Safe Development of Nuclear Power Technologies in the Arctic: Prospects and Approaches*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Powered Icebreaker
IOP Conference Series: Earth and Environmental Science PAPER • OPEN ACCESS Conceptual design and technical requirements analysis of nuclear- powered icebreaker To cite this article: Hu Yang et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 781 042067 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.33.22 on 24/09/2021 at 20:02 5th International Symposium on Resource Exploration and Environmental Science IOP Publishing IOP Conf. Series: Earth and Environmental Science 781 (2021) 042067 doi:10.1088/1755-1315/781/4/042067 Conceptual design and technical requirements analysis of nuclear-powered icebreaker Hu Yang 1, Jianbo Rao 1 and Chenghua Zhu 2, * 1 Wuhan Institute of Shipbuilding Technology, Wuhan 430000, China 2 Wuhan Second Ship Design and Research Institute, Wuhan 430000, China *Corresponding author e-mail: [email protected] Abstract. As the Arctic’s strategic position has become increasingly prominent, China’s existing icebreaker fleet has been unable to meet the growing demand for polar affairs such as polar scientific research, Arctic shipping, and polar emergency. From the perspective of route planning, the marine environmental conditions faced by nuclear- powered icebreakers have been sorted out. The research status of domestic nuclear power plant, the selection and design of nuclear power propulsion plant and the main technical requirements were put forward. Finally, the overall plan design was carried out from the aspects of general layout, main dimensions, shaft power, -
Significant Incidents in Nuclear Fuel Cycle Facilities
IAEA-TECDOC-867 Significant incidents in nuclear fuel cycle INTERNATIONAL ATOMIC ENERGY AGENCY The IAEA does not normally maintain stocks of reports in this series. However, microfiche copie f thesso e reportobtainee b n sca d from INIS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria Orders should be accompanied by prepayment of Austrian Schillings 100, in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. The originating Section of this publication in the IAEA was: Nuclear Fuel Cycle and Materials Section International Atomic Energy aoiicy A Wagramerstrasse 5 0 10 P.Ox Bo . A-1400 Vienna, Austria SIGNIFICANT INCIDENT NUCLEASN I R FUEL CYCLE FACILITIES IAEA, VIENNA, 1996 IAEA-TECDOC-867 ISSN 1011-4289 ©IAEA, 1996 Printe IAEe th AustriAn y i d b a March 1996 FOREWORD significano Tw t accidents have occurre histore th n di f nuclea yo r power, namely t Threa , e Mile Islan Chernobyld dan orden I . preveno rt t such accidents, causes were investigate actiond dan s were taken r exampleFo . , reporting systems were establishe accumulato dt disseminatd ean e information on accidents such as INES (International Nuclear Event Scale) and IRS (Incident Reporting System). Operators of nuclear power plants also established an information system to share incident information. The purpose of INES is to facilitate prompt communication between the nuclear community, the media and the public. The purpose of IRS is to analyse causes of significant incidents. Those systems serve to promote safety culture in nuclear power plants. -
Russia's Nuclear Icebreaker Fleet
Science and Global Security, 14:25–31, 2006 Copyright C Taylor & Francis Group, LLC ISSN: 0892-9882 print / 1547-7800 online DOI: 10.1080/08929880600620559 Russia’s Nuclear Icebreaker Fleet Oleg Bukharin Garrett Park, MD, USA Nuclear icebreakers remain important for the economic survival of Russia’s Arctic re- gions and are a central element of the Northern Sea Route development strategy.Reactor life extension activities are critical to sustaining the nuclear fleet, as several of the cur- rently operated nuclear icebreakers are reaching the end of design service life. Russia is also finishing a new icebreaker and is planning to build additional nuclear ships within the next 10–15 years. Nuclear icebreaker reactors are fueled with highly-enriched ura- nium (HEU), which has to be reliably protected against theft and diversion. NORTHERN SEA ROUTE Soviet nuclear icebreaker technology was a spinoff of the nuclear submarine program. It was a useful demonstration of the civilian benefits of nuclear propul- sion. It also was seen as an important element