Multiple Non-LTR Retrotransposons in the Genome of Arabidqpsis Thulium

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Non-LTR Retrotransposons in the Genome of Arabidqpsis Thulium Copyright 0 1996 by the Genetics Society of America Multiple Non-LTR Retrotransposons in the Genome of ArabidqPsis thulium David A. Wright,* Ning Ke," Jan Smalle,t" Brian M. Hauge,t'2Howard M. Goodmant and Daniel F. Voytas* *Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011 and tDepartment of Genetics, Haward Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 021 14 Manuscript received June 13, 1995 Accepted for publication October 14, 1995 ABSTRACT DNA sequence analysis near the Arabidopsis thaliana AB13 gene revealed the presence of a non-LTR retrotransposon insertion thatwe have designated Tal 1-1.This insertion is 6.2 kb in length and encodes two overlapping reading frames with similarity to non-LTR retrotransposon proteins, including reverse transcriptase. A polymerase chain reaction assaywas developed based on conserved amino acid sequences shared between the Tall-1 reverse transcriptase and those of non-LTR retrotransposons from other species. Seventeen additionalA. thaliana reverse transcriptases were identified that range in nucleotide similarity from 4848% (Ta12-Ta28). Phylogenetic analyses indicated that the A. thaliana sequences are more closely related to each other than to elements from other organisms, consistent with the vertical evolution of these sequences over mostof their evolutionary history. One sequence, Ta17,is located in the mitochondrial genome. The remaining are nuclear andof low copy number among 17 diverse A. thaliana ecotypes tested, suggesting that they are not highly active in transposition. The paucity of retrotransposons and the small genome size of A. thaliana support the hypothesis that most repetitive sequences have been lost from the genome and that mechanisms may exist to prevent amplification of extant element families. RABIDOPSIS thaliana has the smallest known ge- element groups-the Tyl/copia andthe Ty3/gypsy A nomeamong higher plants (LEUTWILERet al. group elements-named after representative retro- 1984). With only lo8 bp, it lies at one end of the spec- transposon families from Saccharomycescereuisiae and trum of plant genome size that extends as high as 10" Drosophilamelanogaster (XIONG and EICKBUSH 1990). bp for some monocot species (BENNETTand SMITH The Tyl/copia and Ty3/gypsy groups are distinguished 1976). An unusual feature of the A. thaliana genome is by the order of proteins encoded by their pol genes the scarcity ofinterspersed repetitive DNA (LEUTWILER and similarities among the sequences of their reverse et al. 1984; PRUITI and MEYEROMTZ1986). Although transcriptases. highly repeated andmoderately repeated sequencesto- We and others have previously assessed the distribu- gether make up -20% of the genome, the interspersed tion and diversity of Tyl/copia group elements among repeat fraction constitutes only -2% of the total nu- a wide variety of plant species (FLAVELLet al. 1992a,b; clear DNA (MEYEROWITZ1992). For most eucaryotes, VOYTASet al. 1992; HIROCHIKAand HIROCHIKA, 1993). interspersed repeat sequences are typically mobile ge- This was accomplished using a polymerase chain reac- netic elements, the most abundant of which are the tion assay that specifically amplified Tyl/copia group retrotransposons, mobile elements that replicate by re- reverse transcriptases. Species representing each Divi- verse transcription of an mRNA intermediate. sion of the plant kingdom were found to carry Tyl/ Two major classesof retrotransposons have been copia group elements, and many species were found to identified that are present in the genomes of diverse harbor multiple diverse families of these retrotranspo- eucaryotes (DOOLITTLEet al. 1989; XIONG and EICK- sons. In cotton, for example, nine