969), or Morgan & Keenan (1973). A few supergiants were slowly rotating (v sin i usually <50 km/s) and the spectrum of a rapidly rotat- drawn from the work ofWalbom & Nichols-Bohlin (1987). ing star (v sin i usually >200 km/s). Although most of the rapid rotators are not The spectra are arranged in montages of four or five per two-page spread, standards, these illustrations should be helpful to the user who wishes to classify or "plate." The wavelength scale is indicated by tick marks at 10A intervals above the spectrum of a broad-lined program star, since they show how these spectra are and below each spectrum, with numerical values of the wavelength in Angstroms likely to differ from the narrow-lined standards. shown at the bottom of the page. The crosses along the wavelength scales mark Finally, spectra with anomalous stellar wind lines, primarily strong ab- the eehelle order splice points. The quantity plotted as a fine line at the top of sorption lines of C IV _,_1548, 1550, Si IV _.h1393, 1402, and/or N V _.1238, each spectrumis the normalized data quality factor, which in these plots primarily 1242, are illustrated in Part 3, Plates 21---26. These are stars whose ultraviolet indicates (by a downward spike) areas in which the data points may be eontami- spectral types have a "w" suffix in the classification of Rountree & Sonneborn hated by a camera reseau. The most important spectral lines, especially those used (1991). As in Paper I, italics are used in the text accompanying Plates 21---26 to in classification, are identified along the top of each plate. The stars are identified distinguish ultraviolet spectral types from optical MK types. The spectrum of at to the left of their spectra. The spectraltype given for each star is the ultraviolet least one "normal" star of identical type is presented with each anomalous spee- spectral type; in most eases, this is identical with the optical MK type. In Parts 2 trum to show the good match in the photospheric absorption lines, which alone are and 3 of the Atlas the rotational velocity from Uesugi & Fukuda (1982) or the date used in classification. More detailed studies of some of these stars are referenced of observation is also given. Overall characteristics of the spectral type range coy- in the text opposite the spectrumin question. ered by each plate are described in the text at the left of the spectra. There are three parts to the Atlas. Part 1, Plates lm14, contains se- quences of spectra of standard stars for direct use in classification. Plates 1---7 IV. Use of the Atlas show spectral-subtype (or temperature type) sequences for dwarf (class V), After the user's program spectra have been processed as described in subgiant (class IV), and giant (class III) stars. Almost all of these stars are stan- Section II, they may be classified by direct comparison with the spectra in this At- dards listed by Morgan & Keenan (1973) or by Rountree Lesh (1968). On the las. As in the MK system, the ultraviolet classification system is defined by its main sequence, where very fine subdivisions are possible, we provide some over- standard stars, most of which are illustrated here. Therefore, a program star lap between the groups of spectra on successive pages, so that the user will always should be assigned the type of the standard star that it most closely resembles. It be able to bracket the spectrum to be classified between two standards. Plates 8_ must be emphasized that the comparison should be made using only photospheric 14 present luminosity sequences at seven spectral subtypes. In these montages, absorption lines. The N V, Si IV, and C IV lines should not be used in classifiea- some of the standards in classes III_V have been replaced with other stars whose tion; they should be taken into account only in assigning the "w" suffix. spectra were judged to be equally representative of their type, so as to give as many examples as possible of normal ultraviolet spectra. The supergiants (class I 1 3

] Table 1 lists the standard stars of the ultraviolet classification system, as I well as the photospheric lines used as classification criteria. This is a slightly up- References dated version of the similar table in Paper I.

] In our experience, it is possible to assign a very accurate temperature type Hiltner,Grady, C.W.A.,A., Bjorkman,Garrison,KR.F.,.S., & Snow,Sehild,T.P.R.E.1987,1969,Ap.J.Ap.J.320,157,376.313. to a star from its ultraviolet spectrum, while luminosity class may be more difficult Hirata, R., & Asada, Y. 1976,Pub. Astr. Soe. Japan 28, 713. ] to identify accurately (see Paper II). Therefore, we recommend first locating the Irvine, N.J. 1975, Ap.J. 196, 773. spectrum of a program star among the standards on the main sequence, and then Morgan, W.W., & Keenan, P.C. 1973,Ann. Rev. Astr. Ap. 11, 29. going to the luminosity-effects plate at that spectral type to see if the star appears Rountree Lesh, J. 1968, Ap.J.Supp. 17, 371. ] to be a subgiant or giant. If it does, its temperature type should be verified by lo- Rountree, J., & Sonnebom, G. 1991,Ap.J. 369, 515 (Paper I). eating the spectrum on the subgiant or giant sequence. Of course, this is an itera- Rountree, J., & Sonnebom, G. 1993, in preparation (Paper II). ] tive procedure, since temperature type and luminosity class are not completely in- Shore, S.N., & Brown, D.N. 1990, Ap.J. 365, 665. dependent. Finally, the N V, Si IV, and C IV lines, if present, should be compared Slettebak, A. 1982, Ap.J.Supp. 50, 55. with the same lines in the standard spectrum to see whether the program star has Sonneborn, G., Garhart, M.P., & Grady, C.A. 1987, in Physics of Be Stars, ed. ] an anomalous stellar wind. The behavior of the wind lines in the standard stars is A. Slettebak & T.P. Snow (Cambridge: Cambridge Univ. Press), 286. described in the text accompanying the spectra in Part 1. It is also noted in italics Uesugi, A., & Fukuda, I. 1982, Revised Catalog of Stellar Rotational Velocities ] in Table 1. (Kyoto: Kyoto Univ.). Walbom, N.R., & Niehols-Bohlin, J. 1987,Pub. Astr. Soe. Pae. 99, 40. Walborn, N.R., Niehols-Bohlin, J., & Panek, J. 1985, 1-UEAtlasof O-Type Spectrafrom 1200 to 1900A (NASA Ref. Pub. 1155). ] V. Conclusion i ] It is hoped that this Atlas will find extensive use in the classification of IUE high-resolution spectra, especially for stars that have not been observed in the ] visible region. Spectral types obtained by the procedures outlined here and in Pa- per I should be entirely consistent with MK spectral types. In principle, the same standards and criteria can be used for spectra obtained with a different ultraviolet spectrograph, but in that ease the standards should be reobserved with the other instrument to avoid systematic effects. I

I 1 [ Table 1 - Ultraviolet Spectral ClassificationCriteriaand Standard Stars 4 I V IV III V IV III [ B0 u Ori HD 75821 HD 48434 B5 35 Eri, p Aur _ Her 5 Per, r Ori

1640A1718A (N(HeIV)II)ssttrrongong InterpolaV and tIIIebetween 1854N III,-N61AIV (AIstrongerIII) stronger 1655ASi II domin(C I),atFeesspectrumII moderate SisII,trongerSi III,thAIanIII B5V Si II strongerthanB5 IV I 1748-51 (N III) marked 1247A (C III) stronger 1670A (AI II), AI III strong Si IV, C IV strong absorption $i IV, C IV absorption N V, Si IV, C IV P Cyg profile Si IV marginal to absent Si IV present, C IV absent Si IV stronger, C IV absent

