Tracking the Evolution of Mammalian Wide Interspersed Repeats Across the Mammalian Tree of Life

Total Page:16

File Type:pdf, Size:1020Kb

Tracking the Evolution of Mammalian Wide Interspersed Repeats Across the Mammalian Tree of Life Master's thesis Tracking the evolution of mammalian wide interspersed repeats across the mammalian tree of life. Author Jakob Friedrich Strauß First marker Prof. Dr. Joachim Kurtz Second marker Prof. Dr. Wojciech Maka lowski November 2, 2010 Tracking the evolution of mammalian wide interspersed repeats across the mammalian tree of life. Jakob Friedrich Strauß Institute of Bioinformatics WWU M¨unster Master's thesis November 2, 2010 Abstract This work focuses on the detection of mammalian wide interspersed repeats (MIRs) within the mammalian tree of life. MIRs are retroposons that belong to the class of SINEs (short interspersed repeats). The amplification of the ancient MIR is estimated 130 ma years ago, just before the mammalian radiation and has soon become inactive. The main idea of this project is to cross detect MIR elements in orthologous loci between fully sequenced mammalian genomes. While a MIR sequence in an extant species may still have a strong resemblance to the ancient MIR element, orthologous sequences in other mammalian species may have diverged beyond recognition, e.g. in mammals with a high substitution rate as rodents. But even those strongly diverged MIR elements may be detectable when the orthologous loci of a closely related species contains a less diverged element. We analyze in which gene-families MIR elements have spread and distinguish between MIR occurrence within UTRs, introns and exons. Thus we hope to illuminate the contri- bution of MIR elements to mammalian evolution. Contents 1 Background1 1.1 Transposable Elements.............................1 1.2 Genomic impact of transposable elements...................3 1.2.1 Long interspersed nuclear elements (LINEs).............4 1.2.2 Short interspersed nuclear elements (SINEs).............4 1.3 Mammalian wide interspersed repeats (MIRs)................5 1.3.1 MIR elements and the tree of life...................7 1.4 Detection of transposable elements.......................8 1.5 Goals of this study............................... 11 i JF Strauß IOB, WWU M¨unster 2 Material and Methods 13 2.1 Cross species MIR identification in genome / genome alignments..... 13 2.2 MIR associated annotation features...................... 15 2.3 MIR sequence site heterogeneity....................... 15 2.4 Genomes..................................... 16 2.5 Software..................................... 17 2.6 Databases.................................... 18 3 Results and Discussion 21 3.1 Cross species MIR identification in genome / genome alignments..... 21 3.2 Species specific repeatmasker library..................... 23 3.2.1 MIR seed alignments.......................... 23 3.2.2 MIR site heterogeneity......................... 24 3.3 MIR associated annotational features..................... 28 3.4 MIR elements in the lizard and the bird genomes.............. 29 3.5 Building profiles for MIR sequences...................... 30 4 Conclusion 32 5 Outlook 32 References 32 6 Supplementary material 38 List of Figures 1 Multicolored corn cobs.............................1 2 Classification and hypothetical phylogeny of TEs...............3 3 Schema of a long interspersed nuclear element................4 4 Schema of a short interspersed nuclear element................5 5 Schema of the MIR element...........................6 6 MIR alignment with Gln-tRNA and L2a tail.................6 7 Phylogeny of Sauria SINEs, mammalian MIR and bird MIRs........8 8 TE detection tools................................ 10 9 Concept of genome genome comparison.................... 14 10 Approach of MIR reannotation......................... 15 11 Phylogeny of analysed species......................... 17 12 RepeatMasker: Example MIR alignment output............... 18 13 Phylogeny: MIR and MIR like sequences in RepBase............ 19 14 Reannotation of MIRs.............................. 23 15 Length histogram MIRs in human and mouse................. 24 16 MIR heterogeneity plot: baboon........................ 25 17 MIR heterogeneity plot: human........................ 25 18 MIR consensus plot: baboon.......................... 25 ii JF Strauß IOB, WWU M¨unster 19 MIR consensus plot: human.......................... 26 20 Sequence site plot difference.......................... 26 21 Sequence site heterogeneity plots A...................... 27 22 Sequence site heterogeneity plots B...................... 28 List of Tables 1 List of genome versions............................. 16 2 RepBase Update: Mammals.......................... 20 3 RepBase Update: Total............................. 20 4 RepeatMasker annotation of MIR elements in the chosen mammals.... 21 5 BlastZ alignment blocks in the chosen mammals............... 21 6 New RM annotation of unannotated genomes with the small MIR library. 22 7 MIR position overlap with selected genomic features............. 