Albuminuria: a Great Risk Marker, but an Underestimated Target in Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Albuminuria: a Great Risk Marker, but an Underestimated Target in Diabetes SECTION II Albuminuria: A Great Risk Marker, but an Underestimated Target in Diabetes 1 DICK DE ZEEUW, MD and cardiovascular disease progression in 2 ITAMAR RAZ, MD advanced diabetes, increased urinary al- bumin levels have their separate predic- tive power for risk of organ failure (3). iabetes is a growing disease with a the very early stages of the disease. More- An increased renal and cardiovascu- potentially devastating outcome. over, new antihypertensive therapies not lar risk profile is also observed even when D Diabetic patients run a great risk of only lower blood pressure, but also re- smaller amounts of albumin are present in developing multiple organ dysfunction duce albuminuria. We will address the the urine (microalbuminuria: 30–300 and ultimately organ failure. The current need of not only measuring the risk mg/day). Microalbuminuria heralds dia- approach of patients with diabetes is first marker, but also targeting therapies to betic nephropathy as well as cardiovascu- to assess their risk profile by measuring lower albuminuria. Finally, the individual lar risk (4,5). Although other risk factors risk factors such as glucose level, systemic response to such therapies appears to be (mainly increased blood pressure) already blood pressure, blood lipids, body highly variable, offering us opportunities play a major role in this stage, microalbu- weight, and smoking. Second, to reduce to optimize organ protection by individ- minuria also has important independent the risk, the patient is advised to make a ualizing therapies with the goal to over- value in estimating the cardiovascular and lifestyle change (lose weight and stop come therapy resistance. renal risk of a diabetic patient. smoking) and to take medication that reg- Clearly, diabetes constitutes a multi- Despite the clear power of using the ulates glucose and lowers blood pressure factorial disease in its organ damage (and level of albumin for marking renal and and cholesterol. This approach has in- maybe even in its cause). This forms a cardiovascular risk, the measurement if deed resulted in a slowing of progressive sound reason to look for multiple targets still markedly underused in worldwide organ dysfunction and has substantially (next to optimization of treating existing practice (6). One of the reasons for this prolonged life. targets). under use may be the fact that there is not However, the residual risk of diabetic yet a specific therapy that lowers albu- patients, despite “optimal” treatment of ALBUMINURIA AS A RISK minuria specifically. For other risk these risk factors, is still extremely high, MARKER — Large amounts of albu- factors, such as high glucose and hyper- and the number of patients is dramatically min in the urine (Ͼ300 mg/day) indicate tension, drugs are available to lower these growing. This has urged the medical pro- a late stage of diabetic renal disease and risk markers, with associated reduction of fession to improve risk profiling and de- indicate, next to loss of filtration rate, the risk. Currently, increased levels of albu- sign new therapeutic strategies to further degree of kidney damage. In addition, min are reduced by antihypertensive reduce existing risk. In addition, the however, the degree of increased albumin drugs that intervene in the renin- search for early disease markers was in- loss also heralds an increased chance of angiotensin-aldosterone system (RAAS) tensified with the goal to apply preventive losing kidney function. In fact, the more (7,8). Because such drugs are the recom- therapeutic measures in early stages of albumin is lost in the urine, the more mended therapy in diabetes, most doctors disease, instead of waiting until the dis- chance the individual has on reaching thus see no additive value in measuring ease had fully developed. end-stage renal disease (1). Intriguingly, urine albumin. The following paragraphs The next paragraphs will address the this predictive power of increased albu- will give reasons for measuring urine al- status of a “new” cardiovascular and renal min excretion does not only predict renal bumin in all individuals with diabetes. risk marker: increased levels of albumin progressive disease, but it also predicts an in the urine. This so-called albuminuria increased risk for cardiovascular disease ORGAN-PROTECTIVE not only marks risk in advanced stages of (2). Although classical risk factors such as PROPERTIES OF diabetic disease, but also indicates risk in hypertension play a major role in renal ALBUMINURIA LOWERING —As ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● mentioned above, intervention in the RAAS using antihypertensive drugs like From the 1Department of Clinical Pharmacology, University Medical Center Groningen, University of Gro- 2 ACE inhibitors