Discrete-Length Repeated Sequences in Eukaryotic Genomes (DNA Homology/Nuclease SI/Silk Moth/Sea Urchin/Transposable Element) WILLIAM R

Total Page:16

File Type:pdf, Size:1020Kb

Discrete-Length Repeated Sequences in Eukaryotic Genomes (DNA Homology/Nuclease SI/Silk Moth/Sea Urchin/Transposable Element) WILLIAM R Proc. Nati Acad. Sci. USA Vol. 78, No. 7, pp. 4016-4020, July 1981 Biochemistry Discrete-length repeated sequences in eukaryotic genomes (DNA homology/nuclease SI/silk moth/sea urchin/transposable element) WILLIAM R. PEARSON AND JOHN F. MORROW Department of Microbiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205 Communicated by James F. Bonner, January 12, 1981 ABSTRACT Two of the four repeated DNA sequences near the 5' end ofthe silk fibroin gene (15) and one in the sea urchin the 5' end of the silk fibroin gene hybridize with discrete-length Strongylocentrotus purpuratus (16, 17). families of repeated DNA. These two families comprise 0.5% of the animal's genome. Arepeated sequencewith aconserved length MATERIALS AND METHODS has also been-found in the short class of moderately repeated se- quences in the sea urchin. The discrete length, interspersion, and DNA was prepared from frozen silk moth pupae or frozen sea sequence fidelityofthese moderately repeated sequences suggests urchin sperm (15). Unsheared DNA [its single strands were that each has been multiplied as a discrete unit. Thus, transpo- >100 kilobases (kb) long] was digested with 2 units ofrestriction sition mechanisms may be responsible for the multiplication and enzyme (Bethesda Research Laboratories, Rockville, MD) per dispersion of a large class of repeated sequences in phylogeneti- ,Ag of DNA (1 unit digests 1 pg of A DNA in 1 hr) for at least cally diverse eukaryotic genomes. The repeat we have studied in 1 hr and then with an additional 2 units for a second hour. most detail differs from previously described eukaryotic trans- Alternatively, silk moth DNA was sheared to 6-10 kb (single- posable elements: it is much shorter (1300 base pairs) and does not stranded length) and sea urchin DNA was sheared to 1.2-2.0 have terminal repetitions detectable by DNAhybridization. A sim- kb or 4-6 kb. A typical DNA sample (1 ml at 200 ,ug/ml) in 150 ple technique for identifying such discrete-length repeated se- mM NaCl was then denatured by addition of25 A1l of3 M NaOH quences is described, at 40C and neutralized by successive addition of 3 M NaOAc Repeated DNA sequences comprise 20-50% of most animal (pH 6.8) to 75 mM, 200 mM 1,4-piperazinediethanesulfonic genomes (1) and >50% of many plant genomes (2). Detailed acid (Pipes, pH 6.8) to 20 mM, and 3 M HOAc to 75 mM. Al- information has become available on the organization, distri- kaline denaturation was used to ensure complete strand sepa- bution, and evolution ofmany satellite and repeated structural ration of the longer DNA fragments. The denatured silk moth gene DNAs, but few details are known about the arrangement DNA was incubated to Cot 1 [Cot is the product of total con- of the bulk of the moderately repeated, interspersed DNA se- centration ofnucleotide residues (in mol/liter) and time ofhy- quences present in most eukaryotes. Recent work that links bridization (in sec); 170 Ag/ml for 30 min at 600C] and chilled genetic and structural studies on.repeated sequences in yeast on ice; sea urchin DNA was incubated to Cot 10. The DNA was (3, 4) and Drosophila (5-7) indicates that some eukaryotic re- then incubated with nuclease S1 at 5-20 units per Ag of DNA peated sequences are transposable elements analogous to those (Boehringer Mannheim; 1 unit digests 1 Ag ofdenatured DNA found in prokaryotes. These eukaryotic transposable elements in 30 min at 370C) in 150 mM NaCV200 mM NaOAc, pH 4.3/ are >5000 nucleotides (Nt) long, much longer than the short 0.2 mM ZnSOJ4 mM dithiothreitol for 1 hr at 370C. The re- repeated sequences found throughout the metazoa (1). action was stopped with EDTA (20 mM) and the mixture was In most eukaryotes, and in silk moths and sea urchins in par- extracted with phenol twice. The DNA duplexes were dialyzed ticular, repeated sequences that average -400 Nt are inter- overnight against 1 mM Tris base/0.05 mM EDTA, pH 8, con- spersedwith single-copy DNA averaging 1000-3000 Nt. In con- centrated 10- to 20-fold by 2-butanol extraction, and subjected