29 iii JF Strauß IOB, WWU M¨unster 1 Background 1.1 Transposable Elements Transposable elements (TEs) are stretches of genomic DNA that are able transpose. Transposition hereby means a change in location and can, but does not necessarily need to include an increase in copy number. TEs were first discovered and described by Bar- bara McClintock. In 1944 she started researching a position on the maize chromosome 9 that she called dissociator, as it was prone to break the chromosome at this position. In 1948 she found that the dissociator could actually change its position and induce stable mutations knocking out pigmentation genes resulting in multicolored maize cobs. This lead to the first publication about transposons at all in 1950: The origin and behavior of mutable loci in maize[1]. For a long time the paradigm for TEs was that they are selfish and parasitic, littering the genome with copies of themselves [2,3]. This paradigm changed over time as more and more functions and roles could be assigned for TEs, such as large scale mutations, gene regulation, gene duplication, pseudogene creation, exon cre- ation and exon shuffling (see paragraph 1.2). The mechanism by which TEs transpose is used to classify them. Their features on the sequence level can be used to further classify them into subclasses. As of now three main classes of TEs are described: Class I, Class II and Class III elements. Class III elements are are not a real class, and are most of the time referred to as unclassified TEs. Figure 1: This picture shows multicolored corn cobs. The multicoloring is the result of transposable elements inserting into pigmentation genes. (Source: Wikimedia:Asbestos/GFDL) Class I elements are called DNA transposons. DNA transposons transpose by a cut and paste mechanism. They get cut out of their position and are reintroduced at another position. Typical for DNA transposons are the inverted repeats (ITRs), short repeats that 1 JF Strauß IOB, WWU M¨unster are flanking the transposon. The free intermediate of a DNA transposons is DNA, hence the name. Increase in copy number happens slowly, as only certain events, like segmental duplication, duplication of the free DNA state and cellular repair mechanisms can cause this. Usually DNA transposons encode for proteins such as the transposase used in the process of transposition, cutting out and reinserting the TE. Class II elements are called retrotransposons. In general the insertion of a TE can be unspecific, random, within limitations of course as not being lethal, but as for LTR retrotransposons it can also show a distinct target site preference [4]. Retrotransposons are the most versatile class of TEs. All retrotransposons have in common to transpose by a copy and paste mechanism. They get transcribed to RNA and reverse transcribed into DNA. With this mechanism, each transpositon results in the gain of a new copy. Retrotransposons can be divided into long terminal repeat (LTR) retrotransposons and non LTR retrotransposons. LTR retrotransposons usually encode for many proteins such as gag, the reverse transcriptase, RH and integrase. The LTRs of these transposons are direct repeats, opposed to inverted repeats of DNA transposons, and emerge as an artifact of the reverse transcription. The subclass of non LTR retrotransposons consists of long interspersed nuclear ele- ments (LINEs) and short nuclear interspersed elements (SINEs). While LINEs are au- tonomous retrotransposons, they encode for the proteins needed for their transposition, SINEs are LINE dependent in the way, that they recruit the LINE transposition machin- ery. Figure2 shows how class I, class II TEs and MITEs could have evolved. This fig- ure suggests a phylogeny, that could explain how retroviruses have evolved from LTR retrotransposons. Class III, unclassified, transposons are called MITEs. Their mechanism for transpo- sition is at the time unknown. In figure2 they are shown as descendants from DNA transposons and don't have their own class yet. In the human genome about 45% of the genome sequence is reported to be composed of TEs from which two-third (30% in total) are LINEs and SINEs [5]. As a lot of very old TE sequences have probably diverged beyond recognition, it it likely that much more of the human genome are derived from TEs. 2 NATURE|Vol 443|5 October 2006 NEWS & VIEWS FEATURE gene expression can also be felt through effects is reinforced by the observation that early nutri- result from the insertion of SINEs and LINEs involving TEs, because these elements can con- tion can influence the expression of various near or within genes. The human genome trol genes epigenetically when inserted within genes, including TEs, at critical developmental has
Recommended publications
  • An Alu Element-Based Model of Human Genome Instability George Wyndham Cook, Jr
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2013 An Alu element-based model of human genome instability George Wyndham Cook, Jr. Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Cook, Jr., George Wyndham, "An Alu element-based model of human genome instability" (2013). LSU Doctoral Dissertations. 2090. https://digitalcommons.lsu.edu/gradschool_dissertations/2090 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN ALU ELEMENT-BASED MODEL OF HUMAN GENOME INSTABILITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by George Wyndham Cook, Jr. B.S., University of Arkansas, 1975 May 2013 TABLE OF CONTENTS LIST OF TABLES ...................................................................................................... iii LIST OF FIGURES .................................................................................................... iv LIST OF ABBREVIATIONS ......................................................................................
