Obesity: Current and Potential Pharmacotherapeutics and Targets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
)&F1y3x PHARMACEUTICAL APPENDIX to THE
)&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE -
1 to the Stomach Inhibits Gut-Brain Signalling by the Satiety Hormone Cholecystokinin (CCK)
Targeted Expression of Plasminogen Activator Inhibitor (PAI)-1 to the Stomach Inhibits Gut-Brain Signalling by the Satiety Hormone Cholecystokinin (CCK) Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy By Joanne Gamble October 2013 I For Lily, you are the sunshine in my life…. II Table of Contents Figures and tables VII Acknowledgements XI Publications XIII Abstract XIV Chapter 1 ................................................................................................................................ 1 1.1 Overview ........................................................................................................................... 2 1.2 The Gastrointestinal Tract and Digestive Function ...................................................... 4 1.2.1 Distribution, Structure and Biology of Enteroendocrine (EEC) Cells ........................ 5 1.2.2 Luminal Sensing ......................................................................................................... 6 1.3 Energy Homeostasis ......................................................................................................... 7 1.3.1 Gut Hormones ........................................................................................................... 10 1.3.1.1 The Gastrin Family ............................................................................................ 11 1.3.2 PP-fold Family ......................................................................................................... -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
Medical Treatment of Obesity: the Past, the Present and the Future
Best Practice & Research Clinical Gastroenterology 28 (2014) 665e684 Contents lists available at ScienceDirect Best Practice & Research Clinical Gastroenterology 11 Medical treatment of obesity: The past, the present and the future * George A. Bray, MD, MACP, MACE, Boyd Professor 6400 Perkins Road, Baton Rouge, LA 70808, USA abstract Keywords: Medications for the treatment of obesity began to appear in the Orlistat late 19th and early 20th century. Amphetamine-addiction led to Serotonergic drugs the search for similar drugs without addictive properties. Four Sympathomimetic drugs sympathomimetic drugs currently approved in the US arose from Glucagon-like peptide-1 agonists this search, but may not be approved elsewhere. When norad- Combination therapy renergic drugs were combined with serotonergic drugs, additional weight loss was induced. At present there are three drugs (orlistat, phentermine/topiramate and lorcaserin) approved for long-term use and four sympathomimetic drugs approved by the US FDA for short-term treatment of obesity. Leptin produced in fat cells and glucagon-like peptide-1, a gastrointestinal hormone, provide a new molecular basis for treatment of obesity. New classes of agents acting on the melanocortin system in the brain or mimicking GLP-1 have been tried with variable success. Combi- nation therapy can substantially increase weight loss; a promising approach for the future. © 2014 Elsevier Ltd. All rights reserved. Introduction ‘A desire to take medicine is, perhaps, the great feature which distinguishes man from other animals.’ Sir William Osler [1] * Tel.: þ1 (225) 763 3176; fax: þ1 (225) 763 3045. E-mail addresses: [email protected], [email protected], [email protected]. -
G Protein-Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. -
G Protein‐Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. -
Pharmacotherapy in the Treatment of Obesity