seem to have few to electrophoresis (15). trast, some animals, including Drosophila, Electrophoresis of DNA fragments, filter transfer, and hy- short repeated sequences interspersed with nonrepeated DNA bridization are described (15). Nitrocellulose sheets with 0.2- (8-10). Our studies have been concerned with repeated se- when reten- quence organization in genomes that have a repeat intersper- ,m pores (Schleicher & Schuell, BA83) were used sion typical of most animals (1, 11-13). tion of fragments shorter than 250 Nt was critical. The length ofa repeated sequencerefers to the duplex region Restriction fragment probes were prepared from Hae III, formed when a repeated sequence renatures. The unreacted BamHI, or EcoRI digests of plasmids pBF41 (15) and pFbl9 single-strand tails mark the ends. These single-strand tails have (18). Plasmid DNA restriction fragments were end labeled with- been visualized with the electron microscope (14) or degraded out denaturation (15). The labeled fragments were separated on with nuclease S1 and the remaining duplexes were fractionated 4% polyacrylamide gels, and individual fragments were cut out, on the basis of length (13). We have used Southern transfer eluted, and used for hybridization. hybridization of populations of nuclease Sl-trimmed repeated sequences to examine the distribution of lengths of individual RESULTS members of various repeated-sequence families. We find that Length of Repeated Sequences in Silk Moth DNA. Frag- some repeated-sequence families consist ofmembers that have ments from the plasmid pBF41, which contains the silk fibroin the same length, while other families have members that differ gene and 5700 Nt 5' to the gene, were hybridized with restric- in length (15). Three discrete-length repeated sequences are tion fragments oftotal Bombyx DNA or a population ofnuclease described, two in the DNA of the silk moth Bombyx moti near Abbreviations: Cot, product oftotal concentration ofnucleotide residues The publication costs ofthis article were defrayed in part by page charge (in mol/liter) and time ofhybridization (in sec); kb, kilobase(s); Nt, nu- payment. This article must therefore be hereby marked "advertise- cleotides or nucleotide pairs of single-stranded or double-stranded nu- ment" in accordance with 18 U. S. C. §1734 solely to indicate this fact. cleic acid, respectively. 4016 Downloaded by guest on September 27, 2021 Biochemistry: Pearson and Morrow Proc. Nati Acad. Sci. USA 78 (1981) 4017 Sl-trimmed repeated-sequence DNA duplexes. Four distinct bands can be seen in the ethidium fluorescence of the total repeated sequences were found (15). Two of the sequences, a Bombyx repeated DNA population. The repeated-sequence 1.3-kb sequence in the Bam C fragment and a 5-kb sequence families homologous to the Hae B and Bam C fragments appear hybridizing with the Hae B/Bam A fragment (Fig. 1), are note- sufficiently abundant to produce these fluorescent bands. Ad- worthy because oftheir discrete length and conserved internal ditional families of discrete-length sequences can be seen in sequence. A member of the 1.3-kb repeated-sequence family nuclease SI-trimmed repeated-sequence duplexes from the is present 5000 Nt beyond the 5' end of the silk fibroin gene. Bombyx genome (Fig. 1). There are 1000 members of this repeated family distributed Distribution ofthe Discrete-Length Sequences Throughout throughout the Bombyx genome, accounting for a total of 1300 Bombyx DNA. Hybridization of repeated DNA probes to nu- kb, 0.3% of the Bombyx genome. clease Sl-trimmed repeated-sequence duplexes provides in- Part of the 5-kb discrete-length repeated sequence is found sight into both the length and the distribution of members of in the Hae B/Bam A fragment, the restriction fragment prox- a repeated-sequence family. The discrete distribution of the imal to the start ofthe silk fibroin mRNA (Fig. 1). This repeated fragments that react with the 1.3-kb repeated sequence is due sequence starts at least 600 Nt upstream from the 5' end ofthe to sequences adjacent to each 1.3-kb repeat that do not renature silk gene and continues away from the gene for up to 1000 Nt by Cot 1. The adjacent sequences remain single stranded be- (15). It is bounded by a single copy sequence proximal to the cause they are different for different copies ofthe 1.3-kb repeat. silk