    [Show full text]
  • DNA Sequence Insertion and Evolutionary Variation in Gene Regulation (Mobile Elements/Long Terminal Repeats/Alu Sequences/Factor-Binding Sites) Roy J
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9374-9377, September 1996 Colloquium Paper This paper was presented at a colloquium entitled "Biology of Developmental Transcription Control, " organized by Eric H. Davidson, Roy J. Britten, and Gary Felsenfeld, held October 26-28, 1995, at the National Academy of Sciences in Irvine, CA. DNA sequence insertion and evolutionary variation in gene regulation (mobile elements/long terminal repeats/Alu sequences/factor-binding sites) RoY J. BRITrEN Division of Biology, California Institute of Technology, 101 Dahlia Avenue, Corona del Mar, CA 92625 ABSTRACT Current evidence on the long-term evolution- 3 and 4). Sequence change, obscuring the original structure, ary effect of insertion of sequence elements into gene regions has occurred in the long history, and the underlying rate of is reviewed, restricted to cases where a sequence derived from base substitution that is responsible is known (5). a past insertion participates in the regulation of expression of The requirements for a convincing example are: (i) that a useful gene. Ten such examples in eukaryotes demonstrate there be a trace of a known class of elements present in gene that segments of repetitive DNA or mobile elements have been region; (ii) that there is evidence that it has been there long inserted in the past in gene regions, have been preserved, enough to not just be a transient mutation; (iii) that some sometimes modified by selection, and now affect control of sequence residue of the mobile element or repeat participates transcription ofthe adjacent gene. Included are only examples in regulation of expression of the gene; (iv) that the gene have in which transcription control was modified by the insert.
    [Show full text]
  • Interfering with Retrotransposition by Two Types of CRISPR Effectors
    Zhang et al. Cell Discovery (2020) 6:30 Cell Discovery https://doi.org/10.1038/s41421-020-0164-0 www.nature.com/celldisc ARTICLE Open Access Interfering with retrotransposition by two types of CRISPR effectors: Cas12a and Cas13a Niubing Zhang1,2, Xinyun Jing1, Yuanhua Liu3, Minjie Chen1,2, Xianfeng Zhu2, Jing Jiang2, Hongbing Wang4, Xuan Li1 and Pei Hao3 Abstract CRISPRs are a promising tool being explored in combating exogenous retroviral pathogens and in disabling endogenous retroviruses for organ transplantation. The Cas12a and Cas13a systems offer novel mechanisms of CRISPR actions that have not been evaluated for retrovirus interference. Particularly, a latest study revealed that the activated Cas13a provided bacterial hosts with a “passive protection” mechanism to defend against DNA phage infection by inducing cell growth arrest in infected cells, which is especially significant as it endows Cas13a, a RNA-targeting CRISPR effector, with mount defense against both RNA and DNA invaders. Here, by refitting long terminal repeat retrotransposon Tf1 as a model system, which shares common features with retrovirus regarding their replication mechanism and life cycle, we repurposed CRISPR-Cas12a and -Cas13a to interfere with Tf1 retrotransposition, and evaluated their different mechanisms of action. Cas12a exhibited strong inhibition on retrotransposition, allowing marginal Tf1 transposition that was likely the result of a lasting pool of Tf1 RNA/cDNA intermediates protected within virus-like particles. The residual activities, however, were completely eliminated with new constructs for persistent crRNA targeting. On the other hand, targeting Cas13a to Tf1 RNA intermediates significantly inhibited Tf1 retrotransposition. However, unlike in bacterial hosts, the sustained activation of Cas13a by Tf1 transcripts did not cause cell growth arrest in S.