B0.5 HD 36960, h Lep 1 Cas B6 13Sex 19 Tau 17 Tau N III present Interpolatebetween N IV, AI III stronger Similarto B5V butAI III Interpolatebetween Si II stronger He II, N IV moderate to strong V and III N III present but weak stronger V and III C III strong Fe III weaker Si IV, C IV strong absorption $i IV, C IV absorption Si IV, C IV absorption Si IV absent Si IV, C IV absent Si IV, C IV absent

B1 toI Sco, 42 Ori QtVir o Per, o Sco B7 (xLeo 16 Tau qTau N IV weak to absent Interpolatebetween G III, He II, N IV stronger AI II, C I prominent Interpolatebetween Si II, AI II stronger V and III He II marked Si III 1300 multipletstronger AI III weakerthan B6 V V and III than B7V |I 1247A (C III) strong Fe III absent 1264A (Si II) present Si IV strong, C IV wk. absorption Si IV, C IV absorption Si IV, C IV absorption B8 18 Tau No standardinprogram 27 Tau Si II dominant Si II, AI II stronger B1.5 HD 35299 h Sco 12 Lac AI II, C I prominent thanB8 V 1264A markedbut <1247A Interpolatebetween Si Ul,C III stronger AI III, Fe III absent He II weak V and III 8i IV absorp., C IV wk. to absent 8i IV, C IV absorption $i IV, C IV stronger

B2 22 Sco ,/Peg it40ri 1264A (Si II) = 1247A (C III) Si III, AI III, Fe III C III, AI III, Fe II, Fe III 1310A (Si II) < 1300A (Si Ill) strongerthan B2 V strongerthan B2 IV He II weak to absent 1600-10A (Fe II) stronger 8i IV moderate, C IV absent 8i IV stronger, C IV absent $i IV stronger, C IV present

B2.5 o Sgr HD 32612 _r2Cyg 1264A (Si II) • 1247A (C Ill) Interpolatebetween Si II, Si III, C III, Fe II, Fe III 1310A (Si II) < 1300A (Si III) V and III AI III stronger 1485A (Si II blend)present 8i IV absorption 8i IV present, C IV absent $i IV strong, C IV present

B3 q UMa, q Aur HD 134687, 126 Tau HD 89890 1264A (Si II) >> 1247A (C III) Interpolatebetween Si II, Si III, C III, AI III, 1310A (Si II) > 1300A (Si III) V and III Fe III stronger 1485A (Si It blend)marked Si IV weak Si IV present, C IV absent $i IV stronger, C IV present

B4 HD 20809 53 Per No standardin program [ 1310A (Si II) > 1300A (Si III) Si II, Si III, AI III strongerthan 1485A (Si II blend)prominent B4 V

Si IV weak to absent Si IV present, C IV absent t( m 1 5

'1 i! 1 1 ! 1 i Part 1

.] Standard Stars

I

l 6 Plate I a

Main Sequence O"_l Sil" IIIIIIIS=.1s=. [sii_m_vl ' I ' I _ I ' I ' I _ I ' I ' I ' I ' I _ I ' I ' I ' I ' I BO - B2

u Ori

B0 V The earliest main-sequence B stars are characterized by lines of He II h1640, N IV h1718, and N IT[ hh1748,1751, which decrease smoothly from B0 to B1. C IT[ h1247 begins to weaken at B1, HD 36960 while the photospheric Si H lines ;k1264and h1310 begin to increase in strength. The ratio _.1264/;k1247 B0.5 V is approximately unity at B2 V. In these standard main- sequence stars, Si IV ;kh1393, 1402 ,r------_-----_r------_ _----'---- is mainly photospheric, and shows a _ ! V V [ [ 1 marked decrease at B2. The stellar wind lines C IV hh1548, 1550 are 42 Ori essentially absent by B2. B1 V

v f HD 35299

B1.5 V

22 Sco l.

B2 V [

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 I 7 Platelb

CHIV HeI II NIIV N_III _AIIII FeRIII I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I '

J

--r V -]

1 ]

I

II ".... : _-"' ><1, x l 1× I ix I "" ,' --" ,' _< I x I E,<' I ×1 ,' :" I " _ '

_] I

, _ , I X ' I }(, I 'X I , _ , _.1 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 8

Plate 2a I Main Sequence C'"l s,i" ITITII-l,,,s,,,S' Is,,__v] s,i" t ' I ' I ' I ; I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I 1 B2- B5 I

22 Sco

The ratio Si II _.12641C m B2V _ _ ¢ _.1247increasesmonotonically from ..V,_ I B2 to B5 on themain sequence,as "" ' "'- i "- ' ..[ >_ X i'- '" I "-' -_ "" I" ' "-i _- I "" ' "'i "" i "-' i'- ' "'I '" I "_ I "" does the ratio Si II _1310/S1 HI h1300. The photospheric Si II lines h1485 and ;_1533 also become a Sgr prominent in this spectral type range. B2.5 V Si IV ;_.1393, 1402 decreases to marginal strength, while C IV _1548, 1550 is not normally pre- sent in main-sequence stars later v v

q UMa

B3 V

I

HD 20809 [. ,

B4 V [

35 Eri 1..

B5 V [.

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 [ 9 Plate 2b

] Si II Fe II C I AI II AI III Fe III I--I _ I i I--I I-I

I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I I I I I I I I I

] ,,

I

i

I Ixl Ix i _ ii .A. I ,I .1... I ,'^.. I v_" I _"", I .,_", I ::IK I IX I IX I I X I I X I I _ I I X I I XI I I )( I I )I I I r-_ v 1 I ,'×', ',-,,,: "_,_:'×,' ,A-",'' Ix ,' _ ,' _< I _ I _< I _ I Ix ', =,,'-,' = "×', l I,_ I ,^"' I ,' ×' I ' >I ' I _ 7 y-v _--_ 'v_-V ,'y r---T

.! I><: ,..'-:- ._-_'. ..,'-' ,.-.-' ,' :>.-,' m ,' x I _< I _< I _< I I× I I x I , xI ' _< ' I ×-' I ×' I I>k I I --T--T+ ....I _'l--_ /-v , i_ T _I

-- 1500 1520 1540 1560 1580 1600 1620 1640 1660I X 1680I _( 1700I ' X 1720I ' k1740I , 1760_( I , 1780:J( , 1800 1820 1840 1860 1880 1900 10 Plate3a. MainSequence . B5- B8

The lines of Si H dominatethe Si II Si III Si II Si II stellar spectrum throughoutthis ] ]Ill ]1 ] ] range of main-sequence types ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I Fe IH X;_1892, 1896 weakens at types later than B5, while A1 HI ;_1854, 1861 /caches a maximum 35 Eri at B6. /_ B5V

I_Sex

B8 V

Leo / I B7V _.__ .._-,_X v, v, _ _ _ ,v , _,f ,v , v, ,v , v, ,v . v I ^,..,^, .., .., _ _ _. ,..,.., _ _ ,.., .., x Ix, xl ,x I v'' ' 'I _ /\ I/" /\ I _/x I /x I

18Tau l.