fibroin gene and by a different repeated sequence up- As the nuclease S1 concentration is increased from 5 to 20 units/ stream. A complete member of the 5-kb family is not present 1Lg of DNA,.single-strand tails are more completely trimmed near the 5' end of the fibroin gene; a 600-1000 Nt homologous and the 1.3-kb and several shorter repeated-sequence families region is apparently present. The 5-kb repeated-sequence fam- become visible above a background oftotal DNA duplexes (Fig. ily is found about 200 times in the Bombyx genome and accounts 1). The length distribution of the fragments hybridizing to the for 1000 kb (0.2%) of the total DNA (15). Faint 5-kb and 1.3-kb 1.3-kb sequence probe (Bam C) shifts from one trailing above 1.3 kb to a sharp 1.3-kb band. The absence of bands above 1.3 kb at the mild nuclease S1 - = - - < digestion criterion shows that most ofthe 1.3-kb sequences are Nuclease SI )C$ . X Nuclease not repeated in tandem. This is confirmed by digestion of total X 5 20 5) 20 "-' = S1 X Bombyx DNA with a variety of restriction enzymes that cut outside the sequence (BamrHI, HindIII) or within the sequence 23.8 -m only a few times (EcoRI).
Recommended publications
  • Bioinformatic and Phylogenetic Analyses of Retroelements in Bacteria
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-11-29 Bioinformatic and phylogenetic analyses of retroelements in bacteria Wu, Li Wu, L. (2018). Bioinformatic and phylogenetic analyses of retroelements in bacteria (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/34667 http://hdl.handle.net/1880/109215 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Bioinformatic and phylogenetic analyses of retroelements in bacteria by Li Wu A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA NOVEMBER, 2018 © Li Wu 2018 Abstract Retroelements are mobile elements that are capable of transposing into new loci within genomes via an RNA intermediate. Various types of retroelements have been identified from both eukaryotic and prokaryotic organisms. This dissertation includes four individual projects that focus on using bioinformatic tools to analyse retroelements in bacteria, especially group II introns and diversity-generating retroelements (DGRs). The introductory Chapter I gives an overview of several newly identified retroelements in eukaryotes and prokaryotes. In Chapter II, a general search for bacterial RTs from the GenBank DNA sequenced database was performed using automated methods.
    [Show full text]
  • Chromosomal Locations of Highly Repeated Dna
    Hereditjv (1980), 44, 269-276 0018-067X/80/01620269$02.00 1980The Genetical Society of Great Britain CHROMOSOMALLOCATIONS OF HIGHLY REPEATED DNA SEQUENCES IN WHEAT W.LGERLACH and W. J. PEACOCK Division of Plant Industry, Commonwealth ScientificandIndustrial Research Organisation, P.O. Box 1600, Canberra City, ACT 2601, Australia Received17.ix.79 SUMMARY C0t l0 DNA was isolated from hexaploid wheat Tr-iticum aestivum cv. Chinese Spring by hydroxyapatite chromatography (70°C in 0l2 Mphosphatebuffer). The higher Tm of the Cot 10-2 DNA compared with total wheat DNA sug- gested that it was relatively GC rich and contained well matched hybrids. In situ hybridisation using wheat species of different ploidy levels located major sites of the C0t l0— DNA on the B genome chromosomes. More than one particular highly repeated sequence is located in these sites. Other chromo- somal locations could be visualised by heating in situ hybridisation reactions before renaturation. This was attributed to the availability for hybridisation both of chromosomal sequences additional to those normally available after acid denaturation of cytological preparations and to single stranded cRNA molecules which were otherwise present as double stranded structures. 1. INTRODUCTION HIGI-ILY repeated DNA sequences, sometimes detected as rapidly reassociat- ing DNA (Britten and Kohne, 1968), are a characteristic component of eukaryotic genomes. Rapidly renaturing fractions of hexaploid wheat DNA have been isolated (Mitra and Bhatia, 1973; Smith and Flavell, 1974, 1975; Dover, 1975; Flavell and Smith, 1976; Ranjekar et al., 1976), up to 10 per cent of the genome being recovered as duplexes by hydroxy- apatite chromatography after reassociation to C0t values between 8 x l0 and 2 x 10—2 mol sec 1 in 012 M phosphate buffer at 60°C.
