Blood Pressure Lowering Efficacy of Renin Inhibitors for Primary Hypertension: a Cochrane Systematic Review

Total Page:16

File Type:pdf, Size:1020Kb

Blood Pressure Lowering Efficacy of Renin Inhibitors for Primary Hypertension: a Cochrane Systematic Review Journal of Human Hypertension (2009) 23, 495–502 & 2009 Macmillan Publishers Limited All rights reserved 0950-9240/09 $32.00 www.nature.com/jhh REVIEW Blood pressure lowering efficacy of renin inhibitors for primary hypertension: a Cochrane systematic review VM Musini, PM Fortin, K Bassett and JM Wright Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada We conducted a systematic review and meta-analysis of À4.3) and aliskiren 600 mg, À11.4 (À13.5, À9.2)/À6.6 double-blind randomized controlled trials to quantify the (À7.9, À5.2) mm Hg. Aliskiren 300 mg significantly dose-related systolic (SBP) and diastolic blood pressure lowered both SBP À3.0 (À4.0, À2.0) and DBP À1.7 (DBP) lowering efficacy of renin inhibitors vs placebo in (À2.3, À1.0) as compared to aliskiren150 mg. Aliskiren the treatment of adults with primary hypertension. has no effect on blood pressure variability. No data were Databases searched were Medline (1966–March 2008), available to assess the effect of aliskiren on heart rate or EMBASE (1988–March 2008) and Cochrane Central pulse pressure. This review found weak evidence that Register of Controlled Trials (CENTRAL). Six trials in during 4- to 8-week use, aliskiren did not increase 3694 patients met the inclusion criteria. All examined withdrawals due to adverse effects as compared to aliskiren, the only renin inhibitor licensed for marketing placebo. We concluded that aliskiren has a dose-related in Canada and the United States. Aliskiren caused a blood pressure lowering effect better than placebo and dose-related SBP/DBP lowering effect compared to magnitude of effect is similar to that determined for placebo: weighted mean difference with 95% CI: aliski- angiotensin-converting enzyme inhibitors and angioten- ren 75 mg, À2.9 (À4.6, À1.3)/À2.3 (À3.3, À1.3) mm Hg; sin receptor blockers. aliskiren 150 mg, À5.5 (À6.5, À4.4)/À3.0 (À3.7, À2.3) Journal of Human Hypertension (2009) 23, 495–502; mm Hg; aliskiren 300 mg, À8.7 (À9.7,À7.6)/À5.0 (À5.6, doi:10.1038/jhh.2008.162; published online 22 January 2009 Keywords: renin inhibitors; blood pressure; randomized controlled trials; systematic review; meta-analysis; primary hypertension Introduction Attempts to block renin began in the 1950s with the use of renin antibodies.1 Issues of potency, Hypertension is a chronic condition associated with bioavailability and duration of action and cost of an increased risk of mortality and morbidity from synthesis have marred the drug development. For stroke, coronary heart disease, congestive heart example, potent renin inhibitors such as remikiren failure and renal disease. For patients with estab- and enalkiren had low oral bioavailability.2 Newer lished hypertension, blood pressure (BP) should drugs such as zankiren and terlakiren looked more first be managed with lifestyle/behaviour modifica- promising, but further development was halted in tion. However, if these measures prove inadequate the mid-1990s with the development of ARBs. More then pharmacotherapy is indicated. The renin– recent programmes to develop renin inhibitors have angiotensin–aldosterone system (RAAS) is a major been based on X-ray crystallography of renin’s active regulator of cardiovascular homeostasis. It is influ- site with computational modelling rather than based enced by five distinct anti-hypertensive drug on the structure of angiotensinogen.3 This has led to classes: b-adrenergic blockers, renin inhibitors, aliskiren, a new non-peptide, low-molecular-weight, angiotensin-converting enzyme (ACE) inhibitors, orally active renin inhibitor, which has been angiotensin receptor blockers (ARBs) and aldoster- approved in the United States, Canada and other one inhibitors. countries for the treatment of hypertension. This review was published in the Cochrane database of systematic reviews issue 4, 2008. Correspondence: Dr VM Musini, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Room 317, 2176 Health Science Mall, Vancouver, British Columbia, Canada V6T 1Z3. Objectives E-mail: [email protected] Received 8 October 2008; revised 2 December 2008; accepted 3 The primary objective is to quantify the dose-related December 2008; published online 22 January 2009 systolic (SBP) and/or diastolic blood pressure (DBP) Renin inhibitors for primary hypertension VM Musini et al 496 lowering efficacy of renin inhibitors vs placebo in baseline risk or co-morbid conditions other than the treatment of primary hypertension. Secondary patients must not have creatinine levels greater than objectives are to determine the effects of renin 1.5 times the normal level. inhibitors on variability of BP, pulse pressure, heart rate, withdrawals due to adverse effects and rates of specific adverse effects such as dry cough and angio- Types of interventions oedema. Monotherapy should include different fixed doses of renin inhibitor. However, data from trials or arms of trials with variable doses, based