Geochemistry of Volcanic Rocks from the Geysers Geothermal Area, California Coast Ranges
Lithos 87 (2006) 80–103 www.elsevier.com/locate/lithos Geochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges Axel K. Schmitt a,*, Rolf L. Romer b, James A. Stimac c aDepartment of Earth and Space Sciences, University of California, Los Angeles, 595 Charles Young Drive E, Los Angeles Ca 90095-1567, U.S.A. bGeoforschungszentrum Potsdam, Germany cPhilippine Geothermal, Inc., Makati, Philippines Received 1 May 2004; accepted 25 May 2005 Available online 1 August 2005 Abstract The Geysers geothermal reservoir in the California Coast Ranges is the world’s largest economically used geothermal system. Surface exposure of volcanic rocks and extensive drill penetration of a N300 km3 subsurface plutonic body (Geysers Plutonic Complex or GPC) that underlies the reservoir allow unique insights into the evolution of a volcanic–plutonic magma system. We present compositional data for major elements, trace elements, and Nd, Sr and Pb isotopes of late Pliocene to early Pleistocene lavas that are spatially related to the geothermal reservoir and cores from coeval subsurface plutonic rocks. Isotopic ratios of dacitic to rhyolitic lavas from Cobb Mountain, Pine Mountain and Tyler Valley, and core samples from the shallow microgranite phase of the GPC range between 0.70343–0.70596 (87Sr/ 86Sr), 0.512813–0.512626 (143Nd/ 144Nd), and 19.084– 19.189 (206Pb/ 204Pb). These compositions fall between values for two major isotopic end-members: (1) coeval basalt of Caldwell Pines that has compositional affinities to magmas extracted from a subcontinental mantle-wedge, and (2) regional crustal rocks equivalent to those of the Franciscan and Great Valley sequence.
[Show full text]