    [Show full text]
  • Inverted Repeats in Chloroplast DNA from Higher Plants* (Circular DNA/Electron Microscopy/Denaturation Mapping/Circular Dimers) RICHARD Kolodnert and K
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 1, pp. 41-45, January 1979 Biochemistry Inverted repeats in chloroplast DNA from higher plants* (circular DNA/electron microscopy/denaturation mapping/circular dimers) RICHARD KOLODNERt AND K. K. TEWARI Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92717 Communicated by Lawrence Bogorad, May 15, 1978 ABSTRACT The circular chloroplast DNAs from spinach, MATERIALS AND METHODS lettuce, and corn plants have been examined by electron mi- croscopy and shown to contain a large sequence repeated one DNA. Covalently closed circular ctDNA from corn (Zea time in reverse polarity. The inverted sequence in spinach and mays), spinach (Spinacia oleracea), lettuce (Lactuca sativa), lettuce chloroplast DNA has been found to be 24,400 base pairs and pea (Pisum sativum) plants was prepared as previously long. The inverted sequence in the corn chloroplast DNA is described (3). The ctDNAs were treated with y irradiation so 22,500 base pairs long. Denaturation mapping studies have that 50% of the DNA molecules contained approximately one shown that the structure of the inverted sequence is highly single-strand break per molecule (nicked circular DNA) (2, 3, conserved in these three plants. Pea chloroplast DNA does not kX174 DNA and monomers of contain an inverted repeat. All of the circular dimers of pea 6). bacteriophage (OX) open chloroplast DNA are found to be in a head-to-tail conformation. circular replicative form DNA of OX (OX RFII DNA) were Circular dimers of spinach and lettuce were also found to have provided by Robert C. Warner. head-to-tail conformation.
    [Show full text]
  • Simian Virus 40 Tandem Repeated Sequences As an Element of The
    Proc. NatL Acad. Sci. USA Vol. 78, No. 2, pp. 943-947, February 1981 Biochemistry Simian virus 40 tandem repeated sequences as an element of the early promoter (deletion mutants/chromatin/RNA initiation/transcriptional regulation) PETER GRUSS, RAVI DHAR, AND GEORGE KHOURY Laboratory of Molecular Virology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205 Communicated by Hilary Koprowski, November 17, 1980 ABSTRACT On the late side of the simian virus 40 (SV40) and tsB4 are derived from strain VA-4554. The host cell lines DNA replication origin are several sets of tandem repeated se- were secondary African green monkey kidney (AGMK) cells. quences, the largest of which is 72 base pairs long. The role of Preparation of SV40 DNA Fragments and Cytoplasmic these sequences was examined through construction of deletion mutants of SV40. A mutant from which one of the 72-base-pair RNA. Purified SV40 virion DNA was cleaved with restriction repeated units was removed is viable upon transfection of monkey enzymes (as detailed in figure legends) and separated in either kidney cells with viral DNA. Extension of this deletion into the 1.4% (wt/vol) agarose gels or 4% (wt/vol) polyacrylamide gels second repeated unit, however, leads to nonviability, as recog- (4). 32P-Labeled SV40 DNA (specific activity 2 X 106 cpm/ig) nized by the absence of early transcription and of tumor antigen was obtained as described (5). Restriction enzyme fragments production. These observations indicate that the 72-base-pair re- were separated for nuclease SI analysis in 1.4% alkaline agarose peated sequences form an essential element in the early viral tran- scriptional promoter and explain the inability of such a deleted gels (4).
