Infiltration from the Pedon to Global Grid Scales: an Overview and Outlook for Land Surface Modeling

Total Page:16

File Type:pdf, Size:1020Kb

Infiltration from the Pedon to Global Grid Scales: an Overview and Outlook for Land Surface Modeling Published June 24, 2019 Reviews and Analyses Core Ideas Infiltration from the Pedon to Global • Land surface models (LSMs) show Grid Scales: An Overview and Outlook a large variety in describing and upscaling infiltration. for Land Surface Modeling • Soil structural effects on infiltration in LSMs are mostly neglected. Harry Vereecken, Lutz Weihermüller, Shmuel Assouline, • New soil databases may help to Jirka Šimůnek, Anne Verhoef, Michael Herbst, Nicole Archer, parameterize infiltration processes Binayak Mohanty, Carsten Montzka, Jan Vanderborght, in LSMs. Gianpaolo Balsamo, Michel Bechtold, Aaron Boone, Sarah Chadburn, Matthias Cuntz, Bertrand Decharme, Received 22 Oct. 2018. Agnès Ducharne, Michael Ek, Sebastien Garrigues, Accepted 16 Feb. 2019. Klaus Goergen, Joachim Ingwersen, Stefan Kollet, David M. Lawrence, Qian Li, Dani Or, Sean Swenson, Citation: Vereecken, H., L. Weihermüller, S. Philipp de Vrese, Robert Walko, Yihua Wu, Assouline, J. Šimůnek, A. Verhoef, M. Herbst, N. Archer, B. Mohanty, C. Montzka, J. Vander- and Yongkang Xue borght, G. Balsamo, M. Bechtold, A. Boone, S. Chadburn, M. Cuntz, B. Decharme, A. Infiltration in soils is a key process that partitions precipitation at the land sur- Ducharne, M. Ek, S. Garrigues, K. Goergen, J. face into surface runoff and water that enters the soil profile. We reviewed the Ingwersen, S. Kollet, D.M. Lawrence, Q. Li, D. basic principles of water infiltration in soils and we analyzed approaches com- Or, S. Swenson, P. de Vrese, R. Walko, Y. Wu, and Y. Xue. 2019. Infiltration from the pedon monly used in land surface models (LSMs) to quantify infiltration as well as its to global grid scales: An overview and out- numerical implementation and sensitivity to model parameters. We reviewed look for land surface modeling. Vadose Zone methods to upscale infiltration from the point to the field, hillslope, and grid cell J. 18:180191. doi:10.2136/vzj2018.10.0191 scales of LSMs. Despite the progress that has been made, upscaling of local-scale infiltration processes to the grid scale used in LSMs is still far from being treated rigorously. We still lack a consistent theoretical framework to predict effective Affiliations: H. Vereecken, L. Weihermüller, M. Herbst, C. Montzka, J. Vanderborght, K. fluxes and parameters that control infiltration in LSMs. Our analysis shows that Goergen, and S. Kollet, Agrosphere Institute there is a large variety of approaches used to estimate soil hydraulic properties. IBG-3, Forschungszentrum Jülich GmbH, Novel, highly resolved soil information at higher resolutions than the grid scale of 52425 Jülich, Germany; H. Vereecken, Inter- national Soil Modeling Consortium (ISMC), LSMs may help in better quantifying subgrid variability of key infiltration param- Forschungszentrum Jülich GmbH, 52425 eters. Currently, only a few LSMs consider the impact of soil structure on soil Jülich, Germany; S. Assouline, Dep. of Envi- hydraulic properties. Finally, we identified several processes not yet considered ronmental Physics and Irrigation, Institute of Soils, Water and Environment Sciences, A.R.O. in LSMs that are known to strongly influence infiltration. Especially, the impact Volcani Center, Bet Dagan, Israel; J. Šimůnek, of soil structure on infiltration requires further research. To tackle these chal- Dep. of Environmental Sciences, Univ. of Cali- lenges and integrate current knowledge on soil processes affecting infiltration fornia, Riverside, CA 92521; A. Verhoef, Dep. of Geography and Environmental Science, processes into LSMs, we advocate a stronger exchange and scientific interaction Univ. of Reading, Reading, RG6 6AB, UK; N. between the soil and the land surface modeling communities. Archer, British Geological Survey, The Lyell Centre, Edinburgh, EH14 4AP, Scotland; B. Abbreviations: BC, boundary condition; CLM, common land model; FTC, freeze–thaw cycle; GCM, global Mohanty, Dep. of Biological and Agricultural climate model; LSM, land surface model; pdf, probability density function; PDM, probability-distributed Engineering, Texas A&M Univ., College Sta- model; PTF, pedotransfer function; SWR, soil water repellency. tion, TX 77843; G. Balsamo, European