B8V I

_;, 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 l. 1

• } Plate3b 11 1 1 1 Si II FeII CI AIII AIIII FeIII I-1 _ I I Iml n I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' ! v _ ? v • _ ' I ' v _-T 1 1 ,,. = ,_ : _ =x' I ,v,' " I """ 'I "_" 'I "_"" I _K I X I IX I I X I I X I I )( I I I< I ,I v_" = I ×I I :× I = ,_ =

I I ,'_.'," Ix I _d =/.,"' ,A'--,' '^"",' × I x I _ I _< I _< I Jx I , x I ' ×I I _ , Ix , I xl I ,x I t >!: ' i ---m--'-_m-_• _ l '__ _ v'-V i q' 't i ,v ! v-T- i

A A /_ 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1640 1860 1880 1900 12

Plate 4a ]. i Subgiants °1'" sll" IIIS'I,.IIIs,. rs',____VS_l"'l ' I ' I I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' 1 a0- B2 _ _ 1 _ _ _ _ I J _ BeH°"'",v ,

lines. C IV XX1548, 1550 can X Lep I sometimes be seen as late as B2. B0.5 IV

HD 63578 I

B1 IV x x _=xl x= x _, ',xl X = q x I'-'= xl x I"-= "_ =x I x= 'ix = -',-l' ,-'-',-' i X I >( ' _ v 1 r---T--y v----__ _ i ,-I ] , -w- i

-.. ,..,.., .., ..l -4 ::< _< _><, ..--. v.- Ix='< x I;<_ --,'" ,v ,.., "" _>

/ , = B2 IV ; = " L. 1200• 12I20..: , v12I40 v, 1"2vl60 ",v 1280Iv 1300v t 1..3A20 v 1340I v , 1X360I ._: 13I80v , 1..4A00 ,v 14I20 .,.:, 1440Ix:, , 1X4I60 ' X 1480I /_( 1500I >< l.• 1 13 Plate 4b

C IV He II N IV N III AI III Fe III FI I I I-II I--q I-I I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ° i ' I ' I ' I ' I ' I ' I ' I '

i

] • I>

1

I 1 1 I I

" I 1500 1520 1540 1560 1580 1600 1620 1540 1660 1680 1700 1720 , 1740I I X1760I 1780 1800 1820 1840 1860 1880 1900 14 Plate 5a

•__°u__"_"'_' an*s c,,,I s,,,I Vs,,,,ITI-1s,,,VI I--]s,,v s,,,,I s,,,I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I B2.5- B7 "V _ V " HD 32612

B2.5 IV The photospheric Si IV lines persist until type B5 in the subgiants. The relative strength of

uthsefule Si sHpaencdtrSitaylIIlpecspriteriectroanmak. es a [ _- _ V 126 Tau

B3 IV

-r Her

B5 IV

19 Tau

B6 IV

16 Tau [

B7 IV

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 "" 15 Plate5b

Si II Fe II C I AI II AI III Fe III f-I f-A] I I I--] n

I ' i ' I ' I ' I ' i ' I ' I ' i ' I ' i ' i ' i ' i ' I ' I ' i ' i ' I ' I ' 1 1 1

] ]

I -]

1

1500 1520 1540 1560 1580 1600 _( 16I20 _( 1640I "X 1660I × 1680I _< 17I00 TX172I 0 I X17I40 I 1XI760 , 17_80 I 1800I )( I 1820I Xt 1840I I X 1860I I 1880)l_ I 1900 16 Plate 6a

Giants N_V CI III SilII _-[-_--_III SI II [--ISiIV ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I B0- B2

HD 48434 [

In the giant stars He II _1640 BO III persists to B2, N IV X1718 to B1, and N 111XX1748, 1751 to B0.5. Although C HI X1247 is stronger "" ' "" , -'" ' "", -*',' -'_ -", v'" '-'" , "" ' "'1 "" , _" ' "", "_ , -'" ' "'t '-'" I -"-' v'" ' -'", '-'" , ,'_ , -", than on the main sequence, the ratio M264/;_1247 is stiU near unity at B2 HI. Si IV hX1393, 1402 and C IV XX1548,1550 exhibit P Cygni 1 Gas profiles at B0 HI, and remain as strong absorption lines throughout BO.5 Ill this spectral type range.

[ a Sco

B1 III

12 Lao { o B1.5 III

B2 Ill I......

1200 1220 1240 1260 1280 1800 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 [.... 1 ] 1

1

.] 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 HD 89890

B3 III Si IV persists to B5 and C IV to B3 in normal giant stars, but the spectrum of stars in the B3_B8 range is still dominated by Si II lines. 8 Per

B5 III

17 Tau

B6 III

q Tau

B7 III

27 Tau

B8 III

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 [ 19 Plate 7b

] Si II C IV Fe II C I AI II AI III I--1 17 F--TF1 I I 7-1

I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I '

1 ] I><' I_ ' _ ,.v_,, .,v_,. , ,_v. ,' =< I x I _ I >_ I _ I b< , ,../A, , =v_,-, = _ ' I_ I t><' I J_ I ' _1 ' 1 1

! I_' I_ : _"_ : _v,, ,_-v ,, Ix I _< I x I _ I _ I _< I '_ I ._v, , : _v,-, = _ , I_ ' I >@' l ,,_,,VV• -, I I><' Ix ' >K I _< I _< I '><' I ><'I t>{ J

I l

I'--"" _ i'_" I "-_i :,<'I ',,"" ,I ' Ix I' _"-" I' '"_ " I' _ I' """" I _< I' '"'" " I' ',v,"" I : xl l _< z Ix J I xl I' ''"'_" I : ,"_i, : ] --r--- i -,v ...._r _ 'q 't l _ _i _-v ] J , )I< , IX ' I Xl I 'X I ' )I: I 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1640 1860 1880 1900 2O Plate8a LuminosityEffects at BO [

The indicatedlines of C m, NV C III Si IV N IV, N m, and AI m an mc_ase V] I [--]A. in going up the luminosity sequence I ' i ' i ' i ' i ' i ' I ' i ' i ' I I_ ' i ' i ' i ' = , i from main sequence to giants. The " :_ ...... i'-" ' -" ; ...... _...... wind lines of N V, Si IV, and C IV I exhibit P Cygni profiles in giants 60ri and supergiants. BOla

" '",.-,' -,_ :X _' X= ,-,Iv = vl,,, =X ', X I X rr-..-.,_.---._

HD48434

BO Ill

HD75821

BOIV

. I

v Ori {

BOV l " 1 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 I 21 Plate8b

C IV He II N IV N III AI III I7 I I 17 I--1 I i I ' I i I ' I ' i I ' ' I i I = I ° I ' I i I ' I ' I , I i I ' I , I i

] 1

,_l --rr-n- "

1 I )( , Ix , XI , ). I , .." I ,.... I A"" I .."" I _ I .."" I .._" I 'X I , ..'" I , ..'"I , .1... , I ..'" , I ..'" I , ..'" I , ;_ , J 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 22 Plate9a LuminosityEffects at BO.5

_.o_m._. ..m...... vc.., "'vl °i"' A1 111lines" are luminosityindica-, I ' I ' I ' tors. The stellar wind lines are in _.._._.,_____ absorption, except in the supergi- V ants.