on BP response, Methods were not eligible. Search strategy The following databases were searched: Medline Types of outcome measures (1966–March 2008), EMBASE (1988–March 2008), Primary outcomes: change from baseline of trough Cochrane Central Register of Controlled Trials and/or peak SBP and DBP compared with placebo. (CENTRAL) and bibliographic citations from Secondary outcomes: change in standard devia- retrieved papers. No language restrictions were tion, pulse pressure, heart rate, number of patient applied. The search strategy for identification withdrawals due to adverse effects and number of of studies is summarized in Table 1. patients with dry cough or angio-oedema, compared to placebo. Criteria for considering studies for this review Selection of trials Two reviewers (VM and PF) independently screened Types of studies the titles and the abstracts resulting from the search Study design had to meet the following criteria: strategies. An article was rejected on initial screen- double-blind, random allocation to a specific fixed ing if the title or abstract indicated that the article dose of renin inhibitor or parallel placebo; duration did not report data from a randomized placebo- of treatment of at least 3 weeks; BP measurements at controlled trial. Full texts of the remaining articles baseline (following washout) and at one or more were retrieved. The bibliographies of pertinent time points between 3 and 12 weeks after initiation articles, reviews and texts were searched for addi- of treatment. tional citations. Two independent reviewers as- sessed the eligibility of the trials using a trial Types of participants selection form. Discrepancies were resolved by Participants must have a baseline BP of at least discussion, and when necessary by a third reviewer 140 mm Hg SBP and/or a DBP of at least 90 mm Hg (JMW or KB). using a standard method of measurement, such as a calibrated standard mercury sphygmomanometer. Data extraction Participants must not be restricted by age, sex, Data were extracted independently by two reviewers VM and PF, and then cross-checked. All numeric calculations and graphic interpolations were con- Table 1 Cochrane search strategy firmed by a second person. Search strategy for identification of studies on aliskiren 1 exp hypertension/ 2 animal/ not human/ Assessment of risk of bias in included studies 3 1 not 2 Two independent reviewers (VM and PF) assessed 4 randomised controlled trial/ the risk of bias of all included trials and prepared a 5 controlled clinical trial/ Risk of Bias Table as described in Chapter 8 of the 6 random allocation/ 7 double-blind method/ Cochrane Handbook. 8 single-blind method/ 9 exp clinical trial/ 10 (clin$ adj25 trial$).ti,ab. Dealing with missing data 11 ((singl$ or doubl$ or trip$) adj25 (blind$ or mask$)).ti,ab. In the case of missing values for standard deviation 12 placebos/ 13 placebo$.ti,ab. of the change in BP, the standard deviation was 14 random$.ti,ab. imputed based on the information in the same trial 15 exp research design/ or from other trials using the same dose. The 16 or/4–15 following hierarchy (listed from high to low pre- 17 renin adj2 inhibit$.mp. ference) was used to impute standard deviation 18 (aliskiren or tekturnas or rasilezs).mp. 19 17 or 18 values: standard deviation of change in BP data from 20 16 and 19 a different position (standing or supine); standard deviation of BP at the end of treatment; standard Journal of Human Hypertension Renin inhibitors for primary hypertension VM Musini et al 497 deviation of BP at baseline (except if this measure Citations identified in literature was used for entry criteria); mean standard devia- search: n=250 tion of change in BP from other trials using the same Citations excluded and deemed not class of drug. relevant from titles and abstracts: n=235 Assessment of heterogeneity Potentially relevant RCTs Test for heterogeneity of treatment effect between Excluded RCTs: n=9 retrieved for examination n=15 the trials used a w2-statistic. The fixed effects model No placebo control: n=5 Combination therapy: was applied to obtain summary statistics of pooled n=3 Duplicate publication of trials, unless significant between-study heterogene- trial: n=1 ity was present, in which case the random effects model was used. RCTs included in systematic review: n=6 Figure 1 Quorum flow chart for selection of studies for renin Data synthesis inhibitor systematic review. Six double blind randomized con- Data synthesis and analyses used the Cochrane trolled trials met the inclusion criteria and compared aliskiren at Review Manager software, RevMan 5.0. Data for doses ranging from 75 to 600 mg to placebo. changes from baseline in BP were combined using a weighted mean difference method. The withdrawals The manufacturer (Novartis) sponsored all six due to adverse effects were analysed using relative included randomized controlled trials. We con- risk. tacted the manufacturer by email for any additional information on ongoing studies and for missing data Subgroup analysis and investigation on heart rate and pulse pressure from published of heterogeneity trials meeting our inclusion criteria.