distinct lineages of BUSH 1990). These retrotransposon classes are distin- Tyl/c@ia groupelements were identified from the guished by whether or not they are flanked by long analysisof 89 partial reverse transcriptase sequences terminal direct repeats (LTRs) and are simply referred (VANDERWIELet al. 1993). More recently, analysisof to as the LTR and non-LTR retrotransposons. The LTR sequences in the DNA databases have revealed Tyl/ retrotransposons are further composed of two distinct copia retrotransposon insertions adjacent to 21 plant genes, further indicating the abundance of these ele- Correspmding author: Daniel F. Voytas, 2208 Molecular Biology ments in plants (WHITEet al. 1994). Although less well Building, Iowa State University, Ames, IA 50011. documented, examples of plant Ty3/gypsy group ele- E-mail: [email protected] ments have also been reported (SMMYTHet al. 1989; Pu- 'Present address: Laboratorium Genetika, Universiteit Gent, Lede- ganckstraat 35, E9000 Gent, Belgium. RUGGANAN and WESSLER 1994), as have two examples 2Present address: Transkaryotic Therapies, Inc., 195 Albany St., Cam- of non-LTR retrotransposons (SCHWARZ-SOMMERet al. bridge, MA 02139. 1987; LEETONand SMYTH1993). Genetics 142 569-578 (February, 1996) 570 A. D. Wright et al. Retrotransposons have influenced plant genome or- dard laboratory strains; Landsberg carries the recessive erecta ganization by contributing to genome size. This occurs mutation. DNA manipulations: Standard methodswere used for DNA because retrotransposition is a replicative process and manipulations, including the purification of plant, yeast and unlike the DNA transposons, retrotransposons do not plasmid DNA, the preparation of Southern filters, the screen- excise. Rather,a single insertion can be transcribed ing of yeast artificial chromosome (YAC) and lambda phage toyield mRNA templates, which in turn are reverse libraries, and enzymatic manipulation of cloned DNAs (Ausu- transcribed to generate numerous progeny elements. BEL et al. 1987). All filter hybridizations were conducted at 65"by the method of CHURCHand GILBERT (1984). DNA The extent to which retrotransposons can contribute fragments used as hybridization probes were separated on to genome bulk is well exemplified by lily, which has low melting agarose gels; gel slices containing desired DNA one of the largest characterized plant genomes (BEN- fragments were excised, melted and used directly for radiola- NETT and SMITH1976). Two retrotransposon families beling by random priming (Promega). have been identified in lily, the dell and de12 elements, The presence of' Tal 1-1 was initially suggested from the se- quence of' cosmid clone 4711, which was isolated from a which have -13,000 and 250,000 copies, respectively Co- lumbia genomic library (GIKAUDATet al. 1992). To obtain the (SENTRYand SMV~H1985; SMYTHet al. 1989). The de12 entire Tall-I insertion as well as flanking sequences, a Colum- elements alone account for -4% of the lily genome. bia YAC library (GRIIL and SOMERVILLE1991) was screened This amounts to -lo9 base pairs or 10 times the size using cosmid 471 1 as a hybridization probe. A single clone was of the entire A. thalinna genome (SMWH et al. 1989; identified (EG15A3), from which a 7.2-kb BgnI fragment was subcloned that was predicted to span the 5' end of Tall-I SMYTH1991). (Figure 1).Because Southern hybridization analyses suggested While the A. thaliana genome is small and lacks abun- that Landsberg did not carry a Tall-1 insertion, the empty dant interspersed repeats,it nonetheless carries numer- target site was cloned using a Landsberg genomiclambda ous diverse Tyl/ cqia group retrotransposons (VOU~AS phage library (VOWAS et al. 1990); hybridization probes in- and AUSUBEL1988; VOITAS et al. 1990; KONIECZNYet al. cluded a 1.1-kb EcoRI/HzndIII fragment 3' of Tall-1 (probe A, Figure 1) and an -0.8-kb