Local Dew-Point Temperature, Water Vapor Pressure, and Millimeter-Wavelength Opacity at the Sierra Negra Volcano J

Total Page:16

File Type:pdf, Size:1020Kb

Local Dew-Point Temperature, Water Vapor Pressure, and Millimeter-Wavelength Opacity at the Sierra Negra Volcano J A&A 649, A12 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039691 & c ESO 2021 Astrophysics Local dew-point temperature, water vapor pressure, and millimeter-wavelength opacity at the Sierra Negra volcano J. E. Mendoza-Torres, E. Colín-Beltrán, D. Ferrusca, and R. J. Contreras Instituto Nacional de Astrofísica, Óptica y Electrónica, San Andrés Cholula, Mexico e-mail: [email protected], [email protected], [email protected] Received 15 October 2020 / Accepted 17 February 2021 ABSTRACT Aims. Some astronomical facilities are in operation at the Sierra Negra volcano (SNV), at ∼4.5 km over the sea level (o.s.l.) in Mexico. We asses whether it is possible to estimate the opacity for millimeter-wavelength observations based on the meteorological parameters at the site. A criterion for allowing astronomical observations at SNV depends on the atmospheric opacity at 225 GHz, which has to be τ225 ≤ 0:30 Nepers. The correlation of the opacity at SNV, measured with a radiometer at 225 GHz, τ225, with the local dew point temperature, TDP, the water vapor pressure, PH2O and the water vapor content (WVC) at SNV is studied with the aim to determine whether these parameters can be used to estimate the opacity at similar high-altitude locations for astronomical observations at mil- limeter wavelengths. Methods. We used radiosonde data taken in various decades in Mexico City (MX) and Veracruz City (VR) to compute the WVC in 0.5 km altitude (h) intervals from 0 km for VR and from 2.0 km for MX to 9.5 km o.s.l. to study the altitude profile WVC(h) at SNV by interpolating data of MX and VR. We also fit exponential functions to observed WVC (WVCobs(h)), obtaining a fit WVC (WVCftd(h)). The WVCobs(h) and WVCftd(h) were integrated, from lower limits of hlow = 2:5–5.5 km to the upper limit of 9.5 km as a measure of the input of WVCobs(h ≥ hlow) to the precipitable water vapor. Results. The largest differences between WVCobs and WVCftd values occur at low altitudes. The input of WVCobs(h) to the precit- pitable water vapor for h ≥ 4:5 km ranges from 15% to 29%. At 4.5–5.0 km, the input is between 4% and 8%. This means that it is about a third of the WVC (h ≥ 4:5 km). The input above our limit (from 9.5–30.0 km) is estimated with WVCftd(h) and is found to be lower than 1%. The correlation of τ225 with TDP, PH2O, and WVCSNV takes values between 0.6 and 0.8. A functional relation is proposed based on simultaneous data taken in 2013–2015, according to which it is possible to estimate the opacity with the TDP, PH2O, or WVCSNV at the site. Conclusions. With local meteorological parameters, it is possible to know whether the opacity meets the condition τ225 ≤ 0:30 Nepers, with an uncertainty of ±0.16 Nepers. The uncertainty is low for low opacities and increases with increasing opacity. Key words. opacity – atmospheric effects – balloons 1. Introduction PWV is larger at low than at high altitudes. Qin et al.(2001) found that ∼25% of WVC is concentrated in the first 2 km of the The importance of the atmospheric water vapor for the cli- atmosphere. mate, and in general for terrestrial life, makes it the subject of Based on measurements of the WVC at different sites and study in a variety of sciences, including astronomy (Otárola et al. different conditions, atmospheric models have been developed 2009), meteorology, geophysics (Vogelmann & Trickl 2008) and (Qin et al. 2001). The shapes of the altitude profiles are similar also weather forecasting. The study of the atmospheric water is to each other, indicating that a generic function might be used important for all of them, particularly in the past years because to represent the altitude profile. Furthermore, it has been shown of the global climate change, which is leading to a general that the WVC follows a distribution with altitude that can be warming. It also leads to more extreme phenomena with short approximated by an exponential function. timescales, for example, strong precipitations and even floods To reduce the effect of the atmospheric opacity, some astro- at some locations, and to the lack of water and even droughts nomical facilities are located at high altitudes above the sea level. at other sites. The amount of water vapor in the atmosphere We refer only to altitudes above sea level throughout. Neverthe- depends on many factors that cause it to be highly variable less, for clarity we use the abbreviation o.s.l. for this altitude. with geographic coordinates and at different timescales, includ- The opacity of the atmosphere at submillimeter and millime- ing diurnal and seasonal