BO.5la

v I v, "v! _ Iv , v I v , vl _ I v , vl "_" I v , vl ,v I v, Iv _ vl ,v I "vf I v .ori I /\ ' /\ I /\' "3 _ V\ ' /\ I /\ ' /_1 _'\ I /\ ' '_,1 /\ I /\ ' "_ '/\ I /x, I/\ ' /\1 '/\ I "_ I /\

pCru

BO.5III

Lep

BO.5IV

HD36960 _ BO.5V

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 l 23 Plate 9b ] 1 ]

I X ' IX ' X I ' X I 'X I 'X I X I ), I ;_ I ] 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1640 1860 1880 1900 24 J PlatelOa LuminosityEffects { at B1 [

J The Si IT[multiplet at _.h1290- C III 8i III C 8i IV 8i III 1300 is luminosity-sensitive in the I _ I--I I B1JB3 spectral type range. C H, ' i ' t ' i ' i ' i ' i ' t ' t ' i ' i ' i ' i ' i ' t [ Si IV, C IV, and A1 Ill exhibit P

Cygni profiles in supergiants, but / InotTIJV.in stars of luminosity class HD148688 B1la

o Per

B1III I I

HD63578 BI IV _,_ 1,. v , v " '"''" xl I xl I Ix /\1 _/\ I /x I A _-Y -_--_ l---F i r - 1 to1Sco {

B1V l....

1200 1220 1240 1260 1280 1300 1320 1340 1860 1380 1400 1420 1440 1460 1480 × 1500 I. 25 PlatelOb 1 1

.....

! i

] :1 .. ,.. ._ =.., ,.. i ,v I _ I >_ I _ I >_ I _ I _< I I× I ix I J _q I Ix t I ×l I I× I I ×1 I

J

_._]

1500 1520 1540 1560 1580 1600 X 1620I X 1640I × 1660I "X 1680I _ 1700I lX 1720I i X1740I i 1760XI i 1780h i 1800I X I 1820I X i 1840I IX 1860I i 1880_,_ , 1900 26 Plate1la LuminosityEffects J at B2 I +] 27 Plate1lb 1 1 1

1 l

! I X I IX I xl I X I i "".. iI ',.'. I "_.. I "".i., I _ I .,,.."" I n."" I .""I.... i ,' ..I... I i ..I'" I I _I" 1, I I'"1.... I I ×' I I>

1

'I """ I "I'" I "q '_ ="'"" I "', -', I =× I x I × I >" I >< I )K I _ I 1>4 , Ix , 1×= 'I "1-,. 'I i ×1 i ....I '!l-' _ -V---mO-_ I "_--]p I _r-" '] y 'l'- T

..I

....

1500t X ' 1520IX ' 1540_ ' X1560I , ;(1580I 'X 1600I X 1620I :K 1640I X 1660I 3< 1680I ._.-1700I 'X 1720I ' X1740I , 1760X I , 1780>I( , 1800I X ' 1820I X' 1840I 'X 1860I , 1880)_ , 1900 2o ] Plate12a LuminosityEffects { at B2.5 [

Theprincipalluminosityindic.a- C III Si III CII Si IV Si III Si II tors at spectral type B2.5 remain the I _ n [ml I I lines of C HI, Si IT[, Fe H, and ' I ._,..---,,...-...I ..,-,....-.-__'' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I Fe HI. The Si II blend at X1485 VV _ _ V _ I " ' makes its first appearance at this spectraltype. The supergiantwind HD92964 features of C II, Si IV, C IV, and A1HI are weaker thanat B2. B2.5la

Cyg

B2.5III I

HD32612

B2.5IV

B2.5V XLib _ 1._

.',-/ - "v N/ , \i I v , vl v I v , vl v I \I , ,,,/I ,v I v, Iv , \/I ,v I I 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 I 29 Plate12b

• ]

] -1

C IV Fe II He II AI III Fe III H r-m I _ N "] I ' I ' I ' I ' I ' I ' I ' I ' I ; I ' I ' I ' I ' I , I ' I ' I ' I ' I ' I '

1 l --F--w - l

I 'I '",-,, I "-<"I ><1t X I " .-"'i ,..,.,I. ....,.,I _ ,i ."".. ,I .,"" ,I .4.-, 'i ,."" . 'i _× 'I ',x' I = "--t ' I× ' I xz I sx I , ×I , I ] -_F--Pi y 7 1 v -T ! 1 I "" I I" " "'i I X I ' "" I i-_ I v- I _" I , ,_, I , v I ! I IT-P I -_r 'x'r--r- -v _ vr'- _',_ -v "V"r--"T- I

___l

I _< I 'X I ' X I , _ , IX ' I X' I IX I ' XI , _I 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 3O 1 Plate13a LuminosityEffects I at B3

Linesof C m, Si 11I,Fe H, and C III SiIII C II SiIV SiIII Si II Fem remainluminosity-sensitive at I ITiT1 I1 I-II I I type B3. but show less variation ' i ' i ' = i . t . t ' i J ' i . I ' I i ' I ' t . I

than at ear.= types. The most _ ...... :...... - "_' _ !...._ ...."i- ...... _ ..... V_-- supergiantsis (3IV ;kh1548, 1550. O2 CMa I

B3la I ' i

pmmment wind .e;atu_rem B3 __l_v ! !,_ tl ! __ i t !, I/ f _ Iv v g I x,4 iv I v, Iv I v /" ' /" I /" ' /" I I /". , z'. I t., ,,,, "_1 '/" I z., ' i/-. 1 X ] i'/v" I 'vf,,x I /\

a D 198820 _ _ I _ _ a _ _

B3111 _A /", ' /,,, ,A I "\ ' /v", I /v," _ "__ "",v KIv\ ' ,'\ I /,,, , A_ I rM,,, I' I /v\ _, /vl", I ,"",v I X I AIvl 'iv/", I /v,,,, iI/\v I ,vl"",I IX I ,'v"'_r I /\v

HD134687 !

B3IV L = _ I '/" ' /v\ I /" ' /"1 /"' /-_ X I /_Xl 'Yv " I "\' ''1 ""v I""I v. = _ =x I x: Ix i xl ,x I × ,I v^ _ r - _ ...._ _ _ _--r _ '_ '_-

_V I 'Vl _d/ I_ I V I v , _ x/ I V I X/I V I V I _l IV I _/I Iv I vl IV I I 1200...... 1220 1240 1260 1280 1800 1320 1340 1360 , 138, 0 1400 1420 , 1440/x 146/x 0 /x 1480 X 1500X {• 1 Plate 13b 31 ] 1 1

-1

' X I ' X I 'X I _... I ..v I ,-,_" I .._" I _X I i)( I i X I , ..'"I i _4 , I X t I Xt I 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1640 1860 1880 1900 32 .. Plate14a LuminosityEffects [ at B5 J [ I Lines of Si H, Si HI and _ Ill Si II Si III Si II C II Si IV Si II are luminosityindicatorsforclasses I I-T_-_ H [_] I HI, IV, and V. In the supergian ts, ' i ' i ' i ' i ' t , i ' i ' i ' i ' i ' i ' i ' i ' i ' i the wind fines of C II, Si IV, C IV, and A1 HIare in absorption. q CMa

B5 la

HD209419

B5III I 1 _-Her l B5IV 1

.

pAur [,..

B5V [....