BgllI/SuZJ fragment near the 5' 1991). We have previously identified and characterized end of the insertion (probe B, Figure 1). The library screen 10 such families that are comparable in number and yielded one phageclone with probeA (XDWl) and three diversityto element families in species like cotton, unique clones with probe B (hDW2, XDW3, ADW4). XDWl did which have considerably larger genomes (lo8bp us. 5 not hybridize to phage isolated with probe B. This data, as well X lo9 bp) (KONIECZNYet al. 1991; VANDERWIELet al. as additional DNA sequence of Tall-I, suggested that YAC EG15A3 was a chimera,with thejunction residing at the BamHI 1993). Unlike their counterpartsin other plants, the A. site in Tall-l (see RESIILTS). The bonpjde Tall-I insertion, thalzana elements have not amplified to appreciable therefore, was cloned froma Cohmbid genomic lambda phage copy numbers. Each element family is represented by library (kind gift of J. MULLIGANand R. DAVIS).The library one or few insertions. was screened using a 1.8-kb Hind111 fragment from XDWl adja- Here we present evidence for the presence of a class cent to the site of Tall-I insertion (probe D, Figure 1). assay for reversetranscriptases: Two conserved of retrotransposons not previously described in A. thali- PCR amino acid sequence domains shared among non-LTR retro- ana-the non-LTR retrotransposons. One such ele- transposon reverse transcriptases were used to design com- ment, Tall-1, was identified through analysis of DNA pletely degenerate oligonucleotideprimers (DV0144 = sequences flanking the AB13 gene. Sequence similarity GGGATCCNGGNCCNGAYGGNWT and DV0145 = GGA- between Tal 1-1 and related retrotransposons provided ATTCGGNSWNARNGGRYMNCCYTG, where R = A + G; Y the basis for a polymerase chain reaction assay, which =C+T;M=A+C;S=G+C;W=A+T;N=A+G + C + T). Amplifications were carried out in 50-yl reactions was used to characterize the
Recommended publications
  • Interfering with Retrotransposition by Two Types of CRISPR Effectors
    Zhang et al. Cell Discovery (2020) 6:30 Cell Discovery https://doi.org/10.1038/s41421-020-0164-0 www.nature.com/celldisc ARTICLE Open Access Interfering with retrotransposition by two types of CRISPR effectors: Cas12a and Cas13a Niubing Zhang1,2, Xinyun Jing1, Yuanhua Liu3, Minjie Chen1,2, Xianfeng Zhu2, Jing Jiang2, Hongbing Wang4, Xuan Li1 and Pei Hao3 Abstract CRISPRs are a promising tool being explored in combating exogenous retroviral pathogens and in disabling endogenous retroviruses for organ transplantation. The Cas12a and Cas13a systems offer novel mechanisms of CRISPR actions that have not been evaluated for retrovirus interference. Particularly, a latest study revealed that the activated Cas13a provided bacterial hosts with a “passive protection” mechanism to defend against DNA phage infection by inducing cell growth arrest in infected cells, which is especially significant as it endows Cas13a, a RNA-targeting CRISPR effector, with mount defense against both RNA and DNA invaders. Here, by refitting long terminal repeat retrotransposon Tf1 as a model system, which shares common features with retrovirus regarding their replication mechanism and life cycle, we repurposed CRISPR-Cas12a and -Cas13a to interfere with Tf1 retrotransposition, and evaluated their different mechanisms of action. Cas12a exhibited strong inhibition on retrotransposition, allowing marginal Tf1 transposition that was likely the result of a lasting pool of Tf1 RNA/cDNA intermediates protected within virus-like particles. The residual activities, however, were completely eliminated with new constructs for persistent crRNA targeting. On the other hand, targeting Cas13a to Tf1 RNA intermediates significantly inhibited Tf1 retrotransposition. However, unlike in bacterial hosts, the sustained activation of Cas13a by Tf1 transcripts did not cause cell growth arrest in S.
