Repeats of Unusual Size in Plant Mitochondrial Genomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discrete-Length Repeated Sequences in Eukaryotic Genomes (DNA Homology/Nuclease SI/Silk Moth/Sea Urchin/Transposable Element) WILLIAM R
Proc. Nati Acad. Sci. USA Vol. 78, No. 7, pp. 4016-4020, July 1981 Biochemistry Discrete-length repeated sequences in eukaryotic genomes (DNA homology/nuclease SI/silk moth/sea urchin/transposable element) WILLIAM R. PEARSON AND JOHN F. MORROW Department of Microbiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205 Communicated by James F. Bonner, January 12, 1981 ABSTRACT Two of the four repeated DNA sequences near the 5' end ofthe silk fibroin gene (15) and one in the sea urchin the 5' end of the silk fibroin gene hybridize with discrete-length Strongylocentrotus purpuratus (16, 17). families of repeated DNA. These two families comprise 0.5% of the animal's genome. Arepeated sequencewith aconserved length MATERIALS AND METHODS has also been-found in the short class of moderately repeated se- quences in the sea urchin. The discrete length, interspersion, and DNA was prepared from frozen silk moth pupae or frozen sea sequence fidelityofthese moderately repeated sequences suggests urchin sperm (15). Unsheared DNA [its single strands were that each has been multiplied as a discrete unit. Thus, transpo- >100 kilobases (kb) long] was digested with 2 units ofrestriction sition mechanisms may be responsible for the multiplication and enzyme (Bethesda Research Laboratories, Rockville, MD) per dispersion of a large class of repeated sequences in phylogeneti- ,Ag of DNA (1 unit digests 1 pg of A DNA in 1 hr) for at least cally diverse eukaryotic genomes. The repeat we have studied in 1 hr and then with an additional 2 units for a second hour. most detail differs from previously described eukaryotic trans- Alternatively, silk moth DNA was sheared to 6-10 kb (single- posable elements: it is much shorter (1300 base pairs) and does not stranded length) and sea urchin DNA was sheared to 1.2-2.0 have terminal repetitions detectable by DNAhybridization. -
Bioinformatic and Phylogenetic Analyses of Retroelements in Bacteria
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-11-29 Bioinformatic and phylogenetic analyses of retroelements in bacteria Wu, Li Wu, L. (2018). Bioinformatic and phylogenetic analyses of retroelements in bacteria (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/34667 http://hdl.handle.net/1880/109215 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Bioinformatic and phylogenetic analyses of retroelements in bacteria by Li Wu A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA NOVEMBER, 2018 © Li Wu 2018 Abstract Retroelements are mobile elements that are capable of transposing into new loci within genomes via an RNA intermediate. Various types of retroelements have been identified from both eukaryotic and prokaryotic organisms. This dissertation includes four individual projects that focus on using bioinformatic tools to analyse retroelements in bacteria, especially group II introns and diversity-generating retroelements (DGRs). The introductory Chapter I gives an overview of several newly identified retroelements in eukaryotes and prokaryotes. In Chapter II, a general search for bacterial RTs from the GenBank DNA sequenced database was performed using automated methods. -
The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41559-020-1221-7 In the format provided by the authors and unedited. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Linzhou Li1,2,13, Sibo Wang1,3,13, Hongli Wang1,4, Sunil Kumar Sahu 1, Birger Marin 5, Haoyuan Li1, Yan Xu1,4, Hongping Liang1,4, Zhen Li 6, Shifeng Cheng1, Tanja Reder5, Zehra Çebi5, Sebastian Wittek5, Morten Petersen3, Barbara Melkonian5,7, Hongli Du8, Huanming Yang1, Jian Wang1, Gane Ka-Shu Wong 1,9, Xun Xu 1,10, Xin Liu 1, Yves Van de Peer 6,11,12 ✉ , Michael Melkonian5,7 ✉ and Huan Liu 1,3 ✉ 1State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China. 2Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark. 3Department of Biology, University of Copenhagen, Copenhagen, Denmark. 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China. 5Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany. 6Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium. 7Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany. 8School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China. 9Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. 10Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China. 11College of Horticulture, Nanjing Agricultural University, Nanjing, China. 12Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa. -
University of Oklahoma
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D. -
Optimizing the Productivity and Sustainability of Algal