Centre for Medium-Range Weather Forecasts, Rea- ding, RG2 9AX, UK; M. Bechtold, Dep. of Earth and Environmental Sciences and Dep. of Infiltration or water entry into the soil profile is a key process in the hydrological cycle. Computer Science, KU Leuven, 3001 Hever- lee, Belgium; A. Boone and B. Decharme, Its rate and dynamics affect the partitioning of precipitation at the land surface and deter- CNRM, UMR3589 (Météo-France, CNRS), Tou- mines the onset of ponding and, consequently, the formation of overland flow and runoff. louse, France; S. Chadburn, School of Earth Infiltration affects irrigation efficiency on managed lands and the resulting stored soil and Environment, Univ. of Leeds, Leeds, LS2 9JT, UK; S. Chadburn, Univ. of Exeter, water available to vegetation (e.g., Verhoef and Egea-Cegarra, 2013), overland flow and soil Exeter, EX4 4QE, UK; M. Cuntz, Univ. de Lor- erosion processes (e.g., Assouline and Ben-Hur, 2006; Garrote and Bras, 1995; Poesen et al., raine, INRA, AgroParisTech, UMR Silva, 54000 Nancy, France; A. Ducharne, Sorbonne Univ., 2003), groundwater recharge (e.g., Dahan et al., 2008), the exchange of water and energy CNRS, EPHE, UMR 7619 METIS, Paris, France; between the soil and atmosphere by controlling soil water content at the surface (Kim et al., (continued on next page) 2017; MacDonald et al., 2017), and with this the flux partitioning into latent and sensible heat flux with multiple atmospheric feedbacks (e.g., Keune et al., 2016; Seneviratne et al., © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND license 2010), stream flow and flooding events (Garrote and Bras, 1995), and various soil physi- (http://creativecommons.org/licenses/by-nc- nd/4.0/). cal processes such as the onset of landslides (Lehmann and Or, 2012) and soil mechanical Vadose Zone Journal | Advancing Critical Zone Science stress–strain behavior. The spatial distribution of infiltration rates is affected by soil type, M. Ek, Environmental Modeling Center, Natio- local topography, and attributes of surface cover. Infiltration feedbacks have been shown to nal Centers for Environmental Prediction, College Park, MD 20740; S. Garrigues, French drive the formation of vegetation patterns. Infiltration rates are crucial inputs to the design National Institute for Agricultural Research of any irrigation system and many soil and water conservation practices. The significance (INRA) CESBIO, Toulouse, France, and Centre for Ecology and Hydrology, CEH, Wallingford, of infiltration has made it a subject of studies in many domains ranging from hydrology UK; K. Goergen, Centre for High-Performance to agricultural, environmental, and civil engineering. Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, 52425 Jülich, Germany; J. Even at the single profile scale, infiltration exhibits strong dynamics that are depen- Ingwersen, Institute of Soil Science and Land dent on soil properties, rainfall characteristics, wetting rates, vegetation cover and type, soil Evaluation, Biogeophysics, Univ. Hohenheim, 70599 Stuttgart, Germany; D.M. Lawrence, and crop management, and initial and boundary conditions within the soil flow domain. National Center for Atmospheric Research, Based on the definition of Hillel (1980) and Brutsaert (2005), infiltration is defined as Boulder, CO 80305; Q. Li, Center for Monsoon “the entry of water into the soil surface and its subsequent movement through the soil Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, profile.” The sources of liquid water for infiltration include direct precipitation (rainfall, China; D. Or, ETH Zurich, Institut für Biogeo- dewfall, and snowmelt), leaf drip and stem flow, irrigation, or runoff that was routed over chemie und Schadstoffdynamik, 8092 Zürich, Switzerland; S. Swenson, Climate and Global the land surface and reinfiltrates (a process termed run-on). A detailed understanding of Dynamics Lab., Terrestrial Sciences, NCAR, the primary controls on infiltration rates and the onset of ponding with subsequent runoff, Boulder, CO 80307; P. de Vrese, Max-Planck Institut for Meteorology, Land in the Earth and their translation into model equations, is of great importance at all scales. The accu- System, 20146 Hamburg, Germany; R. Walko, rate process representation of infiltration is also essential for crop water use studies, the Rosenstiel School of Marine and Atmospheric Science, Univ. of Miami, Miami, FL 