variations. Other timescales might be ter wavelengths is directly related to the PWV (Otárola et al. present as well. The water vapor in addition decreases with alti- 2009, 2010 and Delgado et al. 1999), which plays a central tude, as we show below. role for astronomical observations from ground-based facilities. To integrate the water vapor content over all altitudes, the Among other conditions, the PWV depends on the altitude of the term precipitable water vapor (PWV) is commonly used. We site, that is, on the integration of the WVC above the site. The refer to the amount of water vapor integrated between two given thinner the atmosphere above a site, the lower the PWV. Above altitudes as water vapor content (WVC). The PWV decreases as high-altitude sites, it tends to be lower than for low-altitude sites the altitude of the lower limit of integration increases. Because for two reasons. First, the length of the path of integration is the WVC decreases with altitude, the input of the WVC to the shorter, and second the altitude interval that provides the higher Article published by EDP Sciences A12, page 1 of9 A&A 649, A12 (2021) WVC to the PWV (the lowest altitude range) is not included in We used radiosonde data of the University of Wyoming to the integration. build the altitude profile (we refer to the altitude with h for The PWV can be estimated by several ways, which include the numerical processing) WVCobs(h) for MX and VR. With the use of GPS, observations from space at near- and mid this information, we can calculate a complete altitude profile -infrared (IR) bands (Marín et al. 2015), Earth-based spectral from the sea level to the maximum altitudes reached by the observations at water vapor lines at radio and millimeter- balloons. Additionally, we used meteorological and radiometric wavelengths (Turner et al. 2007 and Cassiano et al. 2018), mete- data from the Large Millimeter Telescope (Ferrusca & Contreras orological radiosondes (Giovanelli et al. 2001), and others 2014; Zeballos et al. 2016) at 225 GHz at the SNV summit to (Pozo et al. 2016). Some of the methods for estimating the PWV asses whether local meteorological parameters can be used to directly take the integrated information and do not allow esti- estimate the opacity at millimeter wavelengths, as described mating the WVC at different altitude intervals. Some methods, below. The analysis is intended to establish some basis to esti- including the use of meteorological balloons that carry sondes mate τ225 based on local parameters. We computed TDP, PH2O, that take data of the atmospheric parameters at several altitudes, and the WVC based on the temperature (T) and relative humid- can obtain the WVC at different altitudes. This can allow us to ity (RH) with the aim to use the coefficients given in Eqs. (7)–(9) better know the inputs to the PWV at different altitudes and con- together with values that we fit to the observations (as we show sequently, to better know the causes of atmospheric opacity at in Tables7 and8) for this estimation. submillimeter and millimeter wavelengths. The PWV forecasting has allowed planing of observa- tions at short wavelengths (millimeter to the infrared), mak- 2. Analysis of radiosonde data ing an optimal use of astronomical facilities (Hills & Richer The temperature of the dew point for each altitude TDP(h) can be 2000; Pérez-Jórdan et al. 2015). Atmospheric models, validated estimated according to Lawrence(2005) using the RH and T, with data of global navigation satellite systems and with PWV h i RH A1T monitors (Pérez-Jordán et al. 2018; Turchi et al. 2018, 2020), B1 ln ) + 100 B1+T have provided the opportunity of planning the observations and TDP = ; (1) RH A1T A1 − ln − taking real-time decisions, and the models can even provide 100 B1+T a tool for user-defined restrictions based on PWV measure- where T is given in degrees Celsius, RH in percent, A1 = 17:625 ments (Florian et al. 2012). Additionally, studies carried out at ◦ some astronomical sites have found that local meteorological is a dimensionless constant, and B1 = 243:04 C is also a con- stant. With these values, the water vapor pressure (P (h)) may parameters and atmospheric models allow estimating the mean H2O PWV, giving values similar to those reported for these sites be computed (Alduchov & Eskridge 1996) as follows: (Giordano et al. 2013). This is particular important for values ! 17:625 TDP of PWV < 1 mm in the case of IR observations and even for P = 6:1094 exp ; (2) H2O T : forecasting the background in IR (Turchi et al. 2020). All this DP + 243 04 indicates that local meteorological parameters might be used to where TDP is given in degrees Celsius and PH2O in millibar. forecast the PWV, with the aim to improve the quality of the In the case of sondes, the computation can be made for each observations.