or angiotensin II receptor ningen, Groningen, the Netherlands; and the Diabetes Unit, Department of Medicine, Hadassah University blockers (ARBs) are proven to be associ- Hospital, Ein-Karem, Jerusalem, Israel. ϳ Address correspondence and reprint requests to D. de Zeeuw, Department of Clinical Pharmacology, ated with substantial reductions of 50% University Medical Center Groningen, Sector F, PO Box 169, 9700 AD Groningen, the Netherlands. E-mail: in albuminuria both in microalbuminuric [email protected]. and macroalbuminuric patients. Several D.d.Z. has been a paid consultant for Novartis Pharmaceuticals, Abbott Laboratories, Keryx Biopharma- studies have demonstrated that this low- ceuticals, Inc., and AstraZeneca Pharmaceuticals; I.R. has been a paid consultant for Pfizer, Johnson & Johnson, sanofi-aventis, Keryx Biopharmaceuticals, Inc., Andromeda, and Merck Sharp & Dohme. ering of albuminuria is associated with re- This article is based on a presentation at the 1st World Congress of Controversies in Diabetes, Obesity and duction of renal risk, independent of the Hypertension (CODHy). The Congress and the publication of this article were made possible by unrestricted blood pressure–lowering effect of these educational grants from MSD, Roche, sanofi-aventis, Novo Nordisk, Medtronic, LifeScan, World Wide, Eli drugs (9,10). Recently, three important Lilly, Keryx, Abbott, Novartis, Pfizer, Generx Biotechnology, Schering, and Johnson & Johnson. Abbreviations: ARB, angiotensin II receptor blocker; RAAS, renin-angiotensin-aldosterone system. large trials were published that specifi- DOI: 10.2337/dc08-s248 cally targeted renal risk in type 2 diabetic © 2008 by the American Diabetes Association. patients using ARBs. The results of these S190 DIABETES CARE, VOLUME 31, SUPPLEMENT 2, FEBRUARY 2008 de Zeeuw and Raz trials showed that ARBs are indeed effec- tive in lowering blood pressure as well as albuminuria. In the long term, ARB treat- ment resulted in renal protection both in advanced diabetic nephropathy (11,12) and early diabetic renal disease (13). This renal protection goes beyond the blood pressure–lowering capacity of ARBs, since the blood pressure in the compara- tor arms of these trials (using conven- tional antihypertensive drugs) was the same as in the ARB arms. Intriguingly, al- buminuria was only lowered in the ARB arms of these trials. Although these clini- cal trials cannot give an answer to the question whether this lowering of albu- minuria is the “cause” of the renoprotec- tive effect of ARBs, post hoc analysis of both the Irbesartan Diabetic Nephropa- thy Trial and the Reduction of Endpoints Figure 1—The individual degree of proteinuria lowering (after several weeks of therapy) is a in NIDDM with the Angiotensin II Antag- predictor for long-term (years) renal protection: the more proteinuria is lowered, the less the onist Losartan (RENAAL) trial clearly glomerular filtration rate (GFR) will decline during follow-up, both in diabetic (15) and non- diabetic renal (16) disease patients. showed that the more one reduces albu- minuria, the more patients are protected against progressive renal disease (1,14). against cardiovascular and renal disease tients who had a drop in albuminuria in This appears not only to be applicable to progression. the first months of therapy showed a clear renal protection, but also to cardiovascu- The above findings with albuminuria renal protection during follow-up despite lar protection, since the level of albumin- constitute sound reason to measure albu- a rise in the blood pressure. In other uria reduction was also associated with minuria in each diabetic individual to words, monitoring therapy-induced the level of cardiovascular risk (2). monitor the effectiveness of RAAS inter- changes in albumin in individual patients Thus, albuminuria is not only a good vention therapy. However, the current is important independent of blood pres- risk marker, but the therapy-induced fall guideline tells us that antihypertensive sure changes, since it predicts the effec- of albuminuria is also predictive of renal therapy like RAAS intervention is targeted tiveness of renal protection. and cardiovascular protection. toward high blood pressure (and not to high albumin). In fact, one could argue FUTURE THERAPIES FOR INDIVIDUAL VARIABILITY that the variability in albuminuria reduc- (FURTHER) ALBUMINURIA IN THERAPY RESPONSE — Al- tion is likely paralleled by a similar vari- REDUCTION — Despite the fact that though RAAS intervention is clearly effec- ability in blood pressure–lowering we are able to reduce renal (and cardio- tive in lowering albuminuria, with an response. If true, than one would not vascular) risk in diabetic patients with average reduction around 50%, the indi- need to measure albuminuria,
Recommended publications
  • Customs Tariff - Schedule
    CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2020 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.