    [Show full text]
  • Complete Article
    The EMBO Journal Vol. I No. 12 pp. 1539-1544, 1982 Long terminal repeat-like elements flank a human immunoglobulin epsilon pseudogene that lacks introns Shintaro Ueda', Sumiko Nakai, Yasuyoshi Nishida, lack the entire IVS have been found in the gene families of the Hiroshi Hisajima, and Tasuku Honjo* mouse a-globin (Nishioka et al., 1980; Vanin et al., 1980), the lambda chain (Hollis et al., 1982), Department of Genetics, Osaka University Medical School, Osaka 530, human immunoglobulin Japan and the human ,B-tubulin (Wilde et al., 1982a, 1982b). The mouse a-globin processed gene is flanked by long terminal Communicated by K.Rajewsky Received on 30 September 1982 repeats (LTRs) of retrovirus-like intracisternal A particles on both sides, although their orientation is opposite to each There are at least three immunoglobulin epsilon genes (C,1, other (Lueders et al., 1982). The human processed genes CE2, and CE) in the human genome. The nucleotide sequences described above have poly(A)-like tails -20 bases 3' to the of the expressed epsilon gene (CE,) and one (CE) of the two putative poly(A) addition signal and are flanked by direct epsilon pseudogenes were compared. The results show that repeats of several bases on both sides (Hollis et al., 1982; the CE3 gene lacks the three intervening sequences entirely and Wilde et al., 1982a, 1982b). Such direct repeats, which were has a 31-base A-rich sequence 16 bases 3' to the putative also found in human small nuclear RNA pseudogenes poly(A) addition signal, indicating that the CE3 gene is a pro- (Arsdell et al., 1981), might have been formed by repair of cessed gene.
    [Show full text]
  • Transcriptome-Wide Effects of Inverted Sines on Gene Expression And
    Tajaddod et al. Genome Biology (2016) 17:220 DOI 10.1186/s13059-016-1083-0 RESEARCH Open Access Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity Mansoureh Tajaddod1†, Andrea Tanzer3†, Konstantin Licht2†, Michael T. Wolfinger2,3, Stefan Badelt3, Florian Huber1,4, Oliver Pusch2, Sandy Schopoff1, Michael Janisiw2, Ivo Hofacker3 and Michael F. Jantsch2,5* Abstract Background: Short interspersed elements (SINEs) represent the most abundant group of non-long-terminal repeat transposable elements in mammalian genomes. In primates, Alu elements are the most prominent and homogenous representatives of SINEs. Due to their frequent insertion within or close to coding regions, SINEs have been suggested to play a crucial role during genome evolution. Moreover, Alu elements within mRNAs have also been reported to control gene expression at different levels. Results: Here, we undertake a genome-wide analysis of insertion patterns of human Alus within transcribed portions of the genome. Multiple, nearby insertions of SINEs within one transcript are more abundant in tandem orientation than in inverted orientation. Indeed, analysis of transcriptome-wide expression levels of 15 ENCODE cell lines suggests a cis-repressive effect of inverted Alu elements on gene expression. Using reporter assays, we show that the negative effect of inverted SINEs on gene expression is independent of known sensors of double-stranded RNAs. Instead, transcriptional elongation seems impaired, leading to reduced mRNA levels. Conclusions: Our study suggests that there is a bias against multiple SINE insertions that can promote intramolecular base pairing within a transcript. Moreover, at a genome-wide level, mRNAs harboring inverted SINEs are less expressed than mRNAs harboring single or tandemly arranged SINEs.