Recommended publications
  • The HAWC Experiment at the Parque Nacional Pico De Orizaba
    The HAWC experiment at the Parque Nacional Pico de Orizaba A feasibility study for the HAWC Collaboration Alberto Carrami˜nana1, Eduardo Mendoza1, Janina Nava1, Lil´ıV´azquez1,2 (1) Instituto Nacional de Astrof´ısica, Optica´ y Electr´onica Luis Enrique Erro 1, Tonantzintla, Puebla 72840, M´exico (2) Universidad Aut´onoma del Estado de M´exico April 16, 2007 Contents 1 The HAWC experiment 1 2 Science at the Parque Nacional Pico de Orizaba 3 2.1 Parque Nacional Pico de Orizaba . 3 2.2 Citlaltepetl and Tliltepetl . 7 2.2.1 Geology .......................... 7 2.2.2 Glaciers .......................... 10 2.2.3 Hydrology......................... 12 2.3 Weather conditions at Sierra Negra . 15 2.4 The Large Millimeter Telescope . 18 2.5 TheConsorcioSierraNegra . 21 3 HAWC at the Parque Nacional Pico de Orizaba 23 3.1 Thesite .............................. 23 3.1.1 The location for HAWC . 23 3.1.2 Land availability and permissions . 26 3.2 Theexperimentinfrastructure. 27 3.2.1 Thereservoir ....................... 27 3.2.2 Thedetector ....................... 30 3.2.3 Thebuilding ....................... 31 3.2.4 Power and communications . 33 3.2.5 Communications . 35 3.3 WaterforHAWC......................... 35 3.3.1 Geoelectrical studies . 36 3.3.2 Water precipitation: altimetric studies . 40 3.3.3 Quantifying water extraction . 43 3.4 Environmental considerations . 45 3.4.1 TheHAWCinfrastructure . 45 3.4.2 Water acquisition . 46 1 3.4.3 Operations ........................ 47 3.4.4 Post-operations . 48 3.5 Socialimpact ........................... 48 4 Operations and science 49 4.1 Operations ............................ 49 4.2 Budget............................... 49 4.3 Scientific input of the Mexican HAWC collaboration .
    [Show full text]
  • Archipelago Reserves, a New Option to Protect Montane Entomofauna and Beta-Diverse Ecosystems
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 89 (2018): 927 - 937 Conservation Archipelago reserves, a new option to protect montane entomofauna and beta-diverse ecosystems Reservas archipiélago, una nueva opción para proteger a la entomofauna de montaña y ecosistemas beta-diversos Victor Moctezuma *, Gonzalo Halffter, Alfonsina Arriaga-Jiménez Instituto de Ecología, A.C., Carretera Antigua a Coatepec 351, 91000 Xalapa, Veracruz, Mexico * Corresponding author: [email protected] (V. Moctezuma) Received: 22 August 2017; accepted: 23 March 2018 Abstract Beta diversity is often a dominant characteristic in mountain systems and naturally fragmented ecosystems. However, natural protected areas are traditionally designed to protect ecosystems with high alpha and low beta diversity. Recent information about dung beetles of the Transmexican Volcanic Belt was used to identify the most suitable strategy for the conservation of insect biodiversity in montane and beta-diverse ecosystems. Mean alpha diversity by mountain represents 38% of regional diversity. Most of the variation in beta diversity is explained because each mountain represents a unique habitat hosting a highly differentiated community. National parks appear to be inefficient to protect the high beta diversity shown by Mexican temperate mountains, especially for insect communities adapted to fragile ecosystems. The Archipelago Reserve scheme seems to be a suitable alternative to protect montane entomofauna and beta-diverse ecosystems. Our study reveals beta diversity patterns and complementarity among sites in a montane system, representing a first step to detect a suitable region for establishing an Archipelago Reserve in the Transmexican Volcanic Belt. Nevertheless, an analysis that matches current diversity patterns and protected areas is required to establish the best configuration for future reserves.