Recommended publications
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2020 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • Aliskiren: a Novel, Orally Active Renin Inhibitor
    Review Article Aliskiren: A Novel, Orally Active Renin Inhibitor Mohamed Saleem TS, Jain A1, Tarani P1, Ravi V1, Gauthaman K1 Department of Pharmacology, Annamacharya College of Pharmacy, Rajampet, AP, 1Himalayan Pharmacy Institute, Majhitar, East Sikkim - 737 136, India ARTICLE INFO ABSTRACT Article history: Renin-angiotensin-aldosterone systems play a major role in the regulation of human homeostasis Received 01 July 2009 mechanism, which are also involved in the development of hypertension and end-organ damage Accepted 07 July 2009 through activation of angiotensin II. Inhibitors of the renin-angiotensin-aldosterone system may Available online 04 February 2010 reduce the development of end-organ damage to a greater extent than other antihypertensive Keywords: agents. Aliskiren is the first member of the new class of orally active direct renin inhibitors Aliskiren recently approved by the US Food and Drug Administration for the treatment of hypertension. Hypertension Aliskiren directly inhibiting the renin and reducing the formation of angiotensin II, which is the Renin-angiotensin-aldosterone system most effective mediator involved in the pathogenesis of cardiovascular diseases. The present Renin inhibitors review mainly focuses on the pharmacodynamics and pharmacokinetics and clinical aspects of aliskiren. In this respect, the review will improve the basic idea to understand the pharmacology of aliskiren, which is useful for the further research in cardiovascular disease. DOI: 10.4103/0975-8453.59518 Introduction inhibit renin have been available for many years but have been limited by low potency, bioavailability and duration of action. Activation of the renin-angiotensin (Ang)-aldosterone system However, a new class of nonpeptide, low molecular weight, orally [5] (RAAS) plays an important role in the development of hypertension active inhibitors has recently been developed.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Systematic Evidence Review from the Blood Pressure Expert Panel, 2013
    Managing Blood Pressure in Adults Systematic Evidence Review From the Blood Pressure Expert Panel, 2013 Contents Foreword ............................................................................................................................................ vi Blood Pressure Expert Panel ..............................................................................................................vii Section 1: Background and Description of the NHLBI Cardiovascular Risk Reduction Project ............ 1 A. Background .............................................................................................................................. 1 Section 2: Process and Methods Overview ......................................................................................... 3 A. Evidence-Based Approach ....................................................................................................... 3 i. Overview of the Evidence-Based Methodology ................................................................. 3 ii. System for Grading the Body of Evidence ......................................................................... 4 iii. Peer-Review Process ....................................................................................................... 5 B. Critical Question–Based Approach ........................................................................................... 5 i. How the Questions Were Selected ................................................................................... 5 ii. Rationale for the Questions
    [Show full text]
