A Vision for Geophysics Instrumentation in Watershed Hydrological Research
Total Page:16
File Type:pdf, Size:1020Kb
A Vision for Geophysics Instrumentation in Watershed Hydrological Research A report prepared for the Consortium of Universities for the Advancement of Hydrologic Science, Inc. by D.A. Robinson, Stanford University A. Binley, Lancaster University N. Crook, Stanford University F.D. Day-Lewis, USGS T.P.A. Ferré, University of Arizona V.J.S. Grauch, USGS R. Knight, Stanford University M. Knoll, Boise State University V. Lakshmi, University of South Carolina R. Miller, Kansas Geological Survey J. Nyquist, Temple University L.Pellerin, Green Engineering K. Singha, Penn State University L. Slater, Rutgers University May 2006 Acknowledgements This material is based upon work supported by the National Science Foundation under Grants 03-26064 and 04-47287. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. The use of firm, trade and brand names in this report is for identification purposes only and does not constitute endorsement by CUAHSI, NSF, USGS, the U.S Government, or the authors and their respective institutions. We would like to acknowledge the reviews and discussions of this document provided by W.L. Cunningham, USGS, Reston, Dr. V. Labson, USGS, Denver, and B.D. Rodriguez, USGS, Denver. The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Government. All prices are given in USD amounts. Table of Contents Table of Figures ..........................................................................................................................iii Preface ...........................................................................................................................................v 1. Introduction ............................................................................................................................1 2. Subsurface Analysis of Watersheds using a Multi-Method, Cross-Scale Approach ....3 3. Regional, Sub-Watershed to Basin-Scale Remote Sensing and Airborne Survey .........4 3.1 Satellite-Based Active and Passive Microwave Remote Sensing .............................4 3.2 Airborne Electromagnetic Survey ...............................................................................6 3.3 Helicopter Electromagnetic (HEM) ...........................................................................7 3.4 Fixed-Wing Time Domain Electromagnetic (FWEM) ............................................7 3.5 Helicopter Time Domain Electromagnetic (HTEM) ..............................................7 3.6 Aeromagnetic Surveys ..................................................................................................9 4. Local, Catchment-to Sub-Watershed-Scale Electromagnetic Survey ...........................10 4.1 Electromagnetic Sounding Methods ........................................................................10 4.2 Time Domain Electromagnetic (TEM) ...................................................................11 4.3 Magneto Telluric (MT) /Audio Magneto Telluric (AMT) .....................................11 4.4 Electromagnetic Induction (EMI) Ground Conductivity Meters ........................12 4.5 Ground Penetrating Radar (Surface-based GPR) ...................................................14 GPR instruments ..........................................................................................................16 4.6 Electrical Resistivity Imaging (ERI) ..........................................................................17 Electrical Resistance Imaging Instrumentation ........................................................17 4.7 Induced Polarization Instruments (IP) .....................................................................19 Induced Polarization Instrumentation .......................................................................20 5. High Temporal Resolution Measurements at Point to Catchment ................................22 Scales ............................................................................................................................................22 5.1 Borehole Methods ERT/GPR ..................................................................................22 5.2 Dielectric Water Content Sensors .............................................................................23 Instrumentation ..............................................................................................................24 6. Advances in other Geophysical Techniques ......................................................................25 6.1 Seismic Methods ..........................................................................................................25 6.2 Uses of Ground-Based Gravimetry for Hydrologic Investigations ....................26 6.3 Magnetic Resonance Sounding ..................................................................................27 - i - 7. A Synergistic Approach to Geophysical Measurement and ...........................................28 Hydrological Modeling ..................................................................................................28 7.1 Geostatistical Approaches to Data Integration ......................................................28 7.2 Linking Hydrologic and Instrument Response Models .........................................29 7.3 Integrating Modeling and Measurement Approaches at the Watershed Scale ...30 8. Strategic Plan .........................................................................................................................32 8.1 Building Partnerships ..................................................................................................32 8.2 A Vision for a Measurement Facility ........................................................................33 Appendices .................................................................................................................................36 A. Table with survey logistics B. Table with hydrologic properties inferred from geophysical measurement C. Table with geophysical/hydrological scale comparison 9. References ..............................................................................................................................39 - ii - Table of Figures Figure 1. Conceptual diagram of spatial and temporal resolution scales ........................ 2 Figure 2. Example conceptual model of how EM geophysical measurements could be used at multiple scales to characterize a watershed. .......................................... 3 Figure 3. Array configuration for the RESOLVE frequency-domain EM system. .......... 7 Figure 4. The GEOTEM time-domain fixed-wing EM system. .................................... 7 Figure 5. The SkyTEM helicopter time-domain EM system. ........................................ 8 Figure 6. Thematic map showing elevation of low resistive Tertiary clay and delineation of a buried valley. ...................................................................................... 8 Figure 7. Mapping intrasedimentary faults with aeromagnetic data in the Albuquerque basin, Rio Grande rift (Grauch et al., 2001). ................................................................ 9 Figure 8. Map showing depth to good conductor map derived from 1 D inversion models of TEM data. .................................................................................................. 11 Figure 9. Schematic showing the StrataGem® AMT system, photo courtesy of Geometrics, Inc. .......................................................................................................... 12 Figure 10. Field mapping ground conductivity using a Dualem EMI sensor at the USDA - Reynolds Creek experimental watershed in Idaho. ........................................... 13 Figure 11. Bulk electrical conductivity of a catchment, zones of higher conductivity indicating locations of greater soil development. ....................................... 14 Figure 12. Noggin smart cart GPR, courtesy of Sensors and Software Inc. ................... 16 Figure 13. Example ERI system consisting of control unit, electrode cables and electrodes. ............................................................................................................ 18 Figure 14. Multi-electrode cable towed by boat with GPS positioning and example resistivity profile. ........................................................................................................ 19 Figure 15: (a) IP parameters as a function of surface area to pore volume (Sp) for a range of three artificial soils (data from (Slater et al. 2006) (b) Cole-Cole relaxation time constant () as a function of vertical hydraulic conductivity (K) for sandstone samples (data from Binley et al., 2005). ......................................................................... 20 - iii - Figure 16. (a) SIP Fuchs II base unit and fiber optic cable reels (b) Zonge GDP32 receiver .......................................................................................................... 21 Figure 17. Soil moisture sensors ................................................................................. 24 Figure 18. Interpreted high resolution, 12-fold CMP seismic reflection stacked section with inset VSP from Cherry Point, North Carolina.. ..................................................... 26 Figure 19. From Atkinson et al. (2002), Hypothetical relationship between model