33149; Y. design of irrigation systems, and the optimal management of water resources. Different Wu, Environmental Modeling Center, Natio- approaches have thus been developed over the past decades to provide quantitative tools nal Centers for Environmental Prediction and able to describe and predict infiltration into porous media such as soils, ranging from I.M. System Group at NCEP, College Park, MD 20740; Y. Xue, Dep. of Atmospheric and Ocea- empirical expressions to analytical and numerical solutions of the basic flow equations. nic Sciences and Dep. of Geography, Univ. of Infiltration dynamics are determined by soil properties (hydraulic conductivity, sorp- California, Los Angeles, CA 90095. *Corres- ponding author ([email protected]). tivity), the hydraulic gradients that drive flow, and initial and boundary conditions (Philip, 1957). Depending on the initial soil water content
Recommended publications
  • DOGAMI GMS-5, Geology of the Powers Quadrangle, Oregon
    o thickness of about 1,500 feet. The southern outcrop terminates against the Sixes River fault, indicat­ Intermediate intrusive rocks, mainly diorite and quartz diorite, intrude the Gal ice Formation ing that the last movement involved down-faulting along the north side. south of the Sixes River fault. One stock, covering nearly 2 square miles, is bisected by Benson Creek, Megafossils are present in some of the bedded basal sandstone. Forominifera examined by W. W. and numerous small dikes are present nearby. One of the largest dikes extends from Rusty Creek eastward Rau (Baldwin, 1965) collected a short distance west of the mouth of Big Creek along the Sixes River were through the Middle Fork of the Sixes River into Salman Mountain. These intrusive racks are described by assigned a middle Eocene age . A middle Eocene microfauna in beds of similar age near Powers was ex­ Lund and Baldwin ( 1969) and are correlated with the Pearse Peak diorite of Koch ( 1966). The Pearse amined by Thoms (Born, 1963), and another outcrop along Fourmile Creek to the north contained a mid­ Peak body, which intrudes the Ga lice Formation along Elk River to the south, is described by Koch (1966, GEOLOGICAL MAP SERIES dle Eocene molluscan fauna (Allen and Baldwin, 1944). Phillips (1968) also collected o middle Eocene p. 51-52) . fauna in middle Umpqua strata along Fourmile Creek, o short distance north of the mapped area. Lode gold deposits reported by Brooks and Ramp ( 1968) in the South Fork of the Sixes drainage and on Rusty Butte are apparently associated with the dioritic intrusive bodies.
    [Show full text]
  • Impact of Water-Level Variations on Slope Stability
    ISSN: 1402-1757 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SIS Department of Civil, Environmental and Natural Resources Engineering1 Division of Mining and Geotechnical Engineering Jens Johansson Impact of Johansson Jens ISSN 1402-1757 Impact of Water-Level Variations ISBN 978-91-7439-958-5 (print) ISBN 978-91-7439-959-2 (pdf) on Slope Stability Luleå University of Technology 2014 Water-Level Variations on Slope Stability Variations Water-Level Jens Johansson LICENTIATE THESIS Impact of Water-Level Variations on Slope Stability Jens M. A. Johansson Luleå University of Technology Department of Civil, Environmental and Natural Resources Engineering Division of Mining and Geotechnical Engineering Printed by Luleå University of Technology, Graphic Production 2014 ISSN 1402-1757 ISBN 978-91-7439-958-5 (print) ISBN 978-91-7439-959-2 (pdf) Luleå 2014 www.ltu.se Preface PREFACE This work has been carried out at the Division of Mining and Geotechnical Engineering at the Department of Civil, Environmental and Natural Resources, at Luleå University of Technology. The research has been supported by the Swedish Hydropower Centre, SVC; established by the Swedish Energy Agency, Elforsk and Svenska Kraftnät together with Luleå University of Technology, The Royal Institute of Technology, Chalmers University of Technology and Uppsala University. I would like to thank Professor Sven Knutsson and Dr. Tommy Edeskär for their support and supervision. I also want to thank all my colleagues and friends at the university for contributing to pleasant working days. Jens Johansson, June 2014 i Impact of water-level variations on slope stability ii Abstract ABSTRACT Waterfront-soil slopes are exposed to water-level fluctuations originating from either natural sources, e.g.