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 {...... 33 Plate 14b ] 1 1

Si II C IV Fe II C I AI II AI III Fe III I--I rl l-l-rl i i l--I F1 I _ I ; I ; I ' I ; I I I ' I I _1 ; I ' I ' I I I ; I I I ; I ; I ' I ; I ' ;

1 1

o

, ..v I i )( I i _ i I X t I X I I t.... I 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1640 1860 1880 1900 l 1

[..... l I 35 1 1 1 1 1 ! } Part 2

. Effects of

i__] 36 Plate15a RotationEffects [ atBO.5

With the exceptionof Si IV and C III Si III Si IV cIV,,dlth_n_ Sl_ lin_sin I ITITI I_1 these stars am photosphed c. They ' i ' t ' t ' I ' i , i ' i ' I ' I ' i ' I ' t ' i ' i ' i are broader and shallower in the --_ _- !_ I = " " rapidrotatorsHD 135160 and 5 Sco than in the slow rotatorsHD 36960 ;kLep and 3. Lep. Both width and depth must be taken into account in esti- matingthe strengthof these lines for B0.5 IV classificationpurposes, v _nt =50km/s

5 Sco O

BO.3IV v dn l= 180 kmls

HD36960

BO.5V v=in1=35 kmls

HD 3s16o [.

vBO.5_ l= V180kmls [

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 [. 37 Plate 15b 1 1 ..] -] C IV He II N IV N III AI III

I I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I _ I ' I ' I ' I ' I ' I ' I '

1

,i _ : ,t,-, - : _,,14 : vA I l>

,]

! Ix, Ix I ><1:"',-, ,--'"', :× ', _'" ', _ I _< I _ I _< I ix I I×l I xl , _ , Ix, I xI I I×1 I _ ,

I

I

1500 1520 I 1540;) ' 1560X I ' X1580I 'X 1600I X 1620I X 1640I _< 1660I :X 1680I r><1700I 'X 1720I I ,_(1740I I 1760X I I 1780)I( I 1800IX ' 1820I XI 1840I i)(1860I I 1880)_ I 1900 38 Plate16a RotationEffects B1 - B1.5MainSequence

Unlike the photosphericand C III Si II SiIII Si II SiIV stellar wind lines, the Lqtetstellar I I ITITII-I I--] lines are unaffected by rotation. ' _ ' I I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I I They are easily picked out in the _ _ 1 --I- '-_ _ _ "- - I

X1526, have both stell_ ind inter- ' , , sstellatellarr cospmecpotraonen, rtapis. dmtatorsHD B1V I_ __1_' __/______

v sin l= 25 km/s i

/" ' /" I I " /'t _ K\ ' /" I /\ ' "t r\ I X I X I )( X = /,vl_ I,v/,, I /v,"' IIv/" I /vl" I Iiv/., I /\'_,€ I /v"

I '_'='_.l/_,.;. I /\ ' /\ I /\' _/' v_\ _K\ . ,v' /\ I /\ ' /3 x\ I,v,/\ ' v,/\1 ."\. ,v,l_I /_' I :x ', x: ',x = ;", ,x I × Ix [

]1 X vl v I v vl ,v i v, iv vl ,v I ,,_ I v /\ ' /\ I I/\ ' /\ I /\ ' /3 r\ I /\1 "\ I [x [N I/\ I [_i I/\ ] /\1 '/\ I /x I /\ •

v _Tnl= 240 km/s vl I 1200 1220 1240 1260 1280 1800 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 ] Plate16b 39

I !

.]

I I

_t Iv vI ._ I )t ..]

]

I X ' IX , XI , )( I 'X I _)< I X I :_< I × I X I _< I _)< I , )< I , )< , I ><_ I 'X I _ >_ _.I 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 40 Plate17a RotationEffects I B1.5- B2 Giantsand Subgiants I J Rotation effects tend to be less 0 III Si II Si III Si II Si IV pronouncedfor stars abovethe main I I FFm_ 1--1 f sequence, but they can produce _ ' _ ' i ' i ' _ ' i i ' _ ' _ ' i ' I ' _ ' j ' i , I / apparent differences in the signal-to- _ _ __ V 1 _ r_ T-W'--

the digital plots in this Atlas. _ _ _ [

strumentalS/Nisab°ut30f°raU (xPYX __ _ _ _ v lin i = 2Okm/s noise ratio (S/N). Note that the in- _I t _ _!_ _ll!_[i_4_ _ _ _ f _ _1 litX , ,,I I, X I ,,,v I ,,.v, .,,...,.! x _ =x I x= >4 r'.. x = >,.I x ,,, . ,, ,,, . ,,, ,,..,v ,I ,.<_ ,I ,,\1 i r ,_ v-r '-_--T_-I-T 7 _ J _ l

B1.5III

I,sin i = 220 kmls i l .o,..v oo,... _,, i XiI ,,,v, o:xl .,,..v i.'-.Ix/ ',"., v I Xi >4 X ,I ,,v ', -,ivl .",v iXI v ,_ I -'_vl ,...'v,_,...,v' u-,Iv " Xl ,'v,-.iI ."<" _I _v , •v r _ r--r--r---7 _ _ _ r----p-- I , , B2IV I I v dn i = 40 kmls 1..

I v I vl v I v I vl v I v vl v I v, Iv I I /'. /_ I l.\ I ix /"1 '_\ I ix I ,._ _ix I ix _ _,, : v/..I iX I X IX _ _ _ r _----r--r--7 v r- Vt"r _ q--- I

",l/ Iv _ v I v n \,'1 k/ I V _ ",./I v I ",./ , vl ,',,/ I Ix,, , I , k/ I I | "" "" -" X' "/ /x X X 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1_<60 1480 1500 [.... ]

1 Plate17b 41 1 -] 1 C IV AI III I-i [--1 I ' I ' I ' I ' I ' I ' I _ I ' I ' I ' I ' I ' I _ I ' I ' I ' I ' I ' I ' I '

.]

.] ,v.. : ,vA : .__ ,,A..,, .v_, , .× I x I × I _ I × ', • ', _." ', .':.-', ',x I , >4 _ ix I I xi I z× I K ×I ,

1 'i '"^ : I× [ "_q I ,""l,, ,'^v, I "'" " 'I X 'I × ' * I × I _ I _ I IX I zxl , fl I I× I I ×t I '× I ' × t

J .l

I ,,, I _, i _, , ,_ I x I _< I '><1 , _ I I><' I IX I J >{ I

I

_ ]

' X I ix I X I X I ::K I X I X I Ix I ' X I ' XI , )1¢ I I X i I )(I I ,)( I n ),_ w - 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 _ 42 Plate18a RotationEffects { B2.5- B3Subgiants

I Linebroadenincang posea less C III Si II SiIII SiII SiIV '

severe problemfor the classification I I I I I H-[-fl [--I of the mid-B stars,where the stellar I I ' t t ' t ' t ' t ' i ' ' t ' I ' t ' t ' i ' t

Si II lines arenot yet saturated.For example, HD 150745, with a v sin i _ Or[ B windof 285iskinweak/s, isanoned thofethephotosphericfastest ro- _ _ i _ [ tators in this program,yet its spec- .i_ trum is quite comparableto thatof B2.5 IV the moderaterotator50ri B. v_ l =35km/s

I v , V I V, _, V I'_ I V V I _,_ _ I V , vl V I V , vl ,V I V, Iv I vl IV I _4 I v /\ ' /\ I /\ ' /\ I /\l f "_ t_ ' /\ /\ ' /_1 r\ I /\ ' /\1 "\ I /\ ' /N '/\ I /\= I/\ ' /\1 '/\ I /_ I /\

HD150745

B2.5IV I vdn l= 285 km/s

v Iin i = 40 ImVs HD184687B31_ V ____l _ _ _ /x , /v\ I /\ _ /\ I Ix, /' _\v FIv'\ , /vx /v\ ', r'ix,.'l Y\!./ I /v\ ', /vlXl "\v I X I _ ,Ivx I /v,xo IIv/\ ', /vl\1 ',/v\ I /.vl'_ I /vx

"rTau i....