    [Show full text]
  • Genome of an Acetabularia Mediterranea Strain (Southern Blot/Molecular Cloning/Dasycladaceae/Evolution) MARTIN J
    Proc. Natl. Acad. Sci. USA Vol. 82, pp. 1706-1710, March 1985 Cell Biology Tandemly repeated nonribosomal DNA sequences in the chloroplast genome of an Acetabularia mediterranea strain (Southern blot/molecular cloning/Dasycladaceae/evolution) MARTIN J. TYMMS AND HANS-GEORG SCHWEIGER Max-Planck-Institut fur Zellbiologie, D-6802 Ladenburg, Federal Republic of Germany Communicated by Philip Siekevitz, October 29, 1984 ABSTRACT A purified chloroplast fraction was prepared the life cycle and that are not homologous to heterologous from caps of the giant unicellular green alga Acetabularia probes for ribosomal RNA genes. mediterranea (strain 17). High molecular weight DNA obtained from these chloroplasts contains at least five copies of a MATERIALS AND METHODS 10-kilobase-pair (kbp) sequence tandemly arranged. This Preparation of Chloroplasts. A. mediterranea was grown in unique sequence is present in DNA from chloroplasts of all Muller's medium as described (for references, see ref. 9). stages of the life cycle examined. A chloroplast rDNA clone Cells of three different stages, 1 cm long, 3.5 cm long (i.e., from mustard hybridized with some restriction fragments just prior to cap formation), and fully developed caps (9) from Acetabularia chloroplast DNA but not with the repeated were studied. sequence. An 8-kbp EcoRI-.Pst I fragment of the repeated Caps from A. mediterranea cells were harvested prior to sequence was cloned into pBR322 and used as a hybridization the formation of secondary nuclei. Five-thousand caps probe. No homology was found between the cloned 8-kbp ('100 g) were homogenized in a blender fitted with razor sequence and chloroplast DNA from related species blades on a vertical shaft in 1 liter of ice-cold buffer A Acetabularia crenulata or chloroplast DNA from spinach.
    [Show full text]
  • Centromeric Satellite Dnas: Hidden Sequence Variation in the Human Population
    G C A T T A C G G C A T genes Review Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population Karen H. Miga UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California, CA 95064, USA; [email protected]; Tel.: +1-831-459-5232 Received: 2 April 2019; Accepted: 3 May 2019; Published: 8 May 2019 Abstract: The central goal of medical genomics is to understand the inherited basis of sequence variation that underlies human physiology, evolution, and disease. Functional association studies currently ignore millions of bases that span each centromeric region and acrocentric short arm. These regions are enriched in long arrays of tandem repeats, or satellite DNAs, that are known to vary extensively in copy number and repeat structure in the human population. Satellite sequence variation in the human genome is often so large that it is detected cytogenetically, yet due to the lack of a reference assembly and informatics tools to measure this variability, contemporary high-resolution disease association studies are unable to detect causal variants in these regions. Nevertheless, recently uncovered associations between satellite DNA variation and human disease support that these regions present a substantial and biologically important fraction of human sequence variation. Therefore, there is a pressing and unmet need to detect and incorporate this uncharacterized sequence variation into broad studies of human evolution and medical genomics. Here I discuss the current knowledge of satellite DNA variation in the human genome, focusing on centromeric satellites and their potential implications for disease. Keywords: satellite DNA; centromere; sequence variation; structural variation; repeat; alpha satellite; human satellites; genome assembly 1.
    [Show full text]
  • Tandem Repeats Dispersed Repeats
    The Origin of Repeated Sequences in Genomes and (parenthetically) What is Life? Jeff Elhai Center for the Study of Biological Complexity A great deal of attention has been lavished on the two billion nucleotides that make up the sequence of the human genome, but almost all that attention has focused on the 2% of the genome that encodes protein. The remaining 98% consists mostly of repeated DNA sequences, either dispersed repeats or tandem repeats. Dispersed repeats are segments of DNA that occur multiple times at more or less random positions in the genome. They are typically transposable elements, large segments that encode a protein responsible for the moving of the segment from one site to another. Most tandem repeats are small segments of DNA repeated one after another. For example, the trinucleotide CAG repeated hundreds of times is responsible for active Huntington Disease in humans. transposon CAGCAGCAGCAGCAGCAGCAGCAGCAGCAG... Dispersed repeats Tandem repeats Bacteria, on the other hand have much smaller (0.6 to 11 million nt) and gene-dense genomes, with generally 70 to 80% of the genome devoted to protein-encoding genes. Many still possess transposons or other smaller dispersed repeats (typically 100 nt), but tandem repeats are rare. Recently a third type of repeated sequence has been discovered, called CRISPRs (for Clustered Regularly Interspaced Short Palindromic Repeats), consisting of short repeated regions (22 to 39 nt) separated by non-repetitive spacer regions of equal length. The mechanism by which they are CRISPRs formed is unknown. My colleagues and I have been examining the genome of the cyanobacterium Nostoc punctiforme, which is remarkable in many respects.