    [Show full text]
  • A Species-Specific Retrotransposon Drives a Conserved Cdk2ap1 Isoform Essential for Preimplantation Development
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436683; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: A species-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for preimplantation development Authors: Andrew Modzelewski1†, Wanqing Shao2†, Jingqi Chen1, Angus Lee1, Xin Qi1, Mackenzie Noon1, Kristy Tjokro1, Gabriele Sales3, Anne Biton4, Terence Speed5, Zhenyu Xuan6, Ting Wang2#, Davide Risso3# and Lin He1# Affiliations: 1 Division of Cellular and Developmental Biology, MCB department, University of California at Berkeley, Berkeley, CA, USA. 2 Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA 3 Department of Statistical Sciences, University of Padova, Italy. 4 Division of Biostatistics, University of California at Berkeley, Berkeley, CA 94720, USA. 5 Bioinformatics Division, WEHI, Parkville, VIC 3052, Australia. 6 Department of Biological Sciences, The University of Texas at Dallas, Richardson Texas, USA # Correspondence to: [email protected], [email protected] and [email protected] †These authors contributed equally. Abstract: Retrotransposons mediate gene regulation in multiple developmental and pathological processes. Here, we characterized the transient retrotransposon induction in preimplantation development of eight mammalian species. While species-specific in sequences, induced retrotransposons exhibit a similar preimplantation profile, conferring gene regulatory activities particularly through LTR retrotransposon promoters. We investigated a mouse-specific MT2B2 retrotransposon promoter, which generates an N-terminally truncated, preimplantation-specific Cdk2ap1ΔN isoform to promote cell proliferation. Cdk2ap1ΔN functionally contrasts to the canonical Cdk2ap1, which represses cell proliferation and peaks in mid-gestation stage.
    [Show full text]
  • LINE1 Inhibition (With Nucleoside Reverse Transcriptase Inhibitors)
    Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. LINE1 inhibition (with nucleoside reverse transcriptase inhibitors) Evidence Summary L1 activation may be associated with age-related diseases, and nucleoside reverse transcriptase inhibitors (NRTIs) suppress L1 activation and may be beneficial in age-related diseases. Neuroprotective Benefit: Increased retrotransposition of transposable elements is implicated in neurodegenerative diseases, so NRTIs could theoretically reverse these actions, but only preclinical evidence exists to date. Aging and related health concerns: Preclinical studies suggest that NRTIs may be an effective anti-aging therapy, and clinical studies suggest they may be effective for cancer. Safety: NRTIs are associated with some mild side effects and rare severe, possibly life- threatening, side effects. 1 Availability: Available with Dose: Depends on the Molecular Formula: N/A prescription (as generics) NRTI Molecular weight: N/A Half-life: Depends on the BBB: Possibly penetrant NRTI in animal models Clinical trials: Many for HIV, Observational studies: one for ALS Many What is it? Retrotransposons are stretches of DNA that can replicate and reinsert into other parts of the genome. Their presence in the DNA comes from retroviral infection of germline cells throughout evolutionary history.
    [Show full text]
  • Genome Organization/ Human
    Genome Organization/ Secondary article Human Article Contents . Introduction David H Kass, Eastern Michigan University, Ypsilanti, Michigan, USA . Sequence Complexity Mark A Batzer, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA . Single-copy Sequences . Repetitive Sequences . The human nuclear genome is a highly complex arrangement of two sets of 23 Macrosatellites, Minisatellites and Microsatellites . chromosomes, or DNA molecules. There are various types of DNA sequences and Gene Families . chromosomal arrangements, including single-copy protein-encoding genes, repetitive Gene Superfamilies . sequences and spacer DNA. Transposable Elements . Pseudogenes . Mitochondrial Genome Introduction . Genome Evolution . Acknowledgements The human nuclear genome contains 3000 million base pairs (bp) of DNA, of which only an estimated 3% possess protein-encoding sequences. As shown in Figure 1, the DNA sequences of the eukaryotic genome can be classified sequences such as the ribosomal RNA genes. Repetitive into several types, including single-copy protein-encoding sequences with no known function include the various genes, DNA that is present in more than one copy highly repeated satellite families, and the dispersed, (repetitive sequences) and intergenic (spacer) DNA. The moderately repeated transposable element families. The most complex of these are the repetitive sequences, some of remainder of the genome consists of spacer DNA, which is which are functional and some of which are without simply a broad category of undefined DNA sequences. function. Functional repetitive sequences are classified into The human nuclear genome consists of 23 pairs of dispersed and/or tandemly repeated gene families that chromosomes, or 46 DNA molecules, of differing sizes either encode proteins (and may include noncoding (Table 1).