    [Show full text]
  • Fast Hydraulic Erosion Simulation and Visualization on GPU
    Fast Hydraulic Erosion Simulation and Visualization on GPU Xing Mei Philippe Decaudin Bao-Gang Hu CASIA-LIAMA/NLPR, Beijing, China INRIA-Evasion, Grenoble, France CASIA-LIAMA/NLPR, Beijing, China xmei@(NOSPAM)nlpr.ia.ac.cn & CASIA-LIAMA, Beijing, China hubg@(NOSPAM)nlpr.ia.ac.cn philippe.decaudin@(NOSPAM)imag.fr Figure 1. Illustration of our erosion simulation on a ”PG”-shaped mountain. (a) The initial terrain. (b) Terrain is being eroded by rainfall. The dissolved soil (denoted by green color) is transported by the water flow (blue). (c) The eroded terrain and the deposited sediment (red) after the rainfall and during the evaporation. Abstract 1. Introduction Natural mountains and valleys are gradually eroded by Natural terrains exhibit a lot of complex shapes such rainfall and river flows. Physically-based modeling of this as valleys, ridges, sand ripples and crests. These geomor- complex phenomenon is a major concern in producing re- phological structures are mostly determined by the erosion alistic synthesized terrains. However, despite some recent phenomenon: soil is dissolved and transported by the wa- improvements, existing algorithms are still computationally ter flow, sand is carried away by the wind, and stones are expensive, leading to a time-consuming process fairly im- decomposed into small blocks by the temperature. Erosion practical for terrain designers and 3D artists. simulation has always been an important research topic in landscape design [5, 8], since it greatly enhances the realism In this paper, we present a new method to model the hy- of the synthesized terrains. draulic erosion phenomenon which runs at interactive rates We focus on hydraulic erosion, which is the predominant on today’s computers.
    [Show full text]
  • State Standard for Hydrologic Modeling Guidelines
    ARIZONA DEPARTMENT OF WATER RESOURCES FLOOD MITIGATION SECTION State Standard For Hydrologic Modeling Guidelines Under the authority outlined in ARS 48-3605(A) the Director of the Arizona Department of Water Resources establishes the following standard for Hydrologic Modeling Guidelines in Arizona. State Standard for Hydrologic Modeling, or “guidelines for the experienced modeler”, has been developed to address hydrologic conditions for a variety of statewide watersheds. Included are problems and situations identified by the State Standard Work Group (SSWG) and floodplain managers. The intended audience is statewide; engineers, professionals and Floodplain Administrators. The following topics are included: • Hydrologic Model comparison and recommendation • Guidelines and parameters • Model application for specific situations, and associated hydrologic parameters • Precipitation values (NOAA 14) • Storm duration • Unique conditions, such as wildfire burn, overgrazing, logging, drought, rapid snowmelt, urbanization. The State Standard includes examples addressing the above key issues. This requirement is effective August, 2007. Copies of this State Standard and the State Standard Technical Supplement can be obtained by contacting the Department’s Water Engineering Section at (602) 771-8652. SS10-07 1 August 2007 TABLE OF CONTENTS 1.0 Introduction.......................................................................................................5 1.1 Purpose and Background .......................................................................5
    [Show full text]
  • Low Tunnels Reduce Irrigation Water Needs and Increase Growth, Yield
    HORTSCIENCE 54(3):470–475. 2019. https://doi.org/10.21273/HORTSCI13568-18 mental conditions and plant stage (size). Increased ET results in increased crop water needs. Factors influencing ET are SR, crop Low Tunnels Reduce Irrigation Water growth stage, daylength, air temperature, rel- ative humidity (RH), and wind speed (Allen Needs and Increase Growth, Yield, and et al., 1998; Jensen and Allen, 2016; Zotarelli et al., 2010). Therefore, fully grown plants Water-use Efficiency in Brussels demand larger amounts of water, especially in warm, sunny, and windy days (Abdrabbo et al., 2010). Under LT, however, rowcover Sprouts Production reduces direct sunlight and blocks wind, which Tej P. Acharya1, Gregory E. Welbaum, and Ramon A. Arancibia2 reduces ET even at higher temperatures School of Plant and Environmental Sciences, 330 Smyth Hall, Virginia Tech, (Arancibia, 2009, 2012). Therefore, reducing ET in crops grown under LTs may reduce