    [Show full text]
  • Sequences Enriched in Alu Repeats Drive Nuclear Localization of Long Rnas in Human Cells
    bioRxiv preprint doi: https://doi.org/10.1101/189746; this version posted September 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells Yoav Lubelsky and Igor Ulitsky* Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel * - Corresponding author, [email protected] +972-8-9346421 Abstract Long noncoding RNAs (lncRNAs) are emerging as key players in multiple cellular pathways, but their modes of action, and how those are dictated by sequence remain elusive. While lncRNAs share most molecular properties with mRNAs, they are more likely to be enriched in the nucleus, a feature that is likely to be crucial for function of many lncRNAs, but whose molecular underpinnings remain largely unclear. In order identify elements that can force nuclear localization we screened libraries of short fragments tiled across nuclear RNAs, which were cloned into the untranslated regions of an efficiently exported mRNA. The screen identified a short sequence derived from Alu elements and found in many mRNAs and lncRNAs that increases nuclear accumulation and reduces overall expression levels. Measurements of the contribution of individual bases and short motifs to the element functionality identified a combination of RCCTCCC motifs that are bound by the abundant nuclear protein HNRNPK. Increased HNRNPK binding and C-rich motifs are predictive of substantial nuclear enrichment in both lncRNAs and mRNAs, and this mechanism is conserved across species. Our results thus detail a novel pathway for regulation of RNA accumulation and subcellular localization that has been co-opted to regulate the fate of transcripts that integrated Alu elements.
    [Show full text]
  • Retrotransposon Long Interspersed Nucleotide Element1 (LINE1) Is
    The Japanese Society of Developmental Biologists Develop. Growth Differ. (2012) 54, 673–685 doi: 10.1111/j.1440-169X.2012.01368.x Original Article Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration Wei Zhu,1 Dwight Kuo,2 Jason Nathanson,3 Akira Satoh,4,5 Gerald M. Pao,1 Gene W. Yeo,3 Susan V. Bryant,5 S. Randal Voss,6 David M. Gardiner5*and Tony Hunter1* 1Molecular and Cell Biology Laboratory and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037, Departments of 2Bioengineering and 3Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA; 4Okayama University, R.C.I.S. Okayama-city, Okayama, 700-8530, Japan; 5Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California 92697, and 6Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, USA Salamanders possess an extraordinary capacity for tissue and organ regeneration when compared to mam- mals. In our effort to characterize the unique transcriptional fingerprint emerging during the early phase of sala- mander limb regeneration, we identified transcriptional activation of some germline-specific genes within the Mexican axolotl (Ambystoma mexicanum) that is indicative of cellular reprogramming of differentiated cells into a germline-like state. In this work, we focus on one of these genes, the long interspersed nucleotide element-1 (LINE-1) retrotransposon, which is usually active in germ cells and silent in most of the somatic tissues in other organisms. LINE-1 was found to be dramatically upregulated during regeneration.
    [Show full text]
  • Isolation, Characterization, and Mapping of Four Novel Polymorphic Markers and an H3.3B Pseudogene to Chromosome 9P21-22
    348J Hum Genet (1999) 44:348–349 © Jpn Soc Hum Genet and Springer-Verlag 1999 BRIEF REPORT — CASE REPORT Elias Aliprandis · Juliette Harris · Barney Yoo Bruce D. Gelb · John A. Martignetti Isolation, characterization, and mapping of four novel polymorphic markers and an H3.3B pseudogene to chromosome 9p21-22 Received: April 16, 1999 / Accepted: May 20, 1999 Abstract Alterations in chromosomal region 9p21-22 are (Cannon-Albright et al. 1994), and multiple familial trich- among the most frequently encountered cytogenetic changes oepithelioma (Harada et al. 1996). We describe the isola- present in a number of human malignancies. In addition, the tion, characterization, fine mapping, and ordering of four causative genes of a number of hereditary cancers have been novel polymorphic markers, the previously identified genetically mapped to this region. We describe the isolation marker D9S1846, and a processed replacement histone and precise localization of four novel polymorphic markers H3.3B pseudogene and its flanking L1 and Alu elements. and a previously identified marker, D9S1846, from this re- gion. Moreover, we have identified a retroposon-rich area within this oncogenic region containing a processed H3.3B pseudogene flanked by an L1 sequence and an Alu element. Source and isolation of polymorphic DNA markers and Together, these finely mapped and ordered reagents should an H3.3B pseudogene prove useful for genetic mapping, sequencing, and loss of heterozygosity studies of the 9p21-22 region. Two P1 clones and one PAC clone (731, 232, and 160 8P, respectively; Research Genetics, Huntsville, AL, USA) from Key words Chromosome 9p21-22 · Polymorphic markers · the region were restriction enzyme digested and the resulting Histone H3.3B Pseudogene · Loss of heterozygosity · fragments were separated electrophoretically and transferred to Retroposon a nylon membrane (NEN, Boston, MA, USA) using standard methods (Maniatis et al.