© 2016 ILEX PUBLISHING HOUSE, Bucharest, Roumania http://www.jrdiabet.ro Rom J Diabetes Nutr Metab Dis. 23(4):415-422 doi: 10.1515/rjdnmd-2016-0048 PHARMACOTHERAPY IN THE TREATMENT OF OBESITY Floriana Elvira Ionică 1, Simona Negreș 2, Oana Cristina Șeremet 2, , Cornel Chiriță 2 1 University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, Romania 2 “Carol Davila” University of Medicine and Pharmacy, Faculty of Pharmacy, Bucharest, Romania received: September 17, 2016 accepted: December 02, 2016 available online: December 15, 2016 Abstract Background and Aims: In the last three decades, obesity and its related co morbidities has quickly increased. Sometime, obesity was viewed as a serious health issue in developed countries alone, but now is recognized as a worldwide epidemic, and its associated costs are enormous. Obesity is related with various diseases, like hypertension, type 2 diabetes mellitus (T2DM), dyslipidemia, chronic cardiovascular diseases, respiratory conditions, alongside chronic liver diseases, including non- alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). This review purpose is to provide data on the current anti-obesity drugs, also available and in the development. Material and Methods: We searched MEDLINE from 2006 to the present to collect information on the anti-obesity pharmacotherapy. Results and Conclusions: In the patients with obesity related comorbidities, there may be an adaptation of the anti-obesity pharmacotherapy to the patients’ needs, in respect to the improvements of the cardiometabolic parameters. Although their efficacy was proven, the anti-obesity pharmacotherapies have presented adverse events that require a careful monitoring during treatment. The main obstacle for approve new drugs seems to be the ratio between the risks and the benefits, because of a long-time background of perilous anti-obesity drugs. -
(Ph OH N N Me O YO O YO
US 20070265293A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0265293 A1 Boyd et al. (43) Pub. Date: Nov. 15, 2007 (54) (S)-N-METHYLNALTREXONE Publication Classification (76) Inventors: Thomas A. Boyd, Grandview, NY (51) Int. Cl. (US); Howard Wagoner, Warwick, NY A6II 3L/4355 (2006.01) (US); Suketu P. Sanghvi, Kendall Park, A6M II/00 (2006.01) NJ (US); Christopher Verbicky, A6M I5/08 (2006.01) Broadalbin, NY (US); Stephen 39t. 35O C Andruski, Clifton Park, NY (US) (2006.01) A6IP 3L/00 (2006.01) Correspondence Address: St. 4. CR WOLF GREENFIELD & SACKS, P.C. (2006.01) 6OO ATLANTIC AVENUE 3G (i. 308: BOSTON, MA 02210-2206 (US) A6IP 33/02 (2006.01) C07D 489/00 (2006.01) (21) Appl. No.: 11/441,452 (52) U.S. Cl. .............. 514/282; 128/200.23; 128/202.17; (22) Filed: May 25, 2006 546/45 Related U.S. Application Data (57) ABSTRACT This invention relates to S-MNTX, methods of producing (60) Provisional application No. 60/684,570, filed on May S-MNTX, pharmaceutical preparations comprising 25, 2005. S-MNTX and methods for their use. O G M Br Br e (pH OH N N Me O YO O YO OH OH R-MNTX S-MNTX Patent Application Publication Nov. 15, 2007 Sheet 1 of 6 US 2007/0265293 A1 Fig. 1 OH OH Me-N Me-N D / O O -----BBr, O O CHCI NMP, 3 AUTOCLAVE, 70'C OMe OH 1 2 Br OH As GE) G As 69 GOH Me-N ION Me-N -lass O SO EXCHANGE O SO OH OH 3 S-MNTX 1 - OXYCODONE 2 - OXYMORPHONE 3 - ODIDE SALT OF S-MNTX Fig. -
(12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau Et Al
US 20150202317A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau et al. (43) Pub. Date: Jul. 23, 2015 (54) DIPEPTDE-BASED PRODRUG LINKERS Publication Classification FOR ALPHATIC AMNE-CONTAINING DRUGS (51) Int. Cl. A647/48 (2006.01) (71) Applicant: Ascendis Pharma A/S, Hellerup (DK) A638/26 (2006.01) A6M5/9 (2006.01) (72) Inventors: Harald Rau, Heidelberg (DE); Torben A 6LX3/553 (2006.01) Le?mann, Neustadt an der Weinstrasse (52) U.S. Cl. (DE) CPC ......... A61K 47/48338 (2013.01); A61 K3I/553 (2013.01); A61 K38/26 (2013.01); A61 K (21) Appl. No.: 14/674,928 47/48215 (2013.01); A61M 5/19 (2013.01) (22) Filed: Mar. 31, 2015 (57) ABSTRACT The present invention relates to a prodrug or a pharmaceuti Related U.S. Application Data cally acceptable salt thereof, comprising a drug linker conju (63) Continuation of application No. 13/574,092, filed on gate D-L, wherein D being a biologically active moiety con Oct. 15, 2012, filed as application No. PCT/EP2011/ taining an aliphatic amine group is conjugated to one or more 050821 on Jan. 21, 2011. polymeric carriers via dipeptide-containing linkers L. Such carrier-linked prodrugs achieve drug releases with therapeu (30) Foreign Application Priority Data tically useful half-lives. The invention also relates to pharma ceutical compositions comprising said prodrugs and their use Jan. 22, 2010 (EP) ................................ 10 151564.1 as medicaments. US 2015/0202317 A1 Jul. 23, 2015 DIPEPTDE-BASED PRODRUG LINKERS 0007 Alternatively, the drugs may be conjugated to a car FOR ALPHATIC AMNE-CONTAINING rier through permanent covalent bonds. -