    [Show full text]
  • Aliskiren: a Novel, Orally Active Renin Inhibitor
    Review Article Aliskiren: A Novel, Orally Active Renin Inhibitor Mohamed Saleem TS, Jain A1, Tarani P1, Ravi V1, Gauthaman K1 Department of Pharmacology, Annamacharya College of Pharmacy, Rajampet, AP, 1Himalayan Pharmacy Institute, Majhitar, East Sikkim - 737 136, India ARTICLE INFO ABSTRACT Article history: Renin-angiotensin-aldosterone systems play a major role in the regulation of human homeostasis Received 01 July 2009 mechanism, which are also involved in the development of hypertension and end-organ damage Accepted 07 July 2009 through activation of angiotensin II. Inhibitors of the renin-angiotensin-aldosterone system may Available online 04 February 2010 reduce the development of end-organ damage to a greater extent than other antihypertensive Keywords: agents. Aliskiren is the first member of the new class of orally active direct renin inhibitors Aliskiren recently approved by the US Food and Drug Administration for the treatment of hypertension. Hypertension Aliskiren directly inhibiting the renin and reducing the formation of angiotensin II, which is the Renin-angiotensin-aldosterone system most effective mediator involved in the pathogenesis of cardiovascular diseases. The present Renin inhibitors review mainly focuses on the pharmacodynamics and pharmacokinetics and clinical aspects of aliskiren. In this respect, the review will improve the basic idea to understand the pharmacology of aliskiren, which is useful for the further research in cardiovascular disease. DOI: 10.4103/0975-8453.59518 Introduction inhibit renin have been available for many years but have been limited by low potency, bioavailability and duration of action. Activation of the renin-angiotensin (Ang)-aldosterone system However, a new class of nonpeptide, low molecular weight, orally [5] (RAAS) plays an important role in the development of hypertension active inhibitors has recently been developed.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Systematic Evidence Review from the Blood Pressure Expert Panel, 2013
    Managing Blood Pressure in Adults Systematic Evidence Review From the Blood Pressure Expert Panel, 2013 Contents Foreword ............................................................................................................................................ vi Blood Pressure Expert Panel ..............................................................................................................vii Section 1: Background and Description of the NHLBI Cardiovascular Risk Reduction Project ............ 1 A. Background .............................................................................................................................. 1 Section 2: Process and Methods Overview ......................................................................................... 3 A. Evidence-Based Approach ....................................................................................................... 3 i. Overview of the Evidence-Based Methodology ................................................................. 3 ii. System for Grading the Body of Evidence ......................................................................... 4 iii. Peer-Review Process ....................................................................................................... 5 B. Critical Question–Based Approach ........................................................................................... 5 i. How the Questions Were Selected ................................................................................... 5 ii. Rationale for the Questions
    [Show full text]
  • Appendices: V Ervolgonderzoek Medicatieveiligheid