  • Appendices: V Ervolgonderzoek Medicatieveiligheid
    APPENDICES: V ERVOLGONDERZOEK MEDICATIEVEILIGHEID Dit is een bijlage bij het rapport Vervolgonderzoek Medicatieveiligheid en is opgesteld voor het Ministerie van VWS vanuit een samenwerkingsverband tussen het Erasmus MC (Rotterdam), NIVEL (Utrecht), Radboud UMC (Nijmegen) en PHARMO (Utrecht) Januari 2017 Versie 1.0 1 Appendices Hoofstuk 2: Onderzoek naar de mate van opvolging van HARM-Wrestling aanbevelingen (2009-2014) 2 Appendix 1 Appendix 1: Technische omzetting van HARM-Wrestling aanbevelingen naar indicatoren Algemene specificaties Tabel A1a. Bepaling van medicatiegebruik. Geneesmiddel of ATC-code geneesmiddelen groep Antidepressiva N06A Laag gedoseerd ASA B01AC06, B01AC08, B01AC30, N02BA15 (dosering 100mg) of N02BA01 (dosering 80mg) Benzodiazepinen N05CF, N05CD, N05BA of N05CC Beta-blokkers C07 Bisfosfonaten M05BA, M05BB, of M05XX Calcineurine remmers L04AA05 of L04AD01 Carbamazepine N03AF01 Corticosteroiden H02AB Co-trimoxazol J01EE01 Coxibs M01AH Diabetesmedicatie A10 Digoxine C01AA05 Glibenclamide A10BB01 of A10BD02 of A10BD04 H2RA A02BA Itraconazol J02AC02 Kaliumsparende diuretica C03DA, C03DB, of C03EA Kaliumverliezende diuretica C03A, C03B, C03E, C07B, C07CB03, C09BA, C09DA, C09XA52, C03C of C09DX01 Ketoconazol J02AB02 Niet-selectieve NSAID’s N02BA01, N02BA15, N02BA11, N02BA51, N02BA65 of M01A met uitzondering van M01AH, M01AX05, M01AX12, M01AX21, M01AX24, M01AX25 en M01AX26 Laxantia A06A, A02AA02, A02AA03, A02AA04, A06AC, A06AA, of A06AG Lisdiuretica C03C Macroliden J01FA of A02BD04 VKA B01AA Opioïden N02AA met uitzondering van N02AA55, N02AA59 en N02AA79, N02AB, N02AC, N02AD, N02AG, N02AE of N07BC01 Pentamidine P01CX01 PPI’s A02BC of M01AE52 RAS-remmers C09 Sotalol C07AA07 Spironolacton C03DA01 SSRI's N06AB, N06AX21 of N06AX16 Sulonylureumderivaten A10BB, A10BD02 of A10BD04 Thiazidediuretica C03A, C03B, C03EA, C07B, C09BA, C09DA, C09XA52, C09DX01 of C07CB03 TAR B01AC04, B01AC06, B01AC08, B01AC22, B01AC30, N02BA15 (dosering 100mg) of N02BA01 (dosering 80mg) Thienopyridine derivaten B01AC04, B01AC22 of B01AC30 3 Appendix 1 Tabel A1b.
    [Show full text]
  • Cardiovascular System Drug Poster
    Cardiovascular Drugs Created by the Njardarson Group (The University of Arizona): Edon Vitaku, Elizabeth A. Ilardi, Daniel J. Mack, Monica A. Fallon, Erik B. Gerlach, Miyant’e Y. Newton, Angela N. Yazzie, Jón T. Njarðarson Ethanol Glyceryl Trinitrate Anestisine Quinidine Procaine Adrenaline Adenosine Phenylepherine Heparin Vasoxyl Sotradecol Xylocaine Pronestyl Betamethasone Catapres Cedilanide Dopamine Inversine Metaraminol Acetyldigitoxin Hydrocortisone ( Ethanol ) ( Nitroglycerin ) ( Benzocaine ) ( Quinidine ) ( Procaine ) ( Epinephrine ) ( Adenosine ) ( Phenylephrine ) ( Heparin ) ( Methoxamine ) ( Sodium Tetradecyl Sulfate ) ( Lidocaine ) ( Procainamide ) ( Betamethasone ) ( Clonidine ) ( Deslanoside ) ( Dopamine ) ( Mecamylamine ) ( Metaraminol ) ( Acetyldigitoxin ) ( Hydrocortisone ) VASOPROTECTIVE CARDIAC THERAPY VASOPROTECTIVE CARDIAC THERAPY VASOPROTECTIVE CARDIAC THERAPY CARDIAC THERAPY CARDIAC THERAPY VASOPROTECTIVE CARDIAC THERAPY VASOPROTECTIVE CARDIAC THERAPY CARDIAC THERAPY VASOPROTECTIVE ANTIHYPERTENSIVE CARDIAC THERAPY CARDIAC THERAPY ANTIHYPERTENSIVE CARDIAC THERAPY CARDIAC THERAPY VASOPROTECTIVE Approved 1700s Approved 1879 Approved 1890s Approved 1900s Approved 1903 Approved 1920s Approved 1929 Approved 1930s Approved 1935 Approved 1940s Approved 1946 Approved 1949 Approved 1950 Approved 1950s Approved 1950s Approved 1950s Approved 1950s Approved 1950s Approved 1951 Approved 1952 Approved 1952 Regitine Phenoxybenzamine Serpasol Rescinnamine Diuril Harmonyl Naturetin Hydrochlorothiazide Hydrocortamate Fastin Ismel
    [Show full text]