Blacksburg, VA 24061 irrigation requirements and improve WUE. Additional index words. rowcover, temperature, solar radiation, evapotranspiration The use of LT can be beneficial to extend the harvest season of brussels sprouts (Bras- Abstract. Farmers use low tunnels (LTs) covered with spunbonded fabric to protect sica oleracea L. Group Gemmifera). Brussels warm-season vegetable crops against cold temperatures and extend the growing season. sprout is a cool season, frost-tolerant vegeta- Cool season vegetable crops may also benefit from LTs by enhancing vegetative growth ble crop from the family Brassicaceae. It is an and development. This study investigated the effect of the microenvironmental condi- important source of dietary fiber, vitamins tions under LTs on brussels sprouts growth and production as well as water re- (A, C, and K), calcium (Ca), iron (Fe), quirements and use efficiency in comparison with those in open fields.
    [Show full text]
  • Redalyc.New Technologies in Groundwater Exploration. Surface
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Yaramanci, U. New technologies in groundwater exploration. Surface Nuclear Magnetic Resonance Geologica Acta: an international earth science journal, vol. 2, núm. 2, 2004, pp. 109-120 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50520203 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.2, Nº2, 2004, 109-120 Available online at www.geologica-acta.com New technologies in groundwater exploration. Surface Nuclear Magnetic Resonance U. YARAMANCI Technical University of Berlin, Department of Applied Geophysics Ackerstr.71-76, 13355 Berlin, Germany. E-mail: [email protected] ABSTRACT As groundwater becomes increasingly important for living and environment, techniques are asked for an improved exploration. The demand is not only to detect new groundwater resources but also to protect them. Geophysical techniques are the key to find groundwater. Combination of geophysical measurements with bore- holes and borehole measurements help to describe groundwater systems and their dynamics. There are a num- ber of geophysical techniques based on the principles of geoelectrics, electromagnetics, seismics, gravity and magnetics, which are used in exploration of geological structures in particular for the purpose of discovering georesources. The special geological setting of groundwater systems, i.e. structure and material, makes it neces- sary to adopt and modify existing geophysical techniques.
    [Show full text]
  • Natural Drainage Basins As Fundamental Units for Mine Closure Planning: Aurora and Pastor I Quarries
    Natural Drainage Basins as Fundamental Units for Mine Closure Planning: Aurora and Pastor I Quarries Cristina Martín-Moreno1, María Tejedor1, José Martín1, José Nicolau2, Ernest Bladé3, Sara Nyssen1, Miguel Lalaguna2, Alejandro de Lis1, Ivón Cermeño-Martín1 and José Gómez4 1. Faculty of Geological Sciences, Universidad Complutense de Madrid, Spain 2. Polytechnic School, Universidad de Zaragoza, Spain 3. Institut FLUMEN, Universitat Politècnica de Catalunya, Spain 4. Fábrica de Alcanar, Cemex España ABSTRACT The vast majority of the Earth’s ice-free land surface has been shaped by fluvial and related slope geomorphic processes. Drainage basins are consequently the most common land surface organization units. Mining operations disrupt this efficient surface structure. Therefore, mine restoration lacking stable drainage basins and networks, “blended into and complementing the drainage pattern of the surrounding terrain” (in the sense of SMCRA 1977), will be always limited. The pre-mine drainage characteristics cannot be replicated, because mining creates irreversible changes in earth physical properties and volumes. However, functional drainage basins and networks, adapted to the new earth material properties, can and should be restored. Dominant current mine restoration practice, typically, either lacks a drainage network or has a deficient, non-natural, drainage design. Extensive literature provides evidence that this is a common reason for mined land reclamation failure. These conventional drainage engineered solutions are not reliable in the long term without guaranteed constant maintenance. Additionally, conventional landform design has low ecological and visual integration with the adjoining landscapes, and is becoming rejected by public and regulators, worldwide. For these reasons, fluvial geomorphic restoration, with a drainage basin approach, is receiving enormous attention.