    APPENDICES: V ERVOLGONDERZOEK MEDICATIEVEILIGHEID Dit is een bijlage bij het rapport Vervolgonderzoek Medicatieveiligheid en is opgesteld voor het Ministerie van VWS vanuit een samenwerkingsverband tussen het Erasmus MC (Rotterdam), NIVEL (Utrecht), Radboud UMC (Nijmegen) en PHARMO (Utrecht) Januari 2017 Versie 1.0 1 Appendices Hoofstuk 2: Onderzoek naar de mate van opvolging van HARM-Wrestling aanbevelingen (2009-2014) 2 Appendix 1 Appendix 1: Technische omzetting van HARM-Wrestling aanbevelingen naar indicatoren Algemene specificaties Tabel A1a. Bepaling van medicatiegebruik. Geneesmiddel of ATC-code geneesmiddelen groep Antidepressiva N06A Laag gedoseerd ASA B01AC06, B01AC08, B01AC30, N02BA15 (dosering 100mg) of N02BA01 (dosering 80mg) Benzodiazepinen N05CF, N05CD, N05BA of N05CC Beta-blokkers C07 Bisfosfonaten M05BA, M05BB, of M05XX Calcineurine remmers L04AA05 of L04AD01 Carbamazepine N03AF01 Corticosteroiden H02AB Co-trimoxazol J01EE01 Coxibs M01AH Diabetesmedicatie A10 Digoxine C01AA05 Glibenclamide A10BB01 of A10BD02 of A10BD04 H2RA A02BA Itraconazol J02AC02 Kaliumsparende diuretica C03DA, C03DB, of C03EA Kaliumverliezende diuretica C03A, C03B, C03E, C07B, C07CB03, C09BA, C09DA, C09XA52, C03C of C09DX01 Ketoconazol J02AB02 Niet-selectieve NSAID’s N02BA01, N02BA15, N02BA11, N02BA51, N02BA65 of M01A met uitzondering van M01AH, M01AX05, M01AX12, M01AX21, M01AX24, M01AX25 en M01AX26 Laxantia A06A, A02AA02, A02AA03, A02AA04, A06AC, A06AA, of A06AG Lisdiuretica C03C Macroliden J01FA of A02BD04 VKA B01AA Opioïden N02AA met uitzondering van N02AA55, N02AA59 en N02AA79, N02AB, N02AC, N02AD, N02AG, N02AE of N07BC01 Pentamidine P01CX01 PPI’s A02BC of M01AE52 RAS-remmers C09 Sotalol C07AA07 Spironolacton C03DA01 SSRI's N06AB, N06AX21 of N06AX16 Sulonylureumderivaten A10BB, A10BD02 of A10BD04 Thiazidediuretica C03A, C03B, C03EA, C07B, C09BA, C09DA, C09XA52, C09DX01 of C07CB03 TAR B01AC04, B01AC06, B01AC08, B01AC22, B01AC30, N02BA15 (dosering 100mg) of N02BA01 (dosering 80mg) Thienopyridine derivaten B01AC04, B01AC22 of B01AC30 3 Appendix 1 Tabel A1b.
    [Show full text]
  • Cardiovascular System Drug Poster
    Cardiovascular Drugs Created by the Njardarson Group (The University of Arizona): Edon Vitaku, Elizabeth A. Ilardi, Daniel J. Mack, Monica A. Fallon, Erik B. Gerlach, Miyant’e Y. Newton, Angela N. Yazzie, Jón T. Njarðarson Ethanol Glyceryl Trinitrate Anestisine Quinidine Procaine Adrenaline Adenosine Phenylepherine Heparin Vasoxyl Sotradecol Xylocaine Pronestyl Betamethasone Catapres Cedilanide Dopamine Inversine Metaraminol Acetyldigitoxin Hydrocortisone ( Ethanol ) ( Nitroglycerin ) ( Benzocaine ) ( Quinidine ) ( Procaine ) ( Epinephrine ) ( Adenosine ) ( Phenylephrine ) ( Heparin ) ( Methoxamine ) ( Sodium Tetradecyl Sulfate ) ( Lidocaine ) ( Procainamide ) ( Betamethasone ) ( Clonidine ) ( Deslanoside ) ( Dopamine ) ( Mecamylamine ) ( Metaraminol ) ( Acetyldigitoxin ) ( Hydrocortisone ) VASOPROTECTIVE CARDIAC THERAPY VASOPROTECTIVE CARDIAC THERAPY VASOPROTECTIVE CARDIAC THERAPY CARDIAC THERAPY CARDIAC THERAPY VASOPROTECTIVE CARDIAC THERAPY VASOPROTECTIVE CARDIAC THERAPY CARDIAC THERAPY VASOPROTECTIVE ANTIHYPERTENSIVE CARDIAC THERAPY CARDIAC THERAPY ANTIHYPERTENSIVE CARDIAC THERAPY CARDIAC THERAPY VASOPROTECTIVE Approved 1700s Approved 1879 Approved 1890s Approved 1900s Approved 1903 Approved 1920s Approved 1929 Approved 1930s Approved 1935 Approved 1940s Approved 1946 Approved 1949 Approved 1950 Approved 1950s Approved 1950s Approved 1950s Approved 1950s Approved 1950s Approved 1951 Approved 1952 Approved 1952 Regitine Phenoxybenzamine Serpasol Rescinnamine Diuril Harmonyl Naturetin Hydrochlorothiazide Hydrocortamate Fastin Ismel
    [Show full text]
  • A Current Evaluation of the Safety of Angiotensin Receptor Blockers and Direct Renin Inhibitors
    Vascular Health and Risk Management Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW A current evaluation of the safety of angiotensin receptor blockers and direct renin inhibitors Helmy M Siragy Abstract: The safety of angiotensin II receptor blockers (ARBs) for the treatment of hypertension Professor of Medicine and and cardiovascular and renal diseases has been well documented in numerous randomized clinical Endocrinology, Department of trials involving thousands of patients. However, recent concerns have surfaced about possible Medicine, Director, Hypertension links between ARBs and increased risks of myocardial infarction and cancer. Less is known Center, University of Virginia Health System, Charlottesville, VA, USA about the safety of the direct renin inhibitor aliskiren, which was approved as an antihyperten- sive in 2007. This article provides a detailed review of the safety of ARBs