of the national strategy to develop Russia’s Arctic regions, a vast stretch of land rich in natural resources. Historically, the development of the Russian Arctic has been closely linked to the development of the Northern Sea Route (in Russian, Severny Morskoi Put’ or Sevmorput’), which was established by the Soviet Union in the 1930s. The route connects Russia’s Atlantic and Pacific ports and has been in regular use since World War II. It is open for navigation from June to November and relies on extensive infrastructure, including the fleet of icebreakers and ice- class cargo ships, aerial reconnaissance, meteorological stations, navigational aids, and port facilities. -
Atomic Icebreakers of “Taimyr” Type: Propulsion Capacity – 32 MW; Propulsion Capacity – 35 MW; Water Displacement – 19240 T
ROSATOMFLOT 2010 Summer-Autumn Transit Voyages Russian Atomic Fleet First Atomic Icebreaker “Lenin” - 03.12.1959 Atomic Icebreakers of “Taimyr” type: Propulsion Capacity – 32 MW; Propulsion Capacity – 35 MW; Water displacement – 19240 t. Water displacement 21000 t; i/b “Taimyr” – 30.06.1989 i/b “Yaygach” – 25.07.1990 Atomic icebreakers of “Arktika” type: Propulsion Capacity – 54 MW; Water displacement – 23000 t; Atomic container carrier i/b “Arktika” – 25.04.1975 “Sevmorput” – 30.12.1988 i/b “Sibir” – 28.12.1978 Propulsion Capacity – 32,5 MW; i/b “Rossia” – 21.12.1985 Water displacement – 61000 t; i/b “Sovetsky Soyuz” – 29.12.1989 Deadweight – 33900 t. i/b “Yamal” – 28.10.1992 i/b “50 Let Pobedy” – 23.03.2007 ROSATOMFLOT The Fleet On-shore Infrastructure 1308 employees 714 employees Atomic Fleet Special Vessels 4 special 6 atomic Decommissioned vessels Decommissioned icebreakers Atomic Container Carrier Sevmorput 4 i/b of Arktika mv Lepse type i/b Lenin mv Volodarsky i/b Sibir 2 i/b of Taimyr type i/b Arktika On-shore works: • base for the atomic icebreaking fleet; Atomic fleet has 16 vessels: • full complex of ship repair; Nuclear powered vessels - 10 • nuclear fuel handling; Atomic icebreakers - 9 • radioactive wastes handling. Atomic container carrier - 1 Special vessels - 6 The summer-autumn period of 2010 was marked by a number shipping operations which involved atomic icebreakers under operation of Rosatomflot. For the first time in the history of shipping a tanker of a 100 000 tons deadweight was piloted along the Northern Sea Route. Tanker SCF-Baltica (Aframax) under the flag of Liberia of 117 000 t deadweight and ice-class Arc 5 loaded 70 thousand tons of gas condensate and left the port of Murmansk (Russia) on 14 August. -
EURASIA States Continue to Invest in Russian Energy
EURASIA States Continue to Invest in Russian Energy OE Watch Commentary: The Arctic LNG 2 project is located on the eastern side of the Gulf of Ob-an extension of the Arctic Kara Sea. It is opposite Novatek’s “Under the terms of the deal, Total buys original Arctic LNG project designed to exploit the vast LNG fields of the Yamal 10% in Arctic LNG 2 and has an option to (Gydan) Peninsula as the accompanying excerpted article from Interfax reports. Total is a major energy giant based in France, while Mitsubishi of Japan, Kogas increase its stake to 15% if Novatek reduces of South Korea, Nuovo of Italy and Saudi Arabia have also been in talks with its participation interest below 60%.” Novatek. End OE Watch Commentary (Grau) Source: “Novatek closes sale of 10% stake in Arctic LNG 2 to Total,” Interfax, 7 March 2019. https://www.interfax.com The Arctic LNG 2 project involves building three LNG trains at 6.6 million tons per annum each, using gravity-based structure (GBS) platforms. [An “LNG train” is a liquefied natural gas plant’s liquefaction and purification facility. In order to transport LNG from one country to another, its volume has to be dramatically reduced. To do this, the gas must be liquefied by refrigeration to less than -161 °C. This refrigeration process is conducted in multiple units arranged sequentially-like a train.] The project is based on the hydrocarbon resources of the Utrennoye field on the Gydan Peninsula. The final investment decision on the project is expected to be made in the second half of 2019, and production at the first train of the plant is scheduled to start in 2023. -
The Russian Northern Fleet Sources of Radioactive Contamination