B3IV I vsin l= 180 km/s I

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 1 43

Plate 18b 1

] AI III Fe III I--1 F1 I ' I ' I ' I ' I ' I' _ I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I '

1

l .]

_I ."_. " [ i_.,. I ."I._ I X I ,' .."" iI ',",", I k I ,, I _ iI .,4%. I ,.._" I "'""" I Ix I x ,.I I : ,"I,[" : I -.- : I x: I :x I : .,;_ '. I 1 _ _ _ "" y,l I J i

- 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700I 'X 1720I ,><1740I , )<1760I , 1780>_ , 1800Ix ' 1820I X' 1840I ,><1860I , 1880>

The spectrumof the late B stars Si II $i III 8i II Si II is dominatedby lines of Si H, whose [ _ _ [ relative strength is the principal ' J ' I ' I ' I ' ' I ' I ' I ' I ' I ' I ' J ' I ' I ' I

the lines are accurately taken into T Ori account, it is useful to have both broad-lined and narrow- lined stan- dardspectra. B5III

I _. r _ _t4.,€ IN_ IV _ _V_ V_ IV , vl V Iv , Vt ,V I V, IV , V' ,V ' X._ IV i /\ ' /\ I /\ _ /\ I /\l / "_\ K\ I /\ ' /'t _'\ I /\ ' /\1 "\ I /\ ' "'4 '/\ I /\_ I/\ ' /\1 '/\ I /'_ I /\ - -v-v- o Cas

B5III vsin1= 255km/s

2 Lac

B6IV vdn i= 60km/s

I

23Tau I.... B6IV vdn l =285km/s l.

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 l.... 45 Plate19b ] ] 1

._. nSi II r-mFe II CiI AI II [AI--III1 FeI-1III I I ; I ; I ' I ' I ' I ' I ' I ' I ; I ' I ' I ' I ; I ' I ' I ' I ' I ' I ' I ' 1 i 1

1 i 1 I

..]

I )( , I)( , .._...... 1 , v I , .... I ,v I _. I _ I X I )( I 7( I i X I I X I I X I ' ;I( I I )( I I )(i I __.] 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 H 46 Plate20a RotationEffects I B6- B7Giants

Many of the ]ateB giantstart- Si II SiIII SiII Si II dards, including16 Tau, 17 Tau, I ITI-I-11-1 I andq Tau,aremembersofthePle- ' I ' I ' I ' I ' I ' .I ' I ' I ' I ' I ' I ' I ' I ' I ' I iadescluster.Thisclusteris a par- Y---'- ticularlygoodsourceof broad-lined starsstandards,arefoundalthougtherehalso.nan'ow-lined_Dra B6 III i vdn 1=30 km/s 1

. 17Tau

B6 III vdn 1=215 kmls I I I

20 Tau ] B7 III vdn l =45 kmls [ v I ,1Tau ,_ [.... ' I B7 III [.... vdn l= 210knds

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 l... 1 Plate20b 47 ] ] ]

I I I _q-r-_ ....._ l-v __ -]

I>_ I >_ I >{ I _ I _< I I>< I

I IX I X I X I X I b( I I)( I I X I i XI I _ I I X I I Xs I i X I I )_ I 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 I

I

! ! I I l

l . 49 1 1 1 1 1 1 1 Part 3

Stellar Wind Effects 1 I 50 Plate 21 a I Stellar Wind Effects .vN c,,,I s,,,, r--1s,,v l ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I "[

at B0- B0.5 [1

Both v Or/and T Sco are MK B0 V ' ,,A ,-,/ I v, I.... standards for type BOV. In the ul- ,, I ,,_ I v [ traviolet, however, a" Sco exhibits ".. , A i -- ' "- J "-. " -I"- r x ,'- t /x, ._ _. i ". , ".i _. i ".. "_ ,A i A, i'. I v i _ "_ i A greatly enhanced lines of N V, _ _ _ _ V l _ _ _ ! _ v l_-

cation at B0 V, while "t"Sco is des/g--rSco _ _I____V__ nated BO Vw, indicating that the stellar wind lines appear to be "ab- B0 Vw _ t normal" in comparison with the r- standard. The two spectra of "rSco / v "..A I vl ,\." I v, Iv v I , v I ".-I I v [ presented here were taken over three "x , "x I .-x , "x I /x, /3 ._x Kx , "x I "x , "'1 Y" I /x , /x I "" I "x , "1 ' "" I ""' i'x l A I ' "\ I "_ I .-x

time scale cannot be ruled out. a" Sco ywinearsd,abpart;ut vtariationshere is noonindica ashtionorterof _ I______I _ __---__ Walbom, Nichols-Bohlin, & Panek , , (1985) also describe the enhanced B0 Vw ^ stellar wind features of "r Sco, which they classify as B0.2 V. laa7Aug 18 long-term variability in the stellar ___v 't l,,_ __v_lI'.4_1 _'__ "../I v I ".1t Tv I '../i I\/ \/I . v I f I -,-il IX/ I "..i I V , ",.A 't../ I v I ix I -,./ l /_'1 I/x i ix I /_ I )( Although it is a 13Cephei vari- /'. ' /" I /" ' A I /"' /3 A-.. Ii\ ' /" I .-x , "'I Y" I /" A I /" '/" I A, '/" I

BHDgtypeultra-B0o.5Vioflllwven53974,ioletspectrum.B0.5lllb.theWh°Se(R°untreeultray5 RountreeO£II andIna contrast,normalpticalLeShalScvOlassificai°letwasofB0Cru.513tion&type1968)III !_ 'SonnebomiS__ 4_ }___' I _ __ _ I_____ 11/_ __ _ _t!_ _!_,! _l_ wind(1991),fineswho andcitedespecits broaiallyd thestellarP ,-x ,,-\ j I >1 I v lI )/', /A X b( IT i X l >_ b< ii..A, ', "'i....1 )( i b( I v ) i I_( I A, i,x I >(i IV I X IX

B0.5 IIIw __, x., I X I v , xA _... I ../ , vl "*/ I \/ , ..A ,x/ I ",tv Ix/ , \!1 ,v I X I )/ 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 51 Plate21b

] 1 I × I I.-'": ..,-" : --'., ,'--.,'. ."-..,' x I "< I • I "< I _'_,' :'× ,' ="×,' I .."', : I." : ,'"×: ,' ".-, ,' :× ,' : "_-,' I _ l-v _ 'v ] _ I rr-

l

1500I X ' 1520I;( , 1540,_) ' X1560I , ><1580I 'X 1600I _( 1620I ;( 1640I X 1660I × 1680I IX 1700I , ( 1720I ' X1740I , 1760><1 , 1780:)14 , 1800I >< , 1820I XI 1840I 'X 1860I , 1880:_ , 1900 . 52 Plate 22a