    [Show full text]
  • Effects of Activation of the LINE-1 Antisense Promoter on the Growth of Cultured Cells
    www.nature.com/scientificreports OPEN Efects of activation of the LINE‑1 antisense promoter on the growth of cultured cells Tomoyuki Honda1*, Yuki Nishikawa1, Kensuke Nishimura1, Da Teng1, Keiko Takemoto2 & Keiji Ueda1 Long interspersed element 1 (LINE‑1, or L1) is a retrotransposon that constitutes ~ 17% of the human genome. Although ~ 6000 full‑length L1s spread throughout the human genome, their biological signifcance remains undetermined. The L1 5′ untranslated region has bidirectional promoter activity with a sense promoter driving L1 mRNA production and an antisense promoter (ASP) driving the production of L1‑gene chimeric RNAs. Here, we stimulated L1 ASP activity using CRISPR‑Cas9 technology to evaluate its biological impacts. Activation of the L1 ASP upregulated the expression of L1 ASP‑driven ORF0 and enhanced cell growth. Furthermore, the exogenous expression of ORF0 also enhanced cell growth. These results indicate that activation of L1 ASP activity fuels cell growth at least through ORF0 expression. To our knowledge, this is the frst report demonstrating the role of the L1 ASP in a biological context. Considering that L1 sequences are desilenced in various tumor cells, our results indicate that activation of the L1 ASP may be a cause of tumor growth; therefore, interfering with L1 ASP activity may be a potential strategy to suppress the growth. Te human genome contains many transposable element-derived sequences, such as endogenous retroviruses and long interspersed element 1 (LINE-1, or L1). L1 is one of the major classes of retrotransposons, and it constitutes ~ 17% of the human genome1. Full-length L1 consists of a 5′ untranslated region (UTR), two open reading frames (ORFs) that encode the proteins ORF1p and ORF2p, and a 3′ UTR with a polyadenylation signal.
    [Show full text]
  • Retroviral Insertions Into a Herpesvirus Are Clustered At
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 3855-3859, May 1993 Biochemistry Retroviral insertions into a herpesvirus are clustered at the junctions of the short repeat and short unique sequences (Marek disease virus/reticuloendotheliosis virus/long terminal repeat/insertional mutagenesis/retroviral integration) DAN JONES*, ROBERT ISFORTt, RICHARD WITTERt, RHONDA KoST*, AND HSING-JIEN KUNG*§ *Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106; tGenetic Toxicology Section, Human and Environmental Safety Division, The Procter and Gamble Company, Miami Valley Laboratories, Cincinnati, OH 45239; and tU.S. Department of Agriculture Agricultural Research Service, Avian Disease and Oncology Laboratory, 3606 East Mount Hope, East Lansing, MI 48823 Communicated by Frederick C. Robbins, January 11, 1993 (receivedfor review November 3, 1992) ABSTRACT We previously described the integration of a integrations are associated with large structural changes in nonacute retrovirus, reticuloendotheliosis virus (REV), into the MDV genome in both the Us and Rs regions (11). the genome of a herpesvirus, Marek disease virus (MDV), By coinfection of duck embryo fibroblasts (DEFs) with following both long-term and short-term coinfection in cul- both REV and MDV, we demonstrated that this process of tured fibroblasts. The long-term coinfection occurred in the retroviral integration can also occur within several passages course of attenuating the oncogenicity ofthe JM strain ofMDV of cocultivation (10). The structure of the inserted REV and was sustained for >100 passages. The short-term coinfec- sequences resembles those of cellular integrated proviruses, tion, which spanned only 16 passages, was designed to recreate with loss of the terminal nucleotides of the retrovirus and a the insertion phenomenon under controlled conditions.