    [Show full text]
  • Estudio De Límite De Cambio Aceptable, Para Regular Las
    COMISIÓN NACIONAL DE ÁREAS NATURALES PROTEGIDAS Estudio de Límite de Cambio Aceptable, para regular las actividades turístico recreativas de alta montaña que se desarrollan dentro del Parque Nacional Pico de Orizaba Luis Raul Alvarez Oseguera 25/11/2016 0 Estudio de Límite de Cambio Aceptable, para regular las actividades turístico recreativas de alta montaña que se desarrollan dentro del Parque Nacional Pico de Orizaba Contenido Introducción ........................................................................................................................................ 3 Antecedentes del Área Protegida. ...................................................................................................... 3 Parque Nacional Pico de Orizaba .................................................................................................... 4 Objetivo del presente estudio: ........................................................................................................ 6 Vinculación con el Programa de Manejo y con otros ordenamientos jurídicos. ................................ 6 Marco de referencia: ......................................................................................................................... 12 Diagnóstico .................................................................................................................................... 12 Contexto Turístico Regional. ..................................................................................................... 12 Uso Público Actual ....................................................................................................................
    [Show full text]
  • Recent Explosive Volcanism at the Eastern Trans-Mexican Volcanic Belt
    The Geological Society of America Field Guide 25 2012 Recent explosive volcanism at the eastern Trans-Mexican Volcanic Belt G. Carrasco-Núñez* P. Dávila-Harris Centro de Geociencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., 76230 Mexico N.R. Riggs M.H. Ort School of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, Arizona, USA B.W. Zimmer Department of Geology, Appalachian State University, Boone, North Carolina USA C.P. Willcox M.J. Branney Department of Geology, University of Leicester, Leicester, LE17RH, UK ABSTRACT The eastern Trans-Mexican Volcanic Belt is characterized by a diversity of vol- canoes that are related to different processes and eruptive styles. The spectacular exposures of late Pleistocene and Holocene volcanism provide a unique opportunity to explore a variety of volcanic features and deposits that may be relevant for volca- nic hazard assessments within the area. This three-day fi eld guide describes selected representative examples of the regional volcanism showing volcanic features inclu- ding thick pyroclastic successions derived from the explosive activity of Los Humeros caldera volcano, caldera-rim effusions, alternating explosive and effusive activity of a vitrophyric rhyolite dome (Cerro Pizarro), and the eruptive activity of two composi- tionally contrasting maar volcanoes: Atexcac, a classic basaltic maar and Cerro Pinto, a rhyolitic tuff ring–dome complex. *[email protected] Carrasco-Núñez, G., Dávila-Harris, P., Riggs, N.R., Ort, M.H., Zimmer, B.W., Willcox, C.P., and Branney, M.J., 2012, Recent explosive volcanism at the eastern Trans-Mexican Volcanic Belt, in Aranda-Gómez, J.J., Tolson, G., and Molina-Garza, R.S., eds., The Southern Cordillera and Beyond: Geological Society of America Field Guide 25, p.
    [Show full text]
  • Geology of Las Cumbres Volcanic Complex, Puebla and Veracruz States, Mexico
    Revista Mexicana de CienciasGeology Geológicas, of Las Cumbres v. 22, núm. Volcanic 2, 2005, Complex, p. 181-199 Puebla and Veracruz states, Mexico 181 Geology of Las Cumbres Volcanic Complex, Puebla and Veracruz states, Mexico Sergio Raúl Rodríguez Instituto de Geología, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Mexico, D.F., Mexico Actually at Centro de Ciencias de la Tierra, Universidad Veracruzana, Francisco J. Moreno 207, Col. Zapata, 91090 Jalapa, Veracruz, Mexico. [email protected] ABSTRACT Las Cumbres Volcanic Complex (LCVC) is part of a nearly NE–SW aligned volcanic range formed by the Cofre de Perote extinct volcano to the north, and the active Citlaltépetl volcano to the south. This volcanic range is one of the most striking morphological features in the eastern Trans- Mexican Volcanic Belt. This geological study describes the different volcanic structures and associated deposits forming the LCVC, which was built upon Cretaceous limestones and Tertiary intrusive rocks of syenitic composition. The LCVC geological map includes ten lithostratigraphic volcanic units, some of which include members representing different eruptive periods. The LCVC history has been subdivided in four stages: The fi rst and older stage (~600 ka) consists of thick andesitic lava fl ows that formed the Las Cumbres stratovolcano, with an estimated volume of 200 km3. The second stage (350 – 40 ka) is represented by the collapse of the east fl ank of the Las Cumbres stratovolcano. This eruption completely modifi ed the morphology of the Las Cumbres volcano and produced debris avalanche and pyroclastic deposits, as well as lava fl ows with a minimum volume of 50 km3.