    [Show full text]
  • Repeated Sequences in Linear Genetic Programming Genomes
    Preprint Revision : 1.30 Complex Systems 2005 15 (4) pp285-306 Repeated Sequences in Linear Genetic Programming Genomes William B. Langdon Computer Science, University College, London, Gower Street, London, UK Wolfgang Banzhaf Computer Science, Memorial University of Newfoundland, St.John’s, A1B 3X5, CANADA Biological chromosomes are replete with repetitive sequences, micro satellites, SSR tracts, ALU, etc. in their DNA base sequences. We started looking for similar phenomena in evolutionary computation. First studies find copious repeated sequences, which can be hierar- chically decomposed into shorter sequences, in programs evolved using both homologous and two point crossover but not with headless chicken crossover or other mutations. In bloated programs the small number of effective or expressed instructions appear in both repeated and non- repeated code. Hinting that building-blocks or code reuse may evolve in unplanned ways. Mackey-Glass chaotic time series prediction and eukaryotic pro- tein localisation (both previously used as artificial intelligence machine learning benchmarks) demonstrate evolution of Shannon information (entropy) and lead to models capable of lossy Kolmogorov compres- sion. Our findings with diverse benchmarks and GP systems suggest this emergent phenomenon may be widespread in genetic systems. “DNA whose sequence is not maintained by selection will develop periodicities as a result of random crossover” George P Smith [36]. 1. Introduction It has been long noticed that there are emergent phenomena in genetic programming (GP) runs unintended by the human designer of the al- gorithm. Early on it was observed that code which does not change the output of the program (i.e. non-effective code) appears in many GP runs [34, 38, 2].
    [Show full text]
  • Sequence Relationship Between Long and Short Repetitive DNA Of
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Caltech Authors Proc. NaMl. Acad. Sci. USA Vol. 74, No. 10, pp. 4382-4386 October 1977 Biochemistry Sequence relationship between long and short repetitive DNA of the rat: A preliminary report (long repetitive DNA/sequence homology/rat genome) JUNG-RUNG WU, WILLIAM R. PEARSON, JAMES W. POSAKONY, AND JAMES BONNER* Division of Biology, California Institute of Technology, Pasadena, California 91125 Contributed by James Bonner, August 8, 1977 ABSTRACT Long and short repetitive sequences of rat DNA fragments. Long repeated DNA has been used to drive whole can be isolated and characterized. Long [>1.5 kilobases (kb)] DNA tracers of various lengths to determine the interspersion sequences can be separated from short (0.2-0.4 kb) sequences by exclusion chromatography after renaturation of 4-kb DNA period of these sequences in long whole DNA. Our data are fragments to a repetitive Cot and digestion with the single- consistent with the model that short repeated sequences are strand-specific SI nuclease. (Cot is the initial concentration of present in the long repeated sequence elements in the rat ge- DNA in mol of nucleotides/liter multiplied by time in sec.) Long nome. repetitive DNA can be driven by an excess of whole rat DNA to measure its repetitive frequency. Excess long repetitive DNA can also be used to drive tracer quantities of either long (self- MATERIALS AND METHODS renaturation) or short repetitive DNA. Both the extent and the Preparation of DNA. Unlabeled DNA was extracted from rate of the renaturations are found to be similar, suggesting that rat ascites cells and labeled DNA was extracted from Novikoff long and short DNA fragments share sequences.
    [Show full text]
  • Computational Method for Finding Repeated Elements
    Repeated Elements Computational Method for finding Repeated Elements Dr. Stephan Steigele Bioinf, University of Leipzig Leipzig WS06/07 Stephan Steigele Repeated Elements Repeated sequences Repeated sequences I sequence instances that occur often (> 1) in a genome I They have a broad definition, from I simple sequence repeats I to very long repeats with full coding capacity for their own replication (e.g. related to retro-viruses) Stephan Steigele Repeated Elements formal description formal description I A DNA sequence is a string S of length n over an alphabet Σ = fA; T ; G; Cg I Si denotes the i character from S, for i 2 [1; n] −1 I S is the reversed string of S I Si;j is a substring of S, in which Si is the start in S and Sj is the end (for i < j) Stephan Steigele Repeated Elements formal description formal description I An exact repeat R is represented by the position of both substrings Si1j1 and Si2j2 , hence R = f ((i1; j1); (i2; j2)) and Si1j1 = Si2j2 I Additionally, the positions of both instances have to be different, thus (i1; j1) 6= (i2; j2). R is maximal, if only if Si1−1 and Sj1−1 or Si2+1 and Sj2+1, are distinct from each other I i1 j1 i2 j2 .. G ACCT G .. C ACCT A .. Maximal repeat R = ((i1; j1); (i2; j2)) = ACCT Stephan Steigele Repeated Elements formal description formal description I S denotes the complement of S, according to the complementarity strand of DNA. I the complement follows the Watson-Crick pairs of DNA (C-G and T-A).