NO9600025 Bellona Report Volume 2:1996 NEI-NO--726 \ Sources of Radioactive contamination Thomas Nilsen Igor Kudrik Alexandr Nikitin BELLONA V .., I! V: NO9600025 Bellona Report Volume 2:1996 The Russian Northern Fleet Sources of Radioactive contamination Thomas Nilsen Igor Kudrik Alexandr Nikitin 2 C 1 0 1 The publication of this report is sponsored by: Stiftelsen Fritt Ord/Foundation for Freedom of Expression (Main contributor) Contributors: Norsk Hydro a.s. Petrochemicals Division NORSAS, Norwegian Resource Centre for Waste Aker ASA Management and Recycling Chemical Workers Union of Norway Norsk Sivilingeni0rers Forening Norwegian Seafood Export Council Norges ingeni0rorganisasjon (NITO) FESIL AS Green Sea Operations AS Norwegian Society of Engineers UNI STOREBRAND Confederation of Norwegian Business and Industry AGAAS WASA Forsiikring (Stockholm) OZO Hotwater A/S Norwegian Fishermen's Association Energiforsyningens Fellesorganisasjon EnFO Norwegian Federation of Oilworkers' Trade Union Store Norske Spitsbergen Kullkompani AS Norwegian Polar Institute Svalbard Samfunnsdrift AS Odda Smelteverk Norzink AS Published by: The Bellona Foundation Norway: P.O. Box 2141, Griinerl0kka N-0505 OSLO, Norway. E-mail: [email protected] Russia: Brussels: USA Russia Bellona Europa Bellona USA 183038 Murmansk 142-144 Avenue de Tervueren 310 D Street NE P.O. Box 4310 B-1150Bruxelles Washington, DC 20002 Bellona Russia Belgium USA E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] URL: Photos: Copying permitted when source is http://www.grida.no/ngo/bellona/ John Berg (archive), Thorbj0rn Bj0r- stated. kli, Per Stale Bugjerde, Nils B0hmer, ISBN 82-993138-5-6 The Norwegian Defence, Frederic Comments to this report are welco- ISSN 0806-3451 Hauge, Aleksej Klimov, Igor Kudrik, med. -
Nuclear Reactors in Arctic Russia
NUCLEAR REACTORS IN ARCTIC RUSSIA Scenario 2035 The nuclearification of Russian Arctic territories is by Moscow given highest priority for development in shipping, infrastructure and exploration of natural resources. Additionally, the number of navy military reactors in the north will increase substantially over the next 15 years. This scenario paper gives an overview of the situation. The paper is part of the Barents Observer’s analytical popular science studies on developments in the Euro-Arctic Region. Thomas Nilsen June 2019 June 2019 The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 1 June 2019 Published by: The Independent Barents Observer Address: Storgata 5, 9900 Kirkenes, Norway E-mail: [email protected] thebarentsobserver.com (English, Russian and Chinese versions of the news-portal) Twitter @BarentsNews Instagram: @BarentsObserver Facebook.com/BarentsObserver/ Author: Thomas Nilsen, E-mail: [email protected] Twitter: @NilsenThomas Photos and illustrations: Rosatom, Rosatomflot, Thomas Nilsen, Oleg Kuleshov, H I Sutton, Atle Staalesen, Alexey Mkrtchyan, Wikimedia Commons. Keywords: Nuclear, Reactors, Icebreakers, Submarines, Northern Fleet, Russia, Arctic, Northern Sea Route, Nuclear Power, Kola Peninsula, Siberia, Arkhangelsk, Severodvinsk, Severomorsk, Murmansk, Pevek, Barents Sea, Kara Sea, White Sea. This publication is financially supported with a grant from the Norwegian Government’s Nuclear Action Plan administrated by the Norwegian Radiation and Nuclear Safety Authority. (www.dsa.no/en/). The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 2 June 2019 Introduction At the peak of the Cold War some 150 nuclear-powered submarines were based on the Barents Sea coast of the Kola Peninsula. Many ships were transporting and storing nuclear waste and at shipyards and bases, spent nuclear fuel and radioactive waste was accumulated. -
State Atomic Energy Corporation Rosatom
STATE ATOMIC ENERGY CORPORATION ROSATOM. STATE ATOMIC ENERGY CORPORATION ROSATOM. PERFORMANCE IN 2019 PERFORMANCE IN 2019 PERFORMANCE OF STATE ATOMIC ENERGY CORPORATION ROSATOM IN 2019 TABLE OF CONTENTS Report Profile 4 CHAPTER 7. DEVELOPMENT OF THE NORTHERN SEA ROUTE 122 7.1. Escorting Vessels and Handling Cargo Traffic along the Northern Sea Route 127 CHAPTER 1. OUR ACHIEVEMENTS 6 7.2. Construction of New Icebreakers 128 History of the Russian Nuclear Industry 8 7.3. New Products 128 ROSATOM Today 10 7.4. Digitization of Operations 128 Key Results in 2019 14 7.5. Activities of FSUE Hydrographic Enterprise 129 Key Events in 2019 15 7.6. Plans for 2020 and for the