    [Show full text]
  • Sap1 Dependent Replication Fork Barriers Guide Integration of Ltr Retrotransposons in S
    SAP1 DEPENDENT REPLICATION FORK BARRIERS GUIDE INTEGRATION OF LTR RETROTRANSPOSONS IN S. POMBE By! JAKE ZACHARY JACOBS A Dissertation submitted to the! Graduate School-New Brunswick! Rutgers, The State University of New Jersey !In partial fulfillment of the requirements! For the degree of !Doctor of Philosophy !Graduate Program in Biochemistry !Written under the direction of Dr. Mikel Zaratiegui, Ph.D.! And approved by _____________________________________________________ _____________________________________________________ _____________________________________________________ _____________________________________________________! New Brunswick, New Jersey! October 2016 ABSTRACT OF THE DISSERTATION SAP1 DEPENDENT REPLICATION FORK BARRIERS GUIDE INTEGRATION OF LTR RETROTRANSPOSONS IN S. POMBE By! JAKE ZACHARY JACOBS Dissertation Director: Dr. Mikel Zaratiegui Long Terminal Repeat retrotransposable elements (LTR-TEs) are a large group of eukaryotic Transposable Elements characterized by flanking repeats in tandem orientation—the LTRs. The LTRs of these elements contain sequences that recruit proteins involved in their expression, replication, silencing, organization, and stability. A successful transposable element must maximize its reproductive amplification without jeopardizing its host, and several characterized LTR-TEs appear to accomplish this through the selection of integration sites away from protein coding sequences. However, despite their high relatedness, a universal mechanism that explains how these parasitic elements avoid
    [Show full text]
  • Genome-Wide Mapping and Characterization of Microsatellites In
    www.nature.com/scientificreports OPEN Genome-wide mapping and characterization of microsatellites in the swamp eel genome Received: 14 February 2017 Zhigang Li, Feng Chen, Chunhua Huang, Weixin Zheng, Chunlai Yu, Hanhua Cheng & Accepted: 26 April 2017 Rongjia Zhou Published: xx xx xxxx We described genome-wide screening and characterization of microsatellites in the swamp eel genome. A total of 99,293 microsatellite loci were identified in the genome with an overall density of 179 microsatellites per megabase of genomic sequences. The dinucleotide microsatellites were the most abundant type representing 71% of the total microsatellite loci and the AC-rich motifs were the most recurrent in all repeat types. Microsatellite frequency decreased as numbers of repeat units increased, which was more obvious in long than short microsatellite motifs. Most of microsatellites were located in non-coding regions, whereas only approximately 1% of the microsatellites were detected in coding regions. Trinucleotide repeats were most abundant microsatellites in the coding regions, which represented amino acid repeats in proteins. There was a chromosome-biased distribution of microsatellites in non-coding regions, with the highest density of 203.95/Mb on chromosome 8 and the least on chromosome 7 (164.06/Mb). The most abundant dinucleotides (AC)n was mainly located on chromosome 8. Notably, genomic mapping showed that there was a chromosome-biased association of genomic distributions between microsatellites and transposon elements. Thus, the novel dataset of microsatellites in swamp eel provides a valuable resource for further studies on QTL-based selection breeding, genetic resource conservation and evolutionary genetics. Swamp eel (Monopterus albus) taxonomically belongs to teleosts, the family Synbranchidae of the order Synbranchiformes (Neoteleostei, Teleostei, and Vertebrata).