    [Show full text]
  • Geología E Historia Eruptiva De Algunos De Los Grandes Volcanes Activos De México
    Grandes volcanes activos de México 379 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA D GEOL DA Ó VOLUMEN CONMEMORATIVO DEL CENTENARIO E G I I C C TEMAS SELECTOS DE LA GEOLOGÍA MEXICANA O A S TOMO LVII, NÚM. 3, 2005, P. 379-424 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Geología e historia eruptiva de algunos de los grandes volcanes activos de México José Luis Macías Departamento de Vulcanología, Instituto de Geofísica, Universidad Nacional Autónoma de México, Del. Coyoacán, 04510, México D. F. [email protected] Resumen La mayor parte de los grandes volcanes de nuestro país se encuentran ubicados en la parte frontal de la Faja Volcánica Transmexicana y en otras zonas volcánicas aisladas. En este trabajo se consideraron algunos de los grandes volcanes, éstos son el volcán de Colima, Nevado de Toluca, Popocatépetl, Pico de Orizaba (Citlaltépetl) y Tacaná. También se incluyó al volcán Chichón debido a su erupción catastrófica de 1982. El edificio actual de estos volcanes, o parte de éste, se ha for- mado en tiempos relativamente recientes; en menos de 2 500 años el volcán de Colima, 16 500 el Pico de Orizaba, 23 000 el Popocatépetl, ~26 000 el Tacaná, y >50 000 el Nevado de Toluca. Los volcanes Colima, Popocatépetl, Pico de Orizaba y Tacaná se encuentran construidos al interior de antiguos cráteres originados por el colapso de edificios ancestrales. Los primeros tres representan los volcanes meridionales activos de cadenas volcánicas orientadas aproximadamente N-S. A pesar de que todos estos edificios volcánicos han sufrido el colapso del edificio volcánico, únicamente en el Pico de Orizaba se han realizado estudios de alteración hidrotermal y estabilidad de pendientes, indispensables para pronosticar las zonas potencialmente peligrosas en el futuro.
    [Show full text]
  • Diversity and Origin of the Central Mexican Alpine Flora
    diversity Article Diversity and Origin of the Central Mexican Alpine Flora Victor W. Steinmann 1, Libertad Arredondo-Amezcua 2, Rodrigo Alejandro Hernández-Cárdenas 3 and Yocupitzia Ramírez-Amezcua 2,* 1 Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Del. Sta. Rosa Jáuregui, Querétaro 76230, Mexico; [email protected] or [email protected] 2 Private Practice, Pátzcuaro, Michoacán 61600, Mexico; [email protected] 3 Herbario Metropolitano, División de Ciencias Biológicas y de la Salud, Departamento de Biología, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco #186, Colonia Vicentina, Iztapalapa, Ciudad de México 09340, Mexico; [email protected] * Correspondence: [email protected] Abstract: Alpine vegetation is scarce in central Mexico (≈150 km2) and occurs on the 11 highest peaks of the Trans-Mexican Volcanic Belt (TMVB). Timberline occurs at (3700) 3900 m, and at 4750 m vascular plants cease to exist. The alpine vascular flora comprises 237 species from 46 families and 130 genera. Asteraceae (44), Poaceae (42), and Caryophyllaceae (21) possess 45% of the species; none of the remaining families have more than 10 species. Four species are strict endemics, and eight others are near endemics. Thirteen species are restricted to alpine vegetation but also occur outside the study area. Seventy-seven species are endemic to Mexico, 35 of which are endemic to the TMVB. In terms of biogeography, the strongest affinities are with Central or South America. Fifteen species are also native to the Old World. Size of the alpine area seems to not be the determining factor for its floristic diversity. Instead, the time since and extent of the last volcanic activity, in addition to the distance from other alpine islands, appear to be important factors affecting diversity.