    [Show full text]
  • Statistical Control of Processes Aplied for Peanut Mechanical Digging In
    Journal of the Brazilian Association of Agricultural Engineering ISSN: 1809-4430 (on-line) STATISTICAL CONTROL OF PROCESSES APLIED FOR PEANUT MECHANICAL DIGGING IN SOIL TEXTURAL CLASSES Doi:http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n2p315-322/2017 CRISTIANO ZERBATO1*, CARLOS E. A. FURLANI2, ROUVERSON P. DA SILVA2, MURILO A. VOLTARELLI3, ADÃO F. DOS SANTOS2 1*Corresponding author. Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias/ Jaboticabal - SP, Brasil. E-mail: [email protected] ABSTRACT:Thedigging of peanut, which has the pod production in the subsurface, is directly affected by soil conditions, physical or environmental characteristics, at the time of operation and may be the cause of unwanted losses. Therefore, the quality of the operation is very important for minimizing these losses. Thus, this study aimed to evaluate the quality of mechanizeddiggingoperation of peanut according to three soil textural classes(Sandy, Medium and Loamy) and their water content conditions at operation through statistical process control. The experiment was conducted at three locations in the state of São Paulo, Brazil, under sampling scheme arranged in tracks and 40 sampling points for each textural class of soil, using the mechanical digging variables as indicators of quality. We found that the mechanized digging operation in Sandy soil was the most critical, just meeting the specifications of quality indicators, reflecting higher losses and lower quality of the operation. Medium soil showed at the digginggood and homogeneous conditions in relation to water content in soil and pods, and because it has favorable characteristics it obtained the lower total losses and higher quality of operation.
    [Show full text]
  • Hydraulic Erosion of Soil and Terrain Atira Odhner, Joseph Fleming 2009 Abstract
    Hydraulic Erosion of Soil and Terrain Atira Odhner, Joseph Fleming 2009 Abstract We have developed an algorithm for hard and soft water-based terrain erosion. Additionally, we have added a rain generation into the simulator. The algorithm is based upon fluid simulation, but is simplified, while still preserving the fluid motion effects. Introduction Our goal is to design an algorithm that generates water-eroded terrain quickly for the purposes of artistic productions, rather than scientific study. We wish to simulate the effects of rivers and streams, taking into account erosion, transportation, and sedimentation. Other algorithms take into account full fluid simulation, but we wished to obtain similar results by using a less-costly yet water- based erosion algorithm. Previous Work There are many examples of previous work on the subject of erosion, as it is important for both the graphics community and the environmental conservation community. We have chosen a few that are both relevant to the our algorithm, and demonstrate natural and atmospheric effects related to our algorithm. Since there are so many similar works (often repeating themselves), these studies are introduced by relevance, rather than by year. In 2005, Beneš and Arriaga [1] proposed a method for generating table mountains. Table mountains are desert geological structures that are very narrow, yet water-based erosion; plateaus with almost vertical cliff walls. These mountains form through mostly thermal erosion rather than by; rock that is exposed deteriorates. For this reason, table mountains are found in desert environments. The algorithm in this paper is not water-based, but it relates to the erosion of river banks.