    [Show full text]
  • Joseph G. Sinkovics RNA/DNA and Cancer RNA/DNA and Cancer Joseph G
    Joseph G. Sinkovics RNA/DNA and Cancer RNA/DNA and Cancer Joseph G. Sinkovics RNA/DNA and Cancer 123 Joseph G. Sinkovics Retired Professor, M.D. Anderson Hospital Comprehensive Cancer Center The University of Texas Houston, TX USA Retired External Professor and Honorary Member H.L. Moffitt Comprehensive Cancer Center The University of South Florida Tampa, FL USA External Professor, Department of Molecular Medicine The University of South Florida Morsani College of Medicine Tampa, FL USA Retired Medical Director; Senior Scientific Medical Advisor, The Cancer Institute St. Joseph’s Hospital Tampa, FL USA ISBN 978-3-319-22278-3 ISBN 978-3-319-22279-0 (eBook) DOI 10.1007/978-3-319-22279-0 Library of Congress Control Number: 2015946582 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Replication-Timing-Correlated Spatial Chromatin Arrangements in Cancer and in Primate Interphase Nuclei
    1876 Research Article Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei Florian Grasser1, Michaela Neusser1, Heike Fiegler2, Tobias Thormeyer1, Marion Cremer1, Nigel P. Carter2, Thomas Cremer1,3 and Stefan Müller1,* 1Department of Biology II, Human Genetics, Ludwig-Maximilians University Munich, 82152 Planegg-Martinsreid, Germany 2The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK 3Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians University Munich, Munich, Germany *Author for correspondence (e-mail: [email protected]) Accepted 17 March 2008 Journal of Cell Science 121, 1876-1886 Published by The Company of Biologists 2008 doi:10.1242/jcs.026989 Summary Using published high-resolution data on S-phase replication major driving force for the 3D radial genome organization in timing, we determined the three-dimensional (3D) nuclear human lymphoblastoid cell nuclei. Instead, genomic properties, arrangement of 33 very-early-replicating and 31 very-late- and local gene density in particular, were identified as the replicating loci. We analyzed diploid human, non-human decisive parameters. Further detailed comparisons of primate and rearranged tumor cells by 3D fluorescence in situ chromosome 7 loci in primate and tumor cells suggest that the hybridization with the aim of investigating the impact of inversions analyzed influence nuclear topology to a greater chromosomal structural changes on the nuclear organization extent than the translocations, thus pointing to geometrical of these loci. Overall, their topology was found to be largely constraints in the 3D conformation of a chromosome territory. conserved between cell types, species and in tumor cells.
    [Show full text]
  • Downloads/Repeatmaskedgenomes
    Kojima Mobile DNA (2018) 9:2 DOI 10.1186/s13100-017-0107-y REVIEW Open Access Human transposable elements in Repbase: genomic footprints from fish to humans Kenji K. Kojima1,2 Abstract Repbase is a comprehensive database of eukaryotic transposable elements (TEs) and repeat sequences, containing over 1300 human repeat sequences. Recent analyses of these repeat sequences have accumulated evidences for their contribution to human evolution through becoming functional elements, such as protein-coding regions or binding sites of transcriptional regulators. However, resolving the origins of repeat sequences is a challenge, due to their age, divergence, and degradation. Ancient repeats have been continuously classified as TEs by finding similar TEs from other organisms. Here, the most comprehensive picture of human repeat sequences is presented. The human genome contains traces of 10 clades (L1, CR1, L2, Crack, RTE, RTEX, R4, Vingi, Tx1 and Penelope) of non-long terminal repeat (non-LTR) retrotransposons (long interspersed elements, LINEs), 3 types (SINE1/7SL, SINE2/tRNA, and SINE3/5S) of short interspersed elements (SINEs), 1 composite retrotransposon (SVA) family, 5 classes (ERV1, ERV2, ERV3, Gypsy and DIRS) of LTR retrotransposons, and 12 superfamilies (Crypton, Ginger1, Harbinger, hAT, Helitron, Kolobok, Mariner, Merlin, MuDR, P, piggyBac and Transib) of DNA transposons. These TE footprints demonstrate an evolutionary continuum of the human genome. Keywords: Human repeat, Transposable elements, Repbase, Non-LTR retrotransposons, LTR retrotransposons, DNA transposons, SINE, Crypton, MER, UCON Background contrast, MER4 was revealed to be comprised of LTRs of Repbase and conserved noncoding elements endogenous retroviruses (ERVs) [1]. Right now, Repbase Repbase is now one of the most comprehensive data- keeps MER1 to MER136, some of which are further bases of eukaryotic transposable elements and repeats divided into several subfamilies.