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
Neuropsychopharmacology REVIEWS (2016) 41, 335–356 © 2016 American College of Neuropsychopharmacology All rights reserved 0893-133X/16 REVIEW ..................................................................................................................................................................... www.neuropsychopharmacologyreviews.org 335 Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress ,1 1 2 2 ,3 John R Mantsch* , David A Baker , Douglas Funk ,AnhDLê and Yavin Shaham* 1 2 Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA; Center for Addiction and Mental 3 Health, Campbell Family Mental Health Research Institute, University of Toronto, Toronto, ON, Canada; Intramural Research Program, NIDA-NIH, Baltimore, MD, USA In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock -
Orphan Drug Dummy File
Orphan Drug Designations and Approvals List as of 09‐01‐2016 Governs October 1, 2016 ‐ December 31, 2016 Row Contact Generic Name Trade Name Designation Date Designation Num Company/Sponsor 1 1. Prevention of secondary carnitine deficiency in valproic acid toxicity 2. Treatment of secondary carnitine deficiency in Sigma-Tau levocarnitine Carnitor 11/15/1989 valproic acid toxicity Pharmaceuticals, Inc. 2 1. Treatment of graft versus host disease in patients receiving bone marrow transplantation 2. Prevention of graft versus host disease in patients receiving Pediatric thalidomide n/a 9/19/1988 bone marrow transplantation Pharmaceuticals, Inc. 3 A Diagnostic for the management Advanced Imaging Theranost 68 Ga RGD n/a 10/1/2014 of Moyamoya disease (MMD) Projects, LLC (AIP) 4 Cadila heat killed Mycobacterium w Pharmaceuticals immunomodulator Cadi Mw 9/3/2004 Active tuberculosis Limited, Inc. 5 Adjunct to cytokine therapy in the treatment of acute myeloid Histamine Ceplene 12/15/1999 leukemia. EpiCept Corporation 6 Adjunct to surgery in cases of rh-microplasmin, ocriplasmin Jetrea 3/16/2004 pediatric vitrectomy ThromboGenics Inc. 7 Adjunct to the non-operative management of secreting cutaneous fistulas of the stomach, duodenum, small intestine (jejunum and ileum), or Ferring Laboratories, Somatostatin Zecnil 6/20/1988 pancreas. Inc. Page 1 of 377 Orphan Drug Designations and Approvals List as of 09‐01‐2016 Governs October 1, 2016 ‐ December 31, 2016 Row Contact Generic Name Trade Name Designation Date Designation Num Company/Sponsor 8 Adjunct to whole brain radiation therapy for the treatment of brain metastases in patients with Allos Therapeutics, efaproxiral n/a 7/28/2004 breast cancer Inc. -
Gotham Light
3 Steps to Successful Obesity Management Learning objectives • Review recent findings about the biologic regulation of eating and weight control • Discuss the clinical recommendations and benefits of sustained weight loss in overweight and obese patients • Apply principles of motivational interviewing and shared decision-making to improve the clinical management of obesity and promote behavioral changes • Understand current guidelines for managing obesity, including the role of pharmacological therapy as an adjunct to lifestyle changes in reducing weight gain and promoting weight loss • Review reimbursement options for intensive behavioral therapy (IBT) in obesity management Disclosures • Brought to you as a medical education collaboration between the Louisiana Academy of Family Physicians and the Endocrine Society. • Developed by Knighten Health. Supported by an unrestricted educational grant from Novo Nordisk Inc. • James Campbell, MD: No relevant financial relationships with any commercial interests Challenge #1: Scope of the Obesity Epidemic and Limited Provider Resources 1 in 3 American adults are obese The Obesity Belt: Obesity prevalence > 30% 80 million Obese (BMI ≥ 30) Not Obese (BMI < 30) Sources: Behavioral Risk Factor Surveillance System, Source: Prevalence of Self-Reported Obesity Among 2012, CDC; U.S. Census Bureau, 2012 QuickFacts U.S. Adults: “The Obesity Belt” BRFSS, 2013 16,526 obese adults for every Endocrinologist 409 obese adults for every HCP Based on Endocrine Clinical Workforce: Supply and Demand Projections, Endocrine