OPTIMIZING THE PRODUCTIVITY AND SUSTAINABILITY OF ALGAL BIOFUEL SYSTEMS: INVESTIGATING THE BENEFITS OF ALGAL DIVERSITY AND UTILIZING BREWERY WASTEWATER FOR CULTIVATION By Jakob Owen Nalley A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Integrative Biology—Doctor of Philosophy Ecology, Evolutionary Biology and Behavior—Dual Major 2016 ABSTRACT OPTIMIZING THE PRODUCTIVITY AND SUSTAINABILITY OF ALGAL BIOFUEL SYSTEMS: INVESTIGATING THE BENEFITS OF ALGAL DIVERSITY AND UTILIZING BREWERY WASTEWATER FOR CULTIVATION By Jakob Owen Nalley The era of inexpensive fossil fuels is coming to a close, while society is beginning to grapple with the byproducts of their combustion. Identifying alternative and more sustainable energy sources is of the utmost importance. One extremely promising option is biofuel derived from microalgae. Although algal biofuels have the capability to generate a substantial amount of biodiesel, there are a number of limitations that are hindering its commercialization. In this dissertation, I examine two main limitations concerning the economic and environmental sustainability of mass algal cultivation: (1) achieving and maintaining high algal productivity and (2) identifying an inexpensive water and nutrient source. Through the application of some core principles of ecological theory and employing a trait-based approach, I will illustrate how fostering algal diversity within these biofuel systems can lead to high productivity and stability. Knowledge of algal eco-physiological traits is essential for assembling optimal algal communities. Thus, I conducted a large thermal trait survey for 25 different algal species to better understand their biomass and fatty acid production across a range of temperatures. Finally, I will present two experiments I conducted investigating the feasibility of coupling algal cultivation with wastewater remediation generated at breweries. -
Prasinoderma Coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit Rrna Gene
The Mitochondrial Genome of the Prasinophyte Prasinoderma coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit rRNA Gene Jean-Franc¸ois Pombert1, Christian Otis2, Monique Turmel2, Claude Lemieux2* 1 Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, United States of America, 2 Institut de Biologie Inte´grative et des Syste`mes, De´partement de Biochimie, de Microbiologie et de Bio-informatique, Universite´ Laval, Que´bec, Que´bec, Canada Abstract Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns’own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). -
Chromosomal Locations of Highly Repeated Dna
Hereditjv (1980), 44, 269-276 0018-067X/80/01620269$02.00 1980The Genetical Society of Great Britain CHROMOSOMALLOCATIONS OF HIGHLY REPEATED DNA SEQUENCES IN WHEAT W.LGERLACH and W. J. PEACOCK Division of Plant Industry, Commonwealth ScientificandIndustrial Research Organisation, P.O. Box 1600, Canberra City, ACT 2601, Australia Received17.ix.79 SUMMARY C0t l0 DNA was isolated from hexaploid wheat Tr-iticum aestivum cv. Chinese Spring by hydroxyapatite chromatography (70°C in 0l2 Mphosphatebuffer). The higher Tm of the Cot 10-2 DNA compared with total wheat DNA sug- gested that it was relatively GC rich and contained well matched hybrids. In situ hybridisation using wheat species of different ploidy levels located major sites of the C0t l0— DNA on the B genome chromosomes. More than one particular highly repeated sequence is located in these sites. Other chromo- somal locations could be visualised by heating in situ hybridisation reactions before renaturation. This was attributed to the availability for hybridisation both of chromosomal sequences additional to those normally available after acid denaturation of cytological preparations and to single stranded cRNA molecules which were otherwise present as double stranded structures. 1. INTRODUCTION HIGI-ILY repeated DNA sequences, sometimes detected as rapidly reassociat- ing DNA (Britten and Kohne, 1968), are a characteristic component of eukaryotic genomes. Rapidly renaturing fractions of hexaploid wheat DNA have been isolated (Mitra and Bhatia, 1973; Smith and Flavell, 1974, 1975; Dover, 1975; Flavell and Smith, 1976; Ranjekar et al., 1976), up to 10 per cent of the genome being recovered as duplexes by hydroxy- apatite chromatography after reassociation to C0t values between 8 x l0 and 2 x 10—2 mol sec 1 in 012 M phosphate buffer at 60°C. -
Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts. -
Inverted Repeats in Chloroplast DNA from Higher Plants* (Circular DNA/Electron Microscopy/Denaturation Mapping/Circular Dimers) RICHARD Kolodnert and K
