1876 Research Article Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei Florian Grasser1, Michaela Neusser1, Heike Fiegler2, Tobias Thormeyer1, Marion Cremer1, Nigel P. Carter2, Thomas Cremer1,3 and Stefan Müller1,* 1Department of Biology II, Human Genetics, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsreid, Germany 2The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK 3Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians University Munich, Munich, Germany *Author for correspondence (e-mail:
[email protected]) Accepted 17 March 2008 Journal of Cell Science 121, 1876-1886 Published by The Company of Biologists 2008 doi:10.1242/jcs.026989 Summary Using published high-resolution data on S-phase replication major driving force for the 3D radial genome organization in timing, we determined the three-dimensional (3D) nuclear human lymphoblastoid cell nuclei. Instead, genomic properties, arrangement of 33 very-early-replicating and 31 very-late- and local gene density in particular, were identified as the replicating loci. We analyzed diploid human, non-human decisive parameters. Further detailed comparisons of primate and rearranged tumor cells by 3D fluorescence in situ chromosome 7 loci in primate and tumor cells suggest that the hybridization with the aim of investigating the impact of inversions analyzed influence nuclear topology to a greater chromosomal structural changes on the nuclear organization extent than the translocations, thus pointing to geometrical of these loci. Overall, their topology was found to be largely constraints in the 3D conformation of a chromosome territory. conserved between cell types, species and in tumor cells.