    [Show full text]
  • Whole-Genome Sequencing Reveals Principles of Brain Retrotransposition in Neurodevelopmental Disorders
    Cell Research (2018) 28:187-203. © 2018 IBCB, SIBS, CAS All rights reserved 1001-0602/18 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Whole-genome sequencing reveals principles of brain retrotransposition in neurodevelopmental disorders Jasmine Jacob-Hirsch1, 2, Eran Eyal1, Binyamin A Knisbacher2, Jonathan Roth3, 5, Karen Cesarkas1, Chen Dor1, Sarit Farage-Barhom1, Vered Kunik1, Amos J Simon1, Moran Gal2, Michal Yalon4, Sharon Moshitch-Moshkovitz1, Rick Tearle6, Shlomi Constantini3, 5, Erez Y Levanon2, Ninette Amariglio1, 2, Gideon Rechavi1, 5 1Cancer Research Center and the Wohl Institute of Translational Medicine, the Chaim Sheba Medical Center, Tel Hashomer, Is- rael; 2Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel; 3Department of Pediatric Neurosurgery, Dana Children’s Hospital, Tel Aviv Medical Center, Israel; 4Department of Pediatric Hematology-Oncology, Edmond and Lily Sa- fra Children’s Hospital, The Chaim Sheba Medical Center, Tel Hashomer, Israel; 5Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 6Complete Genomics, 2071 Stierlin Court, Mountain View, CA 94043, USA Neural progenitor cells undergo somatic retrotransposition events, mainly involving L1 elements, which can be potentially deleterious. Here, we analyze the whole genomes of 20 brain samples and 80 non-brain samples, and char- acterized the retrotransposition landscape of patients affected by a variety of neurodevelopmental disorders including Rett syndrome, tuberous sclerosis, ataxia-telangiectasia and autism. We report that the number of retrotranspositions in brain tissues is higher than that observed in non-brain samples and even higher in pathologic vs normal brains. The majority of somatic brain retrotransposons integrate into pre-existing repetitive elements, preferentially A/T rich L1 sequences, resulting in nested insertions.
    [Show full text]
  • Demonstration of Potential Link Between Helicobacter Pylori Related Promoter Cpg Island Methylation and Telomere Shortening in Human Gastric Mucosa
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 28 Research Paper Demonstration of potential link between Helicobacter pylori related promoter CpG island methylation and telomere shortening in human gastric mucosa Tomomitsu Tahara1, Tomoyuki Shibata1, Masaaki Okubo1, Tomohiko Kawamura1, Noriyuki Horiguchi1, Takamitsu Ishizuka1, Naoko Nakano1, Mitsuo Nagasaka1, Yoshihito Nakagawa1, Naoki Ohmiya1 1Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan Correspondence to: Tomomitsu Tahara, email: [email protected] Keywords: DNA methylation, telomere length, gastric mucosa, H. pylori, gastritis Received: October 24, 2015 Accepted: May 02, 2016 Published: June 01, 2016 ABSTRACT Background: Telomere length shortening in Helicobacter pylori (H. pylori) infected gastric mucosa constitutes the earliest steps toward neoplastic transformation. In addition to this genotoxic changes, epigenetic changes such as promoter CpG island (PCGI) methylation are frequently occurred in H. pylori infected gastric mucosa. The aim of this study was to investigate a potential link between H. pylori related PCGI methylation and telomere length shortening in the human gastric mucosa. Methods: Telomere length was measured in non-neoplastic gastric mucosa from 106 cancer-free subjects. To identify H. pylori related PCGI methylation, bisulfite pyrosequencing was used to quantify the methylation of 49 PCGIs from 47 genes and LINE1 repetitive element Results: We identified five PCGIs (IGF2, SLC16A12, SOX11, P2RX7 and MYOD1), which the methylation is closely associated with H. pylori infection. Hypermethylation of all these PCGIs was associated with development of pathological state from normal to mild, active, and atrophic gastritis (P<0.001) and lower pepsinogen I/ II ratio (P<0.05), an indicator for gastric mucosal atrophy.
    [Show full text]