and aliskiren, with an emphasis on the risks of cancer and myocardial infarction associated with ARBs. Safety data were identified by searching PubMed and Food and Drug Administration (FDA) Web sites through April 2011. ARBs are generally well tolerated, with no known class-specific adverse events. The possibility of an increased risk of myocardial infarction associated with ARBs was suggested predominantly because the Valsartan Antihypertensive Long-Term Use Evaluation (VALUE) trial reported a statistically significant increase in the incidence of myocardial infarc- tion with valsartan compared with amlodipine. However, no large-scale, randomized clinical trials published after the VALUE study have shown a statistically significant increase in the incidence of myocardial infarction associated with ARBs compared with placebo or non-ARBs. Meta-analyses examining the risk of cancer associated with ARBs have produced conflicting results, most likely due to the inherent limitations of analyzing heterogeneous data and a lack of published cancer data.
    [Show full text]
  • H2S As a Bridge Linking Inflammation, Oxidative Stress And
    biomedicines Review H2S as a Bridge Linking Inflammation, Oxidative Stress and Endothelial Biology: A Possible Defense in the Fight against SARS-CoV-2 Infection? Francesca Gorini 1,* , Serena Del Turco 1,* , Laura Sabatino 1 , Melania Gaggini 1 and Cristina Vassalle 2,* 1 Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; [email protected] (L.S.); [email protected] (M.G.) 2 Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy * Correspondence: [email protected] (F.G.); [email protected] (S.D.T.); [email protected] (C.V.) Abstract: The endothelium controls vascular homeostasis through a delicate balance between secre- tion of vasodilators and vasoconstrictors. The loss of physiological homeostasis leads to endothelial dysfunction, for which inflammatory events represent critical determinants. In this context, ther- apeutic approaches targeting inflammation-related vascular injury may help for the treatment of cardiovascular disease and a multitude of other conditions related to endothelium dysfunction, including COVID-19. In recent years, within the complexity of the inflammatory scenario related to loss of vessel integrity, hydrogen sulfide (H2S) has aroused great interest due to its importance in different signaling pathways at the endothelial level. In this review, we discuss the effects of H2S, a molecule which has been reported to demonstrate anti-inflammatory activity, in addition to Citation: Gorini, F.; Del Turco, S.; many other biological functions related to endothelium and sulfur-drugs as new possible therapeutic Sabatino, L.; Gaggini, M.; Vassalle, C. options in diseases involving vascular pathobiology, such as in SARS-CoV-2 infection. H2S as a Bridge Linking Inflammation, Oxidative Stress and Keywords: endothelium; hydrogen sulfide; inflammation; therapeutic target; SARS-CoV-2; COVID-19 Endothelial Biology: A Possible Defense in the Fight against SARS-CoV-2 Infection? Biomedicines 2021, 9, 1107.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Pharmacotherapy for Mild Hypertension (Review) – the Cochrane Collaboration
    Pharmacotherapy for mild hypertension (Review) Diao D, Wright JM, Cundiff DK, Gueyffier F This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2012, Issue 11 http://www.thecochranelibrary.com Pharmacotherapy for mild hypertension (Review) Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. T A B L E O F C O N T E N T S HEADER ....................................... 1 ABSTRACT ...................................... 1 PLAIN LANGUAGE SUMMARY .............................. 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . 2 BACKGROUND .................................... 5 OBJECTIVES ..................................... 5 METHODS ...................................... 5 RESULTS ....................................... 6 Figure 1. ..................................... 7 DISCUSSION ..................................... 8 Figure 2. ..................................... 9 AUTHORS’ CONCLUSIONS ............................... 10 ACKNOWLEDGEMENTS ................................ 10 REFERENCES ..................................... 10 CHARACTERISTICS OF STUDIES ............................. 13 DATA AND ANALYSES .................................. 19 Analysis 1.1. Comparison 1 Treatment versus No Treatment, Outcome 1 Mortality. 19 Analysis 1.2. Comparison 1 Treatment versus No Treatment, Outcome 2 Stroke. 20 Analysis 1.3. Comparison 1 Treatment versus No Treatment, Outcome 3 Coronary Heart Disease. 20 Analysis 1.4. Comparison 1 Treatment versus