Stellar Wind Effects NI7v oI ,,, ITms,,,, [S,,v--I I ' I ' I ' I ' I ' I ' I ' I ' 1 ' I ' I ' I ' I ' I ' I atB1 _ v V I _ _ _ 1 - V'--V_ I __ 17_'l__-

B1 III L,_ The MK standard for B1 111is I oPer _.._... (_, _/__V_ _n______oPer;aScoisa[_Cepheivariable /'_ I /', I /_ I /_ I /" ', '.'1_ "I" I"" ' "" I ""v, ' /._'1 "v" I /v", ,, /v",l I "v" I /".. ,, )_ IX I /"v,, ' I/'Iv, [ /"\_, 1I ',v"" I ''_\. I "v" and a spectroscopic binary, but at I I

_jlC'lVla,another 13Cephei variable, is classified B1 IIIw because of the , ' P Cygni profiles of the N V and B1 IIIw C IV lines, and the weakness of the I SiticalIVandabsorptionits ultravilines.olet spectraRountreeare __?__i I ,1, ..._ and Sonnebom (1991) cite evidence X '...i X : >.-.I "-' -"1 X rk<. , -n"- I -'- ' "'1 "- t ><1 ,.-< ] Xl IX t >

for a variable stellar wind in this "V" .....i ...... -__r__T_._ _ _ _! _ I

wi(1987)star'Grady'desth a variable windVulcandribeBj°rkrnan'2asandaa pBeSn°Wstarartially crSeo .d]__ _'______q_Y ___;i _@____' nent. In the exampledisplayedhere, resolved discreteabsorptioncompo-BIlII _ /'i'i 1' ! 'Ill V / the CIV doublet is greatlyenhanced . v..l [ X IX I

trucompariSOnomin 63578.fHDwtithheT"henOrmastarSpeC-isllatter "" ' "" I "" : X [ X l >J _ _ ',X X ', )_ ._< X I X _->_ IX 1 X', iX ', X I ',X i _ [ X

arapidrotator(vsini=2OOkmls). BIHDIv63578_ ,p______q /_/I/1, /___ _d__/_

..,..,.., x l Xl )K IX:Ix Ix, .-a -"" I-'- ' --1 "" I". ' "'t "" I xi Ix , .., ,.. , .. ,.. v-v I Y

v , xA ._/ Iv , \/ I I , vl ._.- I ...- , ,v i X' iv . >< i >< t X /.... 1200 1220 1240 1260 1280 1300 1820 1840 1360 1380 14,)0 1420 1440 1460 1480 1500 L_ 1 ! 1 1 1 -] 1

.1

- 1500 1520 1540 1560 1580 1600 _X 1620I X 154I0 X 1660I _( 1680I _ 1700I 'X 1720I ' X1740I , 1760)(I , 1780)I( , 1800IX ' 1820 1840 1860 1880 1900 54 Plate23a

Stellar Wind Effects cI,,, siI,, , IIIIIIs,,,,sJ,,I r_lsi,v ' I ' I ' I ' i ' I ' I ' I ' I ' I ' I ' I ' I ' I ' i ' I at B1.5 - _---- _

HD 70930

B1.5 III HD 85871 and HD 166596 have anomalously strong(3IV lines, in comparison with the normal B1.5 III spectrum of HD 70930.

The Si IV lines have peculiar pro- I files, in addition to enhanced line HD 85671 strength.

The C IV lines, normally absent B1.5 IIIw at B1.5 V, are prominent in the spec- trum of 19 Mon. Grady, Bjorkman, & Snow (1987) describe this star as having a variable stellar wind. Emission at Ha is cited by Irvine [ (1975) and Hiram & Asada (1976). I HD 166596 vV_

B1.5 IIIw

HD 35299

B1.5 V

19 Mon I_l [.

\ i v,/\ ,/,, X _ ,v/x i v,,", ,.A/', .,./-, ,. i v/\ , v1/-, v/\ iv_-\ , .,_/\ 'X t X t I)( n ,/\.,.I 'X i X _ v/\ 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480- 1500 i ] ] V r_ 1

] Ixl × , _ :^,v, ,Av ,, =x I _ I _ I _ I :_<, I x, I 1>f ,

1 1

I

I 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680I _(1700I ,><1720I , ><1740I ' 1760XI , 1780)I( , 1800IX ' 1820I X' 1840I 'X1860I , 1880)_ , 1900 56

Plate 24a I Stellar Wind Effects o,,,I s,,,i ITml-Is,,,,s,,, fs,,v--] I I I I ' I ' I ' I ' I ' I I ' I I ' i ' I ' I ' I ' i B2 Dwarfs _ _ I ' 1 _

a2v /_ ; J

The ultraviolet spectrum of >_ t ing13 SB2co isVnostarrmal(vsinfor ai=rapid225lykmrot/at-s). X j "v" : "._"i i -'v,-...... 4 .._- vk"-.. ', .v-. [ X I >_ ""_... iI -v- " X ] )< iI "v'. : .d.`1 '',v im -v,'.' i'v" " "-vfi '',v i _ [ X

ishinglyIn particular,weak.theTheC IVotherlinesB2aredwarfsvan- _ I _---- _ _ _ _

grees of C IV enhancement. The depicted here exhibit different de-HD37017 fl_V_/_t__I_1__ _l_t___ 5choppiness7150 and HDof the161056,spectradueof toHDa B2 Vw _/_ poor echelle tipple correction in the data processing, makes precise clas- ?/L sification difficult. "" I "- ' ""1 X l >< X _ : X II ,..Iv -',,41 ,-..v I'"lv I X[ _< I >< I >4 IX [ X l I>< I X[ IX I >

described by Slettebak (1982). B2 Vw: _A/ " l_ / [ ×' '_'l ><',><1><' >< x I><,x ><' >4 >< I><' ><' >4 '>< I ><1 Ix , >< I >" Ix

B2 Vw _/ -..-.. ><_xl ><_x Ix _>< ><_xl _< ',--'," x l x Ix _ x! ",.....," ' "' ,.."" xl _x I >4 I x

f ,/ '

1200 1220 1240 1260 1280 1:300 1:320 1:340 1:360 1:380 1400 1420 1440 1460 1480 1500 t.... 1 ! ! _ __v-_- 'v -_--q I...._ ] ' 1

] I x , I× ' _1 ' ×I ,x I '× I _< I _ I _< I _< I _< I '× I I × I I ×I ' _ ' Ix , I ×' I '× I ' _ '

1 ! I× , k '×1 ' >_ I _ I D_ _ I× , I×' I ,x I I ×l , 1 _--fl--- i -_ fl ' l " T--_-v 1_, v-

] I× , x , >(_ Ix I '>_ I >_ I >< I • I _ '× I ix I , _t x I>

' X I 'X I 'X I _¢ I X I X I X I _( I i× I , × I , >(I , h , I )< , I ×, I ,× I , >_ , 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 58 Plate 25a

Stellar Wind Effects NvI-1c,I ,, s,I ,, ITml--1s,,,,s,,, I_1s,,v l ' I ' I ' I ' I ' I ' I ° I ' I ' I ' I ' I ' I ' I ' I The B2 Subgiant _ Cas

