Journal of Glaciology, Vol. 57, No. 204, 2011 697 The annual glaciohydrology cycle in the ablation zone of the Greenland ice sheet: Part 1. Hydrology model William COLGAN,1,2 Harihar RAJARAM,3 Robert ANDERSON,4,5 Konrad STEFFEN,1,2 Thomas PHILLIPS,1,6 Ian JOUGHIN,7 H. Jay ZWALLY,8 Waleed ABDALATI1,2,9 1Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309-0216, USA E-mail:
[email protected] 2Department of Geography, University of Colorado, Boulder, Colorado 80309-0260, USA 3Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309-0428, USA 4Institute of Arctic and Alpine Research, UCB 450, University of Colorado, Boulder, Colorado 80309-0450, USA 5Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA 6Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado 80309-0429, USA 7Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Box 355640, Seattle, Washington 98105-6698, USA 8Goddard Space Flight Center, Code 971, National Aeronautics and Space Administration, Greenbelt, Maryland 20771, USA 9Headquarters, National Aeronautics and Space Administration, Washington, DC 20546, USA ABSTRACT. We apply a novel one-dimensional glacier hydrology model that calculates hydraulic head to the tidewater-terminating Sermeq Avannarleq flowline of the Greenland ice sheet. Within a plausible parameter space, the model achieves a quasi-steady-state annual cycle in which hydraulic head oscillates close to flotation throughout the ablation zone. Flotation is briefly achieved during the summer melt season along a 17 km stretch of the 50 km of flowline within the ablation zone.