    [Show full text]
  • Structural Features of the Genome Can Lead to DNA Rearrangements And
    REVIEWS Genomic disorders: Structural characteristics of the human genome predis- pose to rearrangements that result in human disease structural features of the traits. The gene is still the key in mediating the pheno- type, but is altered almost coincidentally by the rearrangement. I will refer to such conditions that result genome can lead to DNA from genome architecture as genomic disorders. Genomic disorders are caused by an alteration of the genome that might lead to the complete loss or gain of rearrangements and a gene(s) sensitive to a dosage effect or, alternatively, might disrupt the structural integrity of a gene. This human disease traits mechanism is in sharp contrast to the classical mecha- nism for genetic disease, by which an abnormal pheno- type is primarily a result of point mutation. Genome JAMES R. LUPSKI ([email protected]) alterations can occur through many mechanisms, one of which is homologous recombination during meiosis Molecular medicine began with Pauling’s seminal work, between region-specific, low-copy repeated sequences. which recognized sickle-cell anemia as a molecular These homologous recombination events result in disease, and with Ingram’s demonstration of a specific a type of DNA rearrangement that is a function of the chemical difference between the hemoglobins of normal orientation of the repeated sequences that act as and sickled human red blood cells. During the four 1 substrates for homologous recombination . Recom- decades that followed, investigations have focused on the bination between direct repeats can lead to deletion gene – how mutations specifically alter DNA and how these and/or duplication of the genetic material between the changes affect the structure and expression of encoded repeats, while recombination between inverted repeats proteins.
    [Show full text]
  • Acinonyx Jubatus)
    Heredity 86 (2001) 355±362 Received 23 February 2000, accepted 16 November 2000 Sequence variation in the mitochondrial DNA control region of wild African cheetahs (Acinonyx jubatus) ABIGAIL R. FREEMAN , DAVID E. MACHUGHà, SEAÂ N MCKEOWN**§, CHRISTIAN WALZER±, DAVID J. MCCONNELL § & DANIEL G. BRADLEY* Department of Genetics, Smur®t Institute of Genetics, Trinity College, Dublin 2, Ireland, àDepartment of Animal Science and Production and Conway Institute of Biomolecular and Biomedical Research, Faculty of Agriculture, University College Dublin, Bel®eld, Dublin 4, Ireland, §Fota Wildlife Park, Carraigtwohill, County Cork, Ireland and ±Salzburger Tiergarten Hellbrunn, A-5081 Anif, Austria Five hundred and twenty-®ve bp of mitochondrial control region were sequenced and analysed for 20 Acinonyx jubatus and one Felis catus. These sequences were compared with published sequences from another domestic cat, 20 ocelots (Leopardus pardalus) and 11 margays (Leopardus weidii). The intraspeci®c population divergence in cheetahs was found to be less than in the other cats. However variation was present and distinct groups of cheetahs were discernible. The 80 bp RS2 repetitive sequence motif previously described in other felids was found in four copies in cheetah. The repeat units probably have the ability to form secondary structure and may have some function in the regulation of control region replication. The two central repeat units in cheetah show homogenization that may have arisen by convergent evolution. Keywords: Acinonyx jubatus, control region, Felidae, genetic diversity, mitochondrial DNA, tandem repeats. Introduction (O'Brien et al., 1983, 1985, 1986), ¯uctuating asymmetry (Wayne et al., 1986) and skin graft analysis (O'Brien The cheetah (Acinonyx jubatus) is a highly specialized et al., 1985, 1986).
    [Show full text]