Cet

B2 IV The 13Cephei variable/5 Cet has a normal ultraviolet spectrum for a B2 V slow rotator (v sin i = 10 km/s). The N V lines are absent, Si IV lines are moderately strong, [ 1 andC IV is very weak. In_ Cas, _Cas which is not a 13Cephei variable, the wind lines are all enhanced and are [ variable in strength. This variation B2 IVw I is especially remarkable in the C IV lines. Sonnebom, Garhart, and lee2S°p7 l[ Grady (1987) set an upper limit of several months for the time scale of the wind variability in this star. I HD 163472 (B2 IVw) has an _ Cas ultraviolet spectrum very similar to I Cas. Its potential variability has [ notbeenstudied. B2 IVw

1982 Nov 261 t I

Cas { B2 IVw / 1983 Oot 2[

B2 lVw 1.... 19_4 Feb 12

1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 [ } 59 Plate25b

C IV AI III I-1 I--1 I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' ' ' I ' I ' I ' I ' I ' I ' I ' / i _ . , , , -_] .,-i_-___-m_- ' - r?-,_ -] V_ V-,] _-t. V ,..3-1 ]

] 1 _v P I -] t--T I- f i

! ! '-- '-- ' =x { '× l ,xl , $ , Ix, I ×' l '× l ' >1 ' .1

I "" I t" I q I X I ' "" I '' I _ I "_" I :::K "" I "" I "" I ' "" I ', X I I X I Xl I )( I I

• j 1500I X ' 1520lX , 1540y,4 , ><1560l ' X 1580l ,><1600I X 1620I >,<1640I ::k:1660I :7<1680I X 1700l ix 1720I I >(1740I I 1760X I l 1780,_ { 1800I X I 1820I X' 1840I 'X 1860I , 1880)_ , 1900 .. 60 Plate26a StellarWindEffects I Mid-B Dwarfs {

HD 192685 is essentially iden- CIII Si II Si III Si II Si IV tieal with the B2.5 V standard ] I fflqql--1 I--1 er Sgr, except for the abnormal ' J ' _ ' _ ' I ' _ ' _ ' _ ' _ ' I ' _ ' u ' I ' _ ' I ' profiles of the Si IV lines and the abnormal strength of the C IV doublet. In I-ID72356, all the stellar o"Sgr wind lines are enhenced in compari- son with the B4 V standard HD 20809. B2.5V

HD 192685

B2.5Vw J 1 I

HD20809 l B4V l [

HD72356 l..

B4Vw 1 I "v_ I /N ! 1200 1220 1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 I.. 61 Plate 26b 1 / -.]

..] C IV C I AI II AI III I-I I I I--1 "] I ' I ' I i I ' I i I ' I ' I ' I ' I ' I ' I i I i I i I ' I ' I ' I ' I ' I i } 1

} ,I ."". : ,I'".. : ."'t_ I v" ,I '""" 'I :x 'I _< I x I _ I x I b< I ix I I x I I ><1 ' _ ' I x , I xI I Ix I 1 >f '

1 !

._ 1500 1520 1540 ' X1560I i X 1580I b< 1600I 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800 1820I )¢i 1840I I><1860I , 1880X I i 1900 REPORT DOCUMENTATION PAGE OMBNForm Approvedo.0704-0188 t

Public reportingburden for this collection of information Is estimated to average 1 hour per response, includingthe time for reviewing instructions,searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the conection of information. Send comments regarding thisburden estimate or any other aspect of this [ collection of information, includingsuggestionsfor reducingthis burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork ReductionProject (0704-0188), Washington, DC 20503. I 1. AGENCY USE ONLY (Leave blank) 2. REPORTDATE 3. REPORT TYPE AND DATESCOVERED

4. TITLE AND SUBTITLE Au[_ust1993 ReferencePublicati5. FUNDINGonNUMBERS I SpectralClassificationWiththeInternationalUltravioletExplorer: AnAtlasofB-TypeSpeclra 6.AUTHOR(S) 680 [/

Janet Rountree and George Sonnebom I 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 8. PEFORMING ORGANIZATION REPORT NUMBER GoddardSpaceFlightCenter Greenbelt,Maryland20771 93B00096

9. SPONSORING ! MONITORINGADGENCY NAME(S)AND ADDRESS (ES) 10. SPONSORING / MONITORING ADGENCY REPORT NUMBER

NationalAeronauticsand SpaceAdministration I Washington,DC 20546-0001 NASA RP-1312 [

11. SUPPLEMENTARY NOTES Rountree and Sonneborn: Goddard Space Flight Center, Greenbelt, Maryland 20771

12a. DISTRIBUTION l AVAILABILITY STATMENT 12b, DISTRIBUTION CODE Unclassified - Unlimited Subject Category 90

13.ABSTRACT (Maximum 200 words) Newcriteriaforthespectralclassificationof B starsin theultravioletshowthatphotosphericabsorptionlinesin the 1200-1900Awavelengthregioncanbe usedto classifythespectraof B-typedwarfs,subgiants,and giantson a two- dimensionalsystemconsistentwiththeopticalMK system.Thisatlasillustratesa largenumberof suchspectraat thescaleusedforclassification.Thesespectraprovidea densematrixof standardstars,andalsoshowtheeffectsof

rapidstellarrotationand stellarwindson thespectraand theirclassification.Theobservationalmaterialconsistsof [ high-dispersionspectrafromtheInternationalUltravioletExplorerarchives,resampledto a resolutionof0.25A, [ uniformlynormalized,andplottedat 10A/crn.Theatlasdisplayssuchspectraforabout100stars,arrangedin spectral-type,luminosity,androtationalvelocitysequences.Theatlasshouldbe usefulfortheclassificationofother i IUEhigh-dispersionspectra,especiallyforstarsthathavenot beenobservedin theoptical. [ 1

! 14. SUBJECT TERMS 15.NUMBEROF PAGES I 65 t IUE;B-typestars;stellarclassification;stellarrotation;stellarwinds 18.PRICECODE !

17. SECURITYCLASSIFICATION 18. SECURITYCLASSIFICATION 19. SECURITYCLASSIFICATION 20.UMITATION OFABSTRACT [ OF REPORT OF THISPAGE OF ABSTRACT

•Unclassified Unclassified Unclassified UL ! NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) I Prescribed by ANSI Std. Z39.18 t 298-102 .... ,] L

I I !

J ..J

.... i

_.1 Na,onaicsanO SpaceAdministration SPECIALFOURTH-CLASSRATE 3 1176 01404 6131 Goddard SpaceFlight Center POSTAGENASA&FEESPAID [ Greenbelt,Maryland20771 PERMITNo.G27

OfficialBusiness I-- Penaltyfor PrivateUse,$300

$4 001 RP-1312 930722 S017690 A [- NASA LANGLEY RESEARCH CENTER

ATTN : SUSAN ADKINS, HEAD REF SERV SEC [ TECHNICAL LIBRARY, MS 185 HAMPTON VA 23681000I [ I POSTMASTER: If Undeliverable(Section158, PostalManual)DoNotReturn

...... , Idbnrnnhlln I II1 ...... ii -iiiiii --i_Ti1 I II ...... i

• I I I [

J_

.

.

L_ t • L