Medium Term 130 Address by the Chairman of the Supervisory Board 16 Address by the Director General 17 CHAPTER 8. EFFECTIVE MANAGEMENT OF RESOURCES 132 Address by a Stakeholder Representative 18 8.1. Corporate Governance 135 Financial and Economic Results 20 8.2. Risk Management 141 8.3. Performance of Government Functions 155 CHAPTER 2. STRATEGY FOR A SUSTAINABLE FUTURE 22 8.4. Financial and Investment Management 158 2.1. Business Strategy until 2030 24 8.5. ROSATOM Production System 164 2.2. Sustainable Development Management 28 8.6. Procurement Management 168 2.3. Value Creation and Business Model 34 8.7. Internal Control System 172 8.8. Prevention of Corruption and Other Offences 174 CHAPTER 3. CONTRIBUTION TO GLOBAL DEVELOPMENT 40 3.1. Markets Served by ROSATOM 42 CHAPTER 9. DEVELOPMENT OF HUMAN POTENTIAL 176 3.2. International Cooperation 55 AND INFRASTRUCTURE 3.3. International Business 63 9.1. -
Nuclear Reactors in Arctic Russia
NUCLEAR REACTORS IN ARCTIC RUSSIA Scenario 2035 The nuclearification of Russian Arctic territories is by Moscow given highest priority for development in shipping, infrastructure and exploration of natural resources. Additionally, the number of navy military reactors in the north will increase substantially over the next 15 years. This scenario paper gives an overview of the situation. The paper is part of the Barents Observer’s analytical popular science studies on developments in the Euro-Arctic Region. Thomas Nilsen June 2019 0 June 2019 The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 1 June 2019 Published by: The Independent Barents Observer Address: Storgata 5, 9900 Kirkenes, Norway E-mail: [email protected] thebarentsobserver.com (English, Russian and Chinese versions of the news-portal) Twitter @BarentsNews Instagram: @BarentsObserver Facebook.com/BarentsObserver/ Author: Thomas Nilsen, E-mail: [email protected] Twitter: @NilsenThomas Photos and illustrations: Rosatom, Rosatomflot, Thomas Nilsen, Oleg Kuleshov, H I Sutton, Atle Staalesen, Alexey Mkrtchyan, Wikimedia Commons. Keywords: Nuclear, Reactors, Icebreakers, Submarines, Northern Fleet, Russia, Arctic, Northern Sea Route, Nuclear Power, Kola Peninsula, Siberia, Arkhangelsk, Severodvinsk, Severomorsk, Murmansk, Pevek, Barents Sea, Kara Sea, White Sea. This publication is financially supported with a grant from the Norwegian Government’s Nuclear Action Plan administrated by the Norwegian Radiation and Nuclear Safety Authority. (www.dsa.no/en/). The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 2 June 2019 Introduction At the peak of the Cold War some 150 nuclear-powered submarines were based on the Barents Sea coast of the Kola Peninsula. Many ships were transporting and storing nuclear waste and at shipyards and bases, spent nuclear fuel and radioactive waste was accumulated. -
Compare and Contrast Major Nuclear Power Plant Disasters: Lessons Learned from the Past
163 10th International Conference of the International Institute for Infrastructure Resilience and Reconstruction (I3R2) 20–22 May 2014 Purdue University, West Lafayette, Indiana, USA Compare and Contrast Major Nuclear Power Plant Disasters: Lessons Learned from the Past Sayanti Mukhopadhyay and Makarand Hastak Construction Engineering and Management, Purdue University Jessica Halligan School of Nuclear Engineering, Purdue University ABSTRACT The construction of nuclear power plants is a major step towards reducing greenhouse gas emissions compared to the conventional coal-fired or oil-fired power plants. However, some of the major nuclear accidents in the past have raised questions about the safety and reliability of nuclear power plants. This paper compares and contrasts the major nuclear accidents of the past for example, the Chernobyl disaster (USSR), the Fukushima Daiichi disaster (Japan), and the Three Mile Island incident (USA). Although each of the accidents was unique, a thorough comparison found some common issues, such as faulty design of reactors and safety systems, safety rules violations, and lack of trained operators. The primary impacts mostly involved radiation hazards such as exposure to varying doses of radiation, uninhabitable neighborhoods and health problems; the levels of impact varied mostly due to different intensities of warnings and precautionary measures taken by the local governments. The research findings would serve as an important resource for the nuclear professionals to plan proper precautionary measures in order to avoid the major issues that initiated or resulted from the accidents in the past. 1. INTRODUCTION summarizes the important lessons learned from the past instances which could serve as an Nuclear power plants are one of the most complex information tool for the nuclear professionals to and sophisticated energy systems designed to plan for proper preventive measures well in produce low carbon electrical energy in contrast to advance to avoid similar accidents in future. -