  • A Current Evaluation of the Safety of Angiotensin Receptor Blockers and Direct Renin Inhibitors
    Vascular Health and Risk Management Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW A current evaluation of the safety of angiotensin receptor blockers and direct renin inhibitors Helmy M Siragy Abstract: The safety of angiotensin II receptor blockers (ARBs) for the treatment of hypertension Professor of Medicine and and cardiovascular and renal diseases has been well documented in numerous randomized clinical Endocrinology, Department of trials involving thousands of patients. However, recent concerns have surfaced about possible Medicine, Director, Hypertension links between ARBs and increased risks of myocardial infarction and cancer. Less is known Center, University of Virginia Health System, Charlottesville, VA, USA about the safety of the direct renin inhibitor aliskiren, which was approved as an antihyperten- sive in 2007. This article provides a detailed review of the safety of ARBs and aliskiren, with an emphasis on the risks of cancer and myocardial infarction associated with ARBs. Safety data were identified by searching PubMed and Food and Drug Administration (FDA) Web sites through April 2011. ARBs are generally well tolerated, with no known class-specific adverse events. The possibility of an increased risk of myocardial infarction associated with ARBs was suggested predominantly because the Valsartan Antihypertensive Long-Term Use Evaluation (VALUE) trial reported a statistically significant increase in the incidence of myocardial infarc- tion with valsartan compared with amlodipine. However, no large-scale, randomized clinical trials published after the VALUE study have shown a statistically significant increase in the incidence of myocardial infarction associated with ARBs compared with placebo or non-ARBs. Meta-analyses examining the risk of cancer associated with ARBs have produced conflicting results, most likely due to the inherent limitations of analyzing heterogeneous data and a lack of published cancer data.
    [Show full text]
  • Albuminuria: a Great Risk Marker, but an Underestimated Target in Diabetes
    SECTION II Albuminuria: A Great Risk Marker, but an Underestimated Target in Diabetes 1 DICK DE ZEEUW, MD and cardiovascular disease progression in 2 ITAMAR RAZ, MD advanced diabetes, increased urinary al- bumin levels have their separate predic- tive power for risk of organ failure (3). iabetes is a growing disease with a the very early stages of the disease. More- An increased renal and cardiovascu- potentially devastating outcome. over, new antihypertensive therapies not lar risk profile is also observed even when D Diabetic patients run a great risk of only lower blood pressure, but also re- smaller amounts of albumin are present in developing multiple organ dysfunction duce albuminuria. We will address the the urine (microalbuminuria: 30–300 and ultimately organ failure. The current need of not only measuring the risk mg/day). Microalbuminuria heralds dia- approach of patients with diabetes is first marker, but also targeting therapies to betic nephropathy as well as cardiovascu- to assess their risk profile by measuring lower albuminuria. Finally, the individual lar risk (4,5). Although other risk factors risk factors such as glucose level, systemic response to such therapies appears to be (mainly increased blood pressure) already blood pressure, blood lipids, body highly variable, offering us opportunities play a major role in this stage, microalbu- weight, and smoking. Second, to reduce to optimize organ protection by individ- minuria also has important independent the risk, the patient is advised to make a ualizing therapies with the goal to over- value in estimating the cardiovascular and lifestyle change (lose weight and stop come therapy resistance.