    [Show full text]
  • Genic and Morphological Differentiation in Mexican Pseudoeurycea (Caudata: Plethodontidae), with a Description of a New Species Author(S): James F
    Genic and Morphological Differentiation in Mexican Pseudoeurycea (Caudata: Plethodontidae), with a Description of a New Species Author(s): James F. Lynch, David B. Wake and Suh Y. Yang Source: Copeia, Vol. 1983, No. 4 (Dec. 14, 1983), pp. 884-894 Published by: American Society of Ichthyologists and Herpetologists (ASIH) Stable URL: http://www.jstor.org/stable/1445090 Accessed: 28-01-2016 00:13 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/1445090?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Allen Press and American Society of Ichthyologists and Herpetologists (ASIH) are collaborating with JSTOR to digitize, preserve and extend access to Copeia. http://www.jstor.org This content downloaded from 136.152.142.102 on Thu, 28 Jan 2016 00:13:21 UTC All use subject to JSTOR Terms and Conditions Copeia, 1983(4), pp. 884-894 Genic and Morphological Differentiation in Mexican Pseudoeurycea(Caudata: Plethodontidae), with a Description of a New Species JAMES F. LYNCH, DAVID B. WAKE AND SUH Y.
    [Show full text]
  • Geology and Eruptive History of Some Active Volcanoes of México
    spe422-06 50 pages Geological Society of America Special Paper 422 2007 Geology and eruptive history of some active volcanoes of México José Luis Macías* Departamento de Vulcanología, Instituto de Geofísica, Universidad Nacional Autónoma de México, Coyoacán 04510, México D.F. ABSTRACT Most of the largest volcanoes in México are located at the frontal part of the Trans-Mexican Volcanic Belt and in other isolated areas. This chapter considers some of these volcanoes: Colima, Nevado de Toluca, Popocatépetl, Pico de Orizaba (Citlaltépetl), and Tacaná. El Chichón volcano is also considered within this group because of its catastrophic eruption in 1982. The volcanic edifi ce of these volcanoes, or part of it, was constructed during the late Pleistocene or even during the Holo- cene: Colima 2500 yr ago, Pico de Orizaba (16,000 yr), Popocatépetl (23,000 yr), Tacaná (~26,000 yr), and Nevado de Toluca (>50,000). The modern cones of Colima, Popocatépetl, Pico de Orizaba, and Tacaná are built inside or beside the remains of older caldera structures left by the collapse of ancestral cones. Colima, Popocatépetl, and Pico de Orizaba represent the youngest volcanoes of nearly N-S volcanic chains. Despite the repetitive history of cone collapse of these volcanoes, only Pico de Orizaba has been subjected to hydrothermal alteration and slope stability studies crucial to understand future potential events of this nature. The magmas that feed these volcanoes have a general chemical composition that varies from andesitic (Colima and Tacaná), andesitic-dacitic (Nevado de Toluca, Popocatépetl, and Pico de Orizaba) to trachyandesitic (Chichón). These magmas are the result of several magmatic processes that include partial melting of the mantle, crustal assimilation, magma mixing, and fractional crystallization.
    [Show full text]
  • Región TEHUACÁN Y SIERRA NEGRA
    ACTUALIZACIÓN 2011 del Programa Regional DE DESARROLLO 2017 Región TEHUACÁN Y SIERRA NEGRA PROGRAMA REGIONAL DE DESARROLLO ACTUALIZACIÓN INTRODUCCIÓN 3 I. INSTRUMENTACIÓN DE LA PLANEACIÓN ESTATAL 4 1.1 Planeación estatal y alineación a los instrumentos federales 4 1.2 El Estado de Puebla en el contexto Regional 8 1.2.1 Infraestructura Productiva 8 1.2.2 Aspectos Económicos 8 1.2.3 Vocaciones y Potencialidades 8 II. FUNDAMENTOS PARA EL ORDENAMIENTO TERRITORIAL Y EL DESARROLLO REGIONAL 9 2.1 Medio Físico 9 2.1.1 Áreas Naturales Protegidas 9 2.1.2 Riesgos naturales en las regiones 10 2.2 Demografía y desarrollo social 12 2.2.1 Concentración y dispersión poblacional 12 2.2.1.1 Información estadística y territorial 12 2.2.1.2 Distribución de localidades por tamaño 12 2.2.1.3 Dispersión poblacional 14 2.2.1.4 Crecimiento urbano 16 2.2.1.5 Metropolización 17 2.2.2 Pobreza urbana 18 2.2.2.1 Grado de Rezago Social en zonas urbanas 18 2.2.3 Situación de Pobreza y Rezago Social 19 2.2.4 Zonas de Atención Prioritaria (ZAPs) Rural y Urbana 25 2.2.5 Cruzada Nacional Contra el Hambre 27 2.2.6 Desarrollo Humano 29 PROGRAMA REGIONAL DE DESARROLLO ACTUALIZACIÓN 2.2.7 Igualdad entre hombres y mujeres 33 2.3 Economía 36 2.3.1 Competitividad regional 36 2.3.2 Mejora Regulatoria 39 2.3.3 Infraestructura carretera 44 2.3.4 Urbanización regional 45 2.3.5 Turismo regional 46 2.3.6 Evaluación del Desempeño 47 ANEXOS Siglas y Acrónimos 50 Documentos Consultados 52 PROGRAMA REGIONAL DE DESARROLLO ACTUALIZACIÓN INTRODUCCIÓN n los procesos de planificación Desarrollo