    [Show full text]
  • Tracking Rainfall Impulses Through Progressively Larger Drainage Basins in Steep Forested Terrain
    Tracking rainfall impulses through progressively larger drainage basins in steep forested terrain ROBERT R. ZIEMER & RAYMOND M. RICE USDA Forest Service,Pacific Southwest Forest and Range Experiment Station, Arcata, California 95521, USA ABSTRACT The precision of timing devices in modern electronic data loggers makes it possible to study the routing of water through small drainage basins having rapid responses to hydrologic impulses. Storm hyetographs were measured using digital. tipping bucket raingauges and their routing was observed at headwater piezometers located mid-slope, above a swale, and near the swale. Downslope, flow was recorded from naturally occurring soil pipes draining the 0.8-ha swale, Progressing downstream from the swale, streamflow was measured at stations gauging nested basins of 16, 156, 217, and 383 ha. Peak lag time significantly (p = 0.035) increased downstream. Peak unitareadischarge decreased downstream, but the relationship was not statistically significant (p = 0.456). The processes involved in the delivery of rainfall from hillsides, to swales, and through progessively larger stream channels in steep forested watersheds are not fully understood. Most hydrologic concepts concerning the routing of flood hydrographs have developed from observations on large rivers. It is usually assumed that downstream hydrographs are lagged in time and flattened to produce later peaks and smaller unit area peak discharges (Chow, 1964). There are few reports of hydrograph routing in small, steep upland watersheds. Researchers working in steep forested watersheds generally agree that classic Hortonian overland flow (Horton, 1933) rarely occurs because the infiltration rate of forest soils usually exceeds precipitation rates. Despite several studies conducted in the past 20 years,the pathways of muting rainfall into and through hillslope soils in forested basins remain poorly understood.
    [Show full text]
  • Methods to Monitor Soil Moisture
    A3600-02 UNDERSTANDING CROP IRRIGATION Methods to Monitor Soil Moisture John Panuska, Scott Sanford and Astrid Newenhouse Advance ments in soil moisture monitoring technology major challenge facing Wisconsin growers is the need to conserve and protect natural make it a cost- resources amid increasing food demand, rising production costs and climate extremes. effective risk Growers need to use every opportunity possible to optimize production efficiency to management address these and other challenges and maintain yields. Water stress is one of several Afactors that can reduce crop yield and quality. Keeping the proper amount of water available in tool. the root zone is essential to any successful crop production operation. Irrigation has become an increasingly important risk management tool for growers. An understanding of soil moisture management is key for growers to make irrigation management decisions. The recommended approach for optimal root zone soil water management includes irrigation water management (scheduling) and soil moisture monitoring. Recent advancements in soil moisture monitoring technology make it a cost effective risk management tool. Types of equipment There are several aspects of soil moisture monitoring equipment: configuration, measurement science, and data management. The advantages and limitations along with specific equipment examples of each aspect are presented and discussed in this publication. Sensor configuration Figure 1 Figure 2 Portable soil moisture sensor Stationary moisture sensors Soil moisture sensors measure the amount of water in the soil. They are either stationary at fixed locations and depths or portable as handheld Francisco Arriaga Francisco probes. With a portable sensor (Figure 1) you can take measurements at several locations, but you may need to dig a hole to get readings deeper Courtesy of Spectrum Technologies, Inc.
    [Show full text]
  • A Method of Watershed Delineation for Flat Terrain Using Sentinel-2A Imagery and DEM: a Case Study of the Taihu Basin
    International Journal of Geo-Information Article A Method of Watershed Delineation for Flat Terrain Using Sentinel-2A Imagery and DEM: A Case Study of the Taihu Basin Leilei Li 1,2,*, Jintao Yang 2,3 and Jin Wu 2,3 1 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 2 University of Chinese Academy of Sciences, Beijing 100039, China; [email protected] (J.Y.); [email protected] (J.W.) 3 State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China * Correspondence: [email protected]; Tel.: +86-18911719037 Received: 4 September 2019; Accepted: 24 November 2019; Published: 26 November 2019 Abstract: Accurate watershed delineation is a precondition for runoff and water quality simulation. Traditional digital elevation model (DEM) may not generate realistic drainage networks due to large depressions and subtle elevation differences in local-scale plains. In this study, we propose a new method for solving the problem of watershed delineation, using the Taihu Basin as a case study. Rivers, lakes, and reservoirs were obtained from Sentinel-2A images with the Canny algorithm on Google Earth Engine (GEE), rather than from DEM, to compose the drainage network. Catchments were delineated by modifying the flow direction of rivers, lakes, reservoirs, and overland flow, instead of using DEM values. A watershed was divided into the following three types: Lake, reservoir, and overland catchment. A total of 2291 river segments, seven lakes, eight reservoirs, and 2306 subwatersheds were retained in this study.
    [Show full text]