The Nuclear Accident at Chernobyl: Immediate and Further Consequences
The article was received on September 10, 2020, and accepted for publishing on February 13, 2021. VARIA The nuclear accident at Chernobyl: Immediate and further consequences Symeon Naoum1, Vasileios Spyropoulos1 Abstract: The accident at Chernobyl occurred in April 1986 at the Chernobyl Nuclear Power Plant in Soviet Union. The incident occurred during a scheduled safety test. A combination of inherent reactor design flaws and operators’ mistakes resulted in reactor’s No.4 disaster and the emission of a large quantity of radiation. The immediate actions involved the fire extinguishing, the cleanup of radioactive residues and the prevention of a new explosion. For this purpose, plenty of people worked with self-sacrifice. The people who lived nearby were removed. As far as the socio-economic impact for the Soviet Union is concerned, it was quite serious. Moreover, the environmental and human health consequences were also alarming with thyroid cancer being the most studied. Useful conclusions, especially for the safety both of reactors and nuclear power, as well as for the impact of radiation at ecosystems have been drawn. The debate about the use of nuclear power has remained open ever since. Keywords: nuclear power, thyroid cancer, RBMK reactor, radiation, radioactivity, liquidators INTRODUCTION while 28 firemen and employees finally died. The Chernobyl The Chernobyl nuclear accident occurred on 26 April 1986 in accident is considered the most damaging nuclear power the light water graphite moderated reactor No 4 at the plant accident in history. The Chernobyl and the Fukushima Chernobyl Nuclear Power Plant, close the town of Pripyat, in accident are the two nuclear accidents classified as a level 7 Ukrainian Soviet Socialist Republic Soviet Union, roughly (the maximum classification) on the International Nuclear 100km of the city of Kiev [1]. -
The Need to Address the Larger Universe of Heu-Fueled Reactors, Including: Critical Assemblies, Pulsed Reactors and Propulsion Reactors [1]
THE NEED TO ADDRESS THE LARGER UNIVERSE OF HEU-FUELED REACTORS, INCLUDING: CRITICAL ASSEMBLIES, PULSED REACTORS AND PROPULSION REACTORS [1] F. N. von Hippel Program on Science & Global Security Princeton University, 221 Nassau St, 2nd floor, Princeton New Jersey 08542-4601, USA Paper to be presented at the International Meeting on Reduced Enrichment for Research and Test Reactors, IAEA, Vienna, 7-12 November 2004 ABSTRACT The RERTR program has focused on ending shipments of HEU fuel to research reactors. Highest priority has been given to reactors with steady thermal powers ≥ 1 megawatt. Since the cores of critical assemblies and pulsed reactors can contain huge amounts of HEU, they should be a second focus. Also, since many aging and specialized HEU-fuelled reactors may no longer be needed, more emphasis should be given to initiatives that could assist in their shutdown and decommissioning, including providing access to regional reactors with superior facilities. HEU-fuelled ship-propulsion reactors should also be addressed. Russia’s civilian icebreaker reactors are of particular interest because their fuel design is considered less sensitive than that of naval reactor fuel. Moreover, Russia’s KLT-40 icebreaker reactor is being adapted for a floating nuclear power plant and LEU icebreaker fuel could be used for converting Russian research reactors such as PIK and SM-3, that operate at power-reactor temperatures. 1. Introduction The U.S. and Soviet RERTR programs were originally established to eliminate their shipments of weapon-usable uranium to foreign research reactors. Reactors that operate continuously at high power are the largest consumers of 235U [2].