    [Show full text]
  • Tracking the Evolution of Mammalian Wide Interspersed Repeats Across the Mammalian Tree of Life
    Master's thesis Tracking the evolution of mammalian wide interspersed repeats across the mammalian tree of life. Author Jakob Friedrich Strauß First marker Prof. Dr. Joachim Kurtz Second marker Prof. Dr. Wojciech Maka lowski November 2, 2010 Tracking the evolution of mammalian wide interspersed repeats across the mammalian tree of life. Jakob Friedrich Strauß Institute of Bioinformatics WWU M¨unster Master's thesis November 2, 2010 Abstract This work focuses on the detection of mammalian wide interspersed repeats (MIRs) within the mammalian tree of life. MIRs are retroposons that belong to the class of SINEs (short interspersed repeats). The amplification of the ancient MIR is estimated 130 ma years ago, just before the mammalian radiation and has soon become inactive. The main idea of this project is to cross detect MIR elements in orthologous loci between fully sequenced mammalian genomes. While a MIR sequence in an extant species may still have a strong resemblance to the ancient MIR element, orthologous sequences in other mammalian species may have diverged beyond recognition, e.g. in mammals with a high substitution rate as rodents. But even those strongly diverged MIR elements may be detectable when the orthologous loci of a closely related species contains a less diverged element. We analyze in which gene-families MIR elements have spread and distinguish between MIR occurrence within UTRs, introns and exons. Thus we hope to illuminate the contri- bution of MIR elements to mammalian evolution. Contents 1 Background1 1.1 Transposable Elements.............................1 1.2 Genomic impact of transposable elements...................3 1.2.1 Long interspersed nuclear elements (LINEs).............4 1.2.2 Short interspersed nuclear elements (SINEs).............4 1.3 Mammalian wide interspersed repeats (MIRs)................5 1.3.1 MIR elements and the tree of life...................7 1.4 Detection of transposable elements.......................8 1.5 Goals of this study..............................
    [Show full text]
  • Squire: Software for Quantifying Interspersed Repeat Elements
    bioRxiv preprint doi: https://doi.org/10.1101/313999; this version posted May 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 SQuIRE: Software for Quantifying Interspersed Repeat Elements 2 Authors: Yang Wan R.1, Daniel Ardeljan1,2, Clarissa N. Pacyna 1,3, Lindsay M. Payer1,6, Kathleen H. 3 Burns1,3, 4,5,6 4 1 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, 5 USA. 6 2 McKusick-Nathans Institute of Genetics, Johns Hopkins University School of Medicine, Baltimore, 7 Maryland, 21205, USA. 8 3 Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA 9 4 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. 10 5 Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 11 Baltimore, Maryland, USA. 12 6 These authors contributed equally to this work. 13 Running Title: SQuIRE 14 Keywords: TE, retrotransposon, mobile element, RNA-seq alignment, differential expression 15 analysis 16 Corresponding author:Kathleen H. Burns, M.D., Ph.D. 17 Johns Hopkins University School of Medicine 18 733 N. Broadway, MRB 447 19 Baltimore, MD 21205 20 [email protected] 21 410-502-7214 1 bioRxiv preprint doi: https://doi.org/10.1101/313999; this version posted May 4, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Drosophila: Retrotransposons Making up Telomeres
    Review Drosophila: Retrotransposons Making up Telomeres Elena Casacuberta Institute of Evolutionary Biology, IBE, CSIC—Pompeu Fabra University, Barcelona Spain, Passeig de la Barceloneta 37‐49, 08003 Barcelona, Spain; [email protected]‐csic.es; Tel.: +34‐932309637; Fax: +34‐932309555 Guest Editors: Paul M. Liebermann and Benedikt B. Kaufer Received: 9 June 2017; Accepted: 17 July 2017; Published: 19 July 2017 Abstract: Drosophila and extant species are the best‐studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT‐A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT‐A Related (TAHRE), all three specialized non‐Long Terminal Repeat (non‐LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT‐A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.
    [Show full text]