    [Show full text]
  • Phylogeography of the Transvolcanic Bunchgrass Lizard (Sceloporus Bicanthalis) Across the Highlands of Southeastern Mexico
    bs_bs_banner Biological Journal of the Linnean Society, 2013, 110, 852–865. With 5 figures Phylogeography of the Trans-Volcanic bunchgrass lizard (Sceloporus bicanthalis) across the highlands of south-eastern Mexico ADAM D. LEACHÉ1*, JULIA A. PALACIOS2, VLADIMIR N. MININ2 and ROBERT W. BRYSON Jr1 1Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Box 351800, Seattle, WA 98195, USA 2Department of Statistics, University of Washington, Seattle, WA 98195-4322, USA Received 15 May 2013; revised 7 July 2013; accepted for publication 7 July 2013 We quantify the population divergence processes that shaped population genetic structure in the Trans-Volcanic bunchgrass lizard (Sceloporus bicanthalis) across the highlands of south-eastern Mexico. Multilocus genetic data from nine nuclear loci and mitochondrial (mt)DNA were used to estimate the population divergence history for 47 samples of S. bicanthalis. Bayesian clustering methods partitioned S. bicanthalis into three populations: (1) a southern population in Oaxaca and southern Puebla; (2) a population in western Puebla; and (3) a northern population with a broad distribution across Hidalgo, Puebla, and Veracruz. The multilocus nuclear data and mtDNA both supported a Late Pleistocene increase in effective population size, and the nuclear data revealed low levels of unidirectional gene flow from the widespread northern population into the southern and western populations. Populations of S. bicanthalis experienced different demographic histories during the Pleistocene, and phylogeographical patterns were similar to those observed in many co-distributed highland taxa. Although we recommend continuing to recognize S. bicanthalis as a single species, future research on the evolution of viviparity could gain novel insights by contrasting physiological and genomic patterns among the different populations located across the highlands of south-eastern Mexico.
    [Show full text]
  • Redalyc.Ocelot (Leopardus Pardalis) Distribution in the State of Puebla
    Therya E-ISSN: 2007-3364 [email protected] Asociación Mexicana de Mastozoología México Ramírez-Bravo, Osvaldo Eric; Bravo-Carrete, Emilio; Hernández-Santín, Cristina; Schinkel-Brault, Stephanie; Chris, Kinnear Ocelot (Leopardus pardalis) distribution in the state of Puebla, Central Mexico Therya, vol. 1, núm. 2, agosto, 2010, pp. 111-119 Asociación Mexicana de Mastozoología Baja California Sur, México Available in: http://www.redalyc.org/articulo.oa?id=402336260003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative THERYA, Agosto, 2010 Vol.1(2):111-120 DOI: 10.12933/therya-10-12 Ocelot (Leopardus pardalis) distribution in the state of Puebla, Central Mexico Osvaldo Eric Ramírez-Bravo1,2,*, Emilio Bravo-Carrete3 Cristina Hernández-Santín 1, Stephanie Schinkel-Brault1, Kinnear Chris2 Abstract Despite the fact that Puebla is in central Mexico and close to Mexico City, little is known about the felid species that inhabit the state. As part of our studies about the jaguar in Puebla, we are determining the distribution of ocelot (Leopardus pardalis) along the state. We conducted surveys among communities and placed camera traps in the field. We got ten reports of the species along the state, indicating the existence of different populations. One report corresponds to the area known as La Mixteca, which indicates a population shared between the states of Morelos, Puebla, and Guerrero and a possible corridor from Estado de Mexico to Veracruz. Most of the reports came from the Sierra Norte part of the Sierra Madre Oriental, which indicates an important corridor connecting populations in the northeastern states with those in the south.
    [Show full text]