    [Show full text]
  • Renin Angiotensin Aldosterone Inhibition in the Treatment of Cardiovascular Disease
    G Model YPHRS-3603; No. of Pages 15 ARTICLE IN PRESS Pharmacological Research xxx (2017) xxx–xxx Contents lists available at ScienceDirect Pharmacological Research journal homepage: www.elsevier.com/locate/yphrs Review Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease a,∗ b Carlos M. Ferrario , Adam E. Mullick a Department of Surgery, Wake Forest University Health Science, Medical Center Blvd., Winston Salem, NC 27157, United States b Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, United States a r t i c l e i n f o a b s t r a c t Article history: A collective century of discoveries establishes the importance of the renin angiotensin aldosterone system Received 17 March 2017 in maintaining blood pressure, fluid volume and electrolyte homeostasis via autocrine, paracrine and Received in revised form 11 May 2017 endocrine signaling. While research continues to yield new functions of angiotensin II and angiotensin- Accepted 15 May 2017 (1–7), the gap between basic research and clinical application of these new findings is widening. As data Available online xxx accumulates on the efficacy of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers as drugs of fundamental importance in the treatment of cardiovascular and renal disorders, Keywords: it is becoming apparent that the achieved clinical benefits is suboptimal and surprisingly no different Angiotensin-(1–12) Angiotensin-(1–7) than what can be achieved with other therapeutic interventions. We discuss this issue and summarize new pathways and mechanisms effecting the synthesis and actions of angiotensin II. The presence of Angiotensin converting enzyme inhibitors Angiotensin receptor blockers renin-independent non-canonical pathways for angiotensin II production are largely unaffected by agents Hypertension inhibiting renin angiotensin system activity.
    [Show full text]
  • Assessment of the Role of the Renin-Angiotensin System in Cardiac Contractility Utilizing the Renin Inhibitor Remikiren *Tj.P
    Bridsh Journal of Pharmacology (1996) 117, 891-901 B 1996 Stockton Press All rights reserved 0007-1188/96 $12.00 * Assessment of the role of the renin-angiotensin system in cardiac contractility utilizing the renin inhibitor remikiren *tJ.P. van Kats, tL.M.A. Sassen, **A.H.J. Danser, tM.P.J. Polak, tL.K. Soei, *F.H.M. Derkx, *M.A.D.H. Schalekamp & 1tP.D. Verdouw Cardiovascular Research Institute COEUR (Departments of *Internal Medicine I, tCardiology and **Pharmacology), Erasmus University Rotterdam, Rotterdam, The Netherlands 1 The role of the renin-angiotensin system in the regulation of myocardial contractility is still debated. In order to investigate whether renin inhibition affects myocardial contractility and whether this action depends on intracardiac rather than circulating angiotensin II, the regional myocardial effects of systemic (i.v.) and intracoronary (i.c.) infusions of the renin inhibitor remikiren, were compared and related to the effects on systemic haemodynamics and circulating angiotensin II in open-chest anaesthetized pigs (25- 30 kg). The specificity of the remikiren-induced effects was tested (1) by studying its i.c. effects after administration of the AT,-receptor antagonist L-158,809 and (2) by measuring its effects on contractile force of porcine isolated cardiac trabeculae. 2 Consecutive 10 min i.v. infusions of remikiren were given at 2, 5, 10 and 20 mg min-'. Mean arterial pressure (MAP), cardiac output (CO), heart rate (HR), sytemic vascular resistance (SVR), myocardial oxygen consumption (MVO2) and left ventricular (LV) dPIdtm,, were not affected by remikiren at 2 and 5 mg min-', and were lowered at higher doses.
    [Show full text]