    [Show full text]
  • H2S As a Bridge Linking Inflammation, Oxidative Stress And
    biomedicines Review H2S as a Bridge Linking Inflammation, Oxidative Stress and Endothelial Biology: A Possible Defense in the Fight against SARS-CoV-2 Infection? Francesca Gorini 1,* , Serena Del Turco 1,* , Laura Sabatino 1 , Melania Gaggini 1 and Cristina Vassalle 2,* 1 Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; [email protected] (L.S.); [email protected] (M.G.) 2 Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy * Correspondence: [email protected] (F.G.); [email protected] (S.D.T.); [email protected] (C.V.) Abstract: The endothelium controls vascular homeostasis through a delicate balance between secre- tion of vasodilators and vasoconstrictors. The loss of physiological homeostasis leads to endothelial dysfunction, for which inflammatory events represent critical determinants. In this context, ther- apeutic approaches targeting inflammation-related vascular injury may help for the treatment of cardiovascular disease and a multitude of other conditions related to endothelium dysfunction, including COVID-19. In recent years, within the complexity of the inflammatory scenario related to loss of vessel integrity, hydrogen sulfide (H2S) has aroused great interest due to its importance in different signaling pathways at the endothelial level. In this review, we discuss the effects of H2S, a molecule which has been reported to demonstrate anti-inflammatory activity, in addition to Citation: Gorini, F.; Del Turco, S.; many other biological functions related to endothelium and sulfur-drugs as new possible therapeutic Sabatino, L.; Gaggini, M.; Vassalle, C. options in diseases involving vascular pathobiology, such as in SARS-CoV-2 infection. H2S as a Bridge Linking Inflammation, Oxidative Stress and Keywords: endothelium; hydrogen sulfide; inflammation; therapeutic target; SARS-CoV-2; COVID-19 Endothelial Biology: A Possible Defense in the Fight against SARS-CoV-2 Infection? Biomedicines 2021, 9, 1107.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Pharmacotherapy for Mild Hypertension (Review) – the Cochrane Collaboration
    Pharmacotherapy for mild hypertension (Review) Diao D, Wright JM, Cundiff DK, Gueyffier F This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2012, Issue 11 http://www.thecochranelibrary.com Pharmacotherapy for mild hypertension (Review) Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. T A B L E O F C O N T E N T S HEADER ....................................... 1 ABSTRACT ...................................... 1 PLAIN LANGUAGE SUMMARY .............................. 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . 2 BACKGROUND .................................... 5 OBJECTIVES ..................................... 5 METHODS ...................................... 5 RESULTS ....................................... 6 Figure 1. ..................................... 7 DISCUSSION ..................................... 8 Figure 2. ..................................... 9 AUTHORS’ CONCLUSIONS ............................... 10 ACKNOWLEDGEMENTS ................................ 10 REFERENCES ..................................... 10 CHARACTERISTICS OF STUDIES ............................. 13 DATA AND ANALYSES .................................. 19 Analysis 1.1. Comparison 1 Treatment versus No Treatment, Outcome 1 Mortality. 19 Analysis 1.2. Comparison 1 Treatment versus No Treatment, Outcome 2 Stroke. 20 Analysis 1.3. Comparison 1 Treatment versus No Treatment, Outcome 3 Coronary Heart Disease. 20 Analysis 1.4. Comparison 1 Treatment versus
    [Show full text]
  • Renin Angiotensin Aldosterone Inhibition in the Treatment of Cardiovascular Disease
    G Model YPHRS-3603; No. of Pages 15 ARTICLE IN PRESS Pharmacological Research xxx (2017) xxx–xxx Contents lists available at ScienceDirect Pharmacological Research journal homepage: www.elsevier.com/locate/yphrs Review Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease a,∗ b Carlos M. Ferrario , Adam E. Mullick a Department of Surgery, Wake Forest University Health Science, Medical Center Blvd., Winston Salem, NC 27157, United States b Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, United States a r t i c l e i n f o a b s t r a c t Article history: A collective century of discoveries establishes the importance of the renin angiotensin aldosterone system Received 17 March 2017 in maintaining blood pressure, fluid volume and electrolyte homeostasis via autocrine, paracrine and Received in revised form 11 May 2017 endocrine signaling. While research continues to yield new functions of angiotensin II and angiotensin- Accepted 15 May 2017 (1–7), the gap between basic research and clinical application of these new findings is widening. As data Available online xxx accumulates on the efficacy of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers as drugs of fundamental importance in the treatment of cardiovascular and renal disorders, Keywords: it is becoming apparent that the achieved clinical benefits is suboptimal and surprisingly no different Angiotensin-(1–12) Angiotensin-(1–7) than what can be achieved with other therapeutic interventions. We discuss this issue and summarize new pathways and mechanisms effecting the synthesis and actions of angiotensin II. The presence of Angiotensin converting enzyme inhibitors Angiotensin receptor blockers renin-independent non-canonical pathways for angiotensin II production are largely unaffected by agents Hypertension inhibiting renin angiotensin system activity.
    [Show full text]