Stratocumulus Clouds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Cloud Brightening
MARINE CLOUD BRIGHTENING Alan Gadian , John Latham, Mirek Andrejczuk, Keith Bower, Tom Choularton, Hugh Coe, Paul Connolly, Ben Parkes, Phillip Rasch, Stephen Salter, Hailong Wang and Rob Wood . Contents:- • Background to the philosophical approach • Some L.E.M . and climate model results • Technological issues. • Future plans and publications. Science Objectives:- • To explain the science of how stratocumulus clouds can have a significant effect on the earth’s radiation balance • To present some modelling results from Latham et al 2011 Marine Cloud Brightening, WRCP October 2011 1 Stratocumulus clouds cover more than 30% of ocean surface Stratocumulus clouds have a high reflectance, which depends on droplet number and mean droplet size. Twomey Effect .:- Smaller drops produce whiter clouds . Proposal :- To advertently to enhance the droplet concentration N in low-level maritime stratocumulus clouds, so increasing cloud albedo (Twomey, JAS, 1977 ) and longevity ( Albrecht, Science, 1989 ) Technique:- To disseminate sea-water droplets of diameter about 1um at the ocean surface. Some of these ascend via turbulence to cloud-base where they are activated to form cloud droplets, thereby enhancing cloud droplet number concentration, N (Latham, Nature 1990 ; Phil Trans Roy Soc 2008 and 2011, under review ) 2 Above:- Computed spherical albedo for increasing pollution in THIN, MEDIUM and THICK clouds. ( Twomey, JAS, 1977 ) Right:- Frequency distributions of the reflectances at 1,535 nm versus reflectances at 754 nm. From ACE-2. Isolines of geometrical thickness (H) and droplet number concentration (N): higher reflectance in polluted cloud, normalised by a similar geometrical thickness (Brenguier et al. 2000 ). 3 Figure 1. Panel (a): Map of MODIS-derived annual mean cloud droplet concentration N 0 for stratiform marine warm clouds. -
Studying Geoengineering with Natural and Anthropogenic Analogs
Studying Geoengineering with Natural and Anthropogenic Analogs Alan Robocka, Douglas G. MacMartinb, Riley Durenc, and Matthew W. Christensend aDepartment of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 bControl and Dynamical Systems, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 cJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 dDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO 80523 Submitted to Climatic Change November 2012 Corresponding Author: Alan Robock Department of Environmental Sciences Rutgers University 14 College Farm Road New Brunswick, NJ 08901 Phone: 848-932-5751 Fax: 732-932-8644 E-mail: [email protected] 1 Abstract 2 Solar radiation management (SRM) has been proposed as a possible option for offsetting 3 some anthropogenic radiative forcing, with the goal of reducing some of the associated climatic 4 changes. There are clearly significant uncertainties associated with SRM, and even small-scale 5 experiments that might reduce uncertainty would carry some risk. However, there are also 6 natural and anthropogenic analogs to SRM, such as volcanic eruptions in the case of 7 stratospheric aerosol injection and ship tracks in the case of marine cloud albedo modification. It 8 is essential to understand what we can learn from these analogs in order to validate models, 9 particularly because of the problematic nature of outdoor experiments. It is also important to 10 understand what we cannot learn, as this might better focus attention on what risks would need to 11 be solely examined by numerical models. Stratospheric conditions following a major volcanic 12 eruption, for example, are not the same as those to be expected from intentional geoengineering, 13 both because of confounding effects of volcanic ash and the differences between continuous and 14 impulsive injection of material into the stratosphere. -
WMO, No. 407 International Cloud Atlas, Volume II
·..- INTERNATIONAL CLOUD ATLAS Volume 11 WORLD METEOROLOGICAL ORGANIZATION 11"]~ii[Ulilliiill~lllifiiilllll INTERNATIONAL CLOUD ATLAS Volume 11 11'-;> oz-; WORLD METEOROLOGICAL ORGANIZATION 1987 © 1987, World Meteorological Organization ISBN 92 - 63 - L2407 - 8 NOTE The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The photographs contained in this volume may not be reproduced without the authoriza tion of the copyright owner. All inquiries regarding reproduction rights should be addressed to the Secretary-General, World Meteorological Organization, Geneva (Switzerland). 03- 4365 v'Z, c ~~ FOREWORD With this new, thoroughly revised edition of Volume 11 of the Study of Clouds. A modified edition of the same work appeared in International Cloud Atlas a key publication is once again made 1939, under the title International Atlas 0/ Clouds and of Types 0./ available for professional meteorologists as well as for a wide circle of Skies, Volume I, General Atlas. The latter contained 174 plates: IQ I interested amateurs. For meteorologists this is a fundamental hand cloud photographs taken from the ground and 22 from aeroplanes, and book, for others a source of acquaintance with the spectacular world of 51 photographs of types of sky. From those photographs, 31 were clouds. printed in two colours (grey and blue) to distinguish between the blue The present internationally adopted system of cloud classification of the sky and the shadows of the clouds. -
Touching the Clouds Activity Guide