Proc. Natl. Acad. Sci. USA Vol. 76, No. 1, pp. 41-45, January 1979 Biochemistry Inverted repeats in chloroplast DNA from higher plants* (circular DNA/electron microscopy/denaturation mapping/circular dimers) RICHARD KOLODNERt AND K. K. TEWARI Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717 Communicated by Lawrence Bogorad, May 15, 1978 ABSTRACT The circular chloroplast DNAs from spinach, MATERIALS AND METHODS lettuce, and corn plants have been examined by electron mi- croscopy and shown to contain a large sequence repeated one DNA. Covalently closed circular ctDNA from corn (Zea time in reverse polarity. The inverted sequence in spinach and mays), spinach (Spinacia oleracea), lettuce (Lactuca sativa), lettuce chloroplast DNA has been found to be 24,400 base pairs and pea (Pisum sativum) plants was prepared as previously long. The inverted sequence in the corn chloroplast DNA is described (3). The ctDNAs were treated with y irradiation so 22,500 base pairs long. Denaturation mapping studies have that 50% of the DNA molecules contained approximately one shown that the structure of the inverted sequence is highly single-strand break per molecule (nicked circular DNA) (2, 3, conserved in these three plants. Pea chloroplast DNA does not kX174 DNA and monomers of contain an inverted repeat. All of the circular dimers of pea 6). bacteriophage (OX) open chloroplast DNA are found to be in a head-to-tail conformation. circular replicative form DNA of OX (OX RFII DNA) were Circular dimers of spinach and lettuce were also found to have provided by Robert C. Warner. head-to-tail conformation. -
The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Airborne Microalgae: Insights, Opportunities, and Challenges
crossmark MINIREVIEW Airborne Microalgae: Insights, Opportunities, and Challenges Sylvie V. M. Tesson,a,b Carsten Ambelas Skjøth,c Tina Šantl-Temkiv,d,e Jakob Löndahld Department of Marine Sciences, University of Gothenburg, Gothenburg, Swedena; Department of Biology, Lund University, Lund, Swedenb; National Pollen and Aerobiology Research Unit, Institute of Science and the Environment, University of Worcester, Worcester, United Kingdomc; Department of Design Sciences, Lund University, Lund, Swedend; Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmarke Airborne dispersal of microalgae has largely been a blind spot in environmental biological studies because of their low concen- tration in the atmosphere and the technical limitations in investigating microalgae from air samples. Recent studies show that airborne microalgae can survive air transportation and interact with the environment, possibly influencing their deposition rates. This minireview presents a summary of these studies and traces the possible route, step by step, from established ecosys- tems to new habitats through air transportation over a variety of geographic scales. Emission, transportation, deposition, and adaptation to atmospheric stress are discussed, as well as the consequences of their dispersal on health and the environment and Downloaded from state-of-the-art techniques to detect and model airborne microalga dispersal. More-detailed studies on the microalga atmo- spheric cycle, including, for instance, ice nucleation activity and transport simulations, are crucial for improving our under- standing of microalga ecology, identifying microalga interactions with the environment, and preventing unwanted contamina- tion events or invasions. he presence of microorganisms in the atmosphere has been phyta and Ochrophyta in the atmosphere (taxonomic classifica- Tdebated over centuries. -
Simian Virus 40 Tandem Repeated Sequences As an Element of The
Proc. NatL Acad. Sci. USA Vol. 78, No. 2, pp. 943-947, February 1981 Biochemistry Simian virus 40 tandem repeated sequences as an element of the early promoter (deletion mutants/chromatin/RNA initiation/transcriptional regulation) PETER GRUSS, RAVI DHAR, AND GEORGE KHOURY Laboratory of Molecular Virology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205 Communicated by Hilary Koprowski, November 17, 1980 ABSTRACT On the late side of the simian virus 40 (SV40) and tsB4 are derived from strain VA-4554. The host cell lines DNA replication origin are several sets of tandem repeated se- were secondary African green monkey kidney (AGMK) cells. quences, the largest of which is 72 base pairs long. The role of Preparation of SV40 DNA Fragments and Cytoplasmic these sequences was examined through construction of deletion mutants of SV40. A mutant from which one of the 72-base-pair RNA. Purified SV40 virion DNA was cleaved with restriction repeated units was removed is viable upon transfection of monkey enzymes (as detailed in figure legends) and separated in either kidney cells with viral DNA. Extension of this deletion into the 1.4% (wt/vol) agarose gels or 4% (wt/vol) polyacrylamide gels second repeated unit, however, leads to nonviability, as recog- (4). 32P-Labeled SV40 DNA (specific activity 2 X 106 cpm/ig) nized by the absence of early transcription and of tumor antigen was obtained as described (5). Restriction enzyme fragments production. These observations indicate that the 72-base-pair re- were separated for nuclease SI analysis in 1.4% alkaline agarose peated sequences form an essential element in the early viral tran- scriptional promoter and explain the inability of such a deleted gels (4).