Touching the Clouds Activity Guide Purpose Provide a mental representation of each cloud type Create a tactile cloud identification chart Overview Individuals will construct and touch a tactile model of common types of clouds to learn how to describe the clouds based on their shape and texture. They will compare their descriptions with the standard classifications using the cloud types identified in the GLOBE Clouds Protocol. Time: 45 minutes to 1 ½ hours, depending on individual’s age Level: All Materials (per person) One large sheet of cardstock (18” x 12”) Tape One set of Braille labels for each cloud type and/or markers One small feather A layered piece of blanket or soft fabric (eight 1’ X 1” pieces) Cotton balls of varied sizes One tissue Organza or a similar material, cut into pieces, one layered 1” x 1” piece Pillow stuffing, one 1” x 1” piece A tsp of sand Three paper clips Liquid glue Scissors Baby Wipes Preparation Use tape to divide the large cardstock sheet in four sections: one for the cloud title at the top and three for the altitudes: using a portrait layout, place three pieces of tape horizontally, from side to side of the sheet. 1. 1” off the upper edge of the sheet 2. 8” off the upper edge of the sheet 1 Steps What to do and how to do it: Making A Tactile Cloud Identification Chart 1. Discuss that clouds come in three basic shapes: cirrus, stratus and cumulus. a. Feel of the 4” feather and describe it; discuss that these wispy clouds are high in the sky and are named cirrus. -
Cloud Atlas? 5
Episode 9 Teacher Resource 4th April 2017 Clouds 1. Briefly explain how clouds form. Students will develop an 2. Why are clouds an important part of the earth’s atmosphere? understanding of how clouds form and the different types of clouds. 3. What does a meteorologist study? 4. What is a Cloud Atlas? 5. When was it first published? 6. What does a cumulus cloud look like? 7. What is the name of the cloud that brings rain and lightning? 8. The Cloud Atlas has special clouds that are defined by the unusual Science – Year 4 ways they form. Give an example of one. Represent and communicate observations, ideas and findings 9. Describe the cloud that Gary helped get into the Cloud Atlas. using formal and informal 10. What do you understand more clearly since watching the BTN representations (ACSIS071) story? Science – Year 5 Solids, liquids and gases have different observable properties a nd behave in different ways (ACSSU077) Science – Year 7 Class Discussion Some of Earth’s resources are Watch the BTN Cloud Atlas story and discuss the information raised as a renewable, including water that cycles through the environment, class. What questions do students have (what are the gaps in their but others are non-renewable knowledge)? The following questions may help guide the discussion: (ACSSU116) What are clouds? Come up with a definition. What have you noticed about clouds? How do clouds form? What are the main types of clouds? What is the Cloud Atlas? The following KWLH organiser provides students with a framework to explore their knowledge on this topic and consider what they would like to know and learn. -
Aerosols, Their Direct and Indirect Effects
5 Aerosols, their Direct and Indirect Effects Co-ordinating Lead Author J.E. Penner Lead Authors M. Andreae, H. Annegarn, L. Barrie, J. Feichter, D. Hegg, A. Jayaraman, R. Leaitch, D. Murphy, J. Nganga, G. Pitari Contributing Authors A. Ackerman, P. Adams, P. Austin, R. Boers, O. Boucher, M. Chin, C. Chuang, B. Collins, W. Cooke, P. DeMott, Y. Feng, H. Fischer, I. Fung, S. Ghan, P. Ginoux, S.-L. Gong, A. Guenther, M. Herzog, A. Higurashi, Y. Kaufman, A. Kettle, J. Kiehl, D. Koch, G. Lammel, C. Land, U. Lohmann, S. Madronich, E. Mancini, M. Mishchenko, T. Nakajima, P. Quinn, P. Rasch, D.L. Roberts, D. Savoie, S. Schwartz, J. Seinfeld, B. Soden, D. Tanré, K. Taylor, I. Tegen, X. Tie, G. Vali, R. Van Dingenen, M. van Weele, Y. Zhang Review Editors B. Nyenzi, J. Prospero Contents Executive Summary 291 5.4.1 Summary of Current Model Capabilities 313 5.4.1.1 Comparison of large-scale sulphate 5.1 Introduction 293 models (COSAM) 313 5.1.1 Advances since the Second Assessment 5.4.1.2 The IPCC model comparison Report 293 workshop: sulphate, organic carbon, 5.1.2 Aerosol Properties Relevant to Radiative black carbon, dust, and sea salt 314 Forcing 293 5.4.1.3 Comparison of modelled and observed aerosol concentrations 314 5.2 Sources and Production Mechanisms of 5.4.1.4 Comparison of modelled and satellite- Atmospheric Aerosols 295 derived aerosol optical depth 318 5.2.1 Introduction 295 5.4.2 Overall Uncertainty in Direct Forcing 5.2.2 Primary and Secondary Sources of Aerosols 296 Estimates 322 5.2.2.1 Soil dust 296 5.4.3 Modelling the Indirect -
3.2 the Forecast Icing Potential (Fip) Algorithm
3.2 THE FORECAST ICING POTENTIAL (FIP) ALGORITHM Frank McDonough *, Ben C. Bernstein, Marcia K. Politovich, and Cory A. Wolff National Center for Atmospheric Research, Boulder, CO 1. Introduction The 70% threshold was chosen to allow for expected model moisture errors and to allow for In-flight icing is a serious hazard to the cold clouds to be found without a model forecast aviation community. It occurs when subfreezing of water saturation. The use of a combination of liquid cloud and/or precipitation droplets freeze to relative humidity with respect to both water and ice the exposed surfaces of an aircraft in flight. Icing may allow for the use of a higher threshold in conditions can occur on large scales or in small future versions of FIP. volumes where conditions may change quickly. Cloud base is found by working upward in the Because of the nature of icing conditions, the need same column until the first level with RH≥80% is for a forecast product with high spatial and found. Since the model boundary layer often has temporal resolution is apparent. RH>80%, even in cloud-free air, FIP begins its The FIP (Forecast Icing Potential) algorithm search for a cloud base at 1000ft (305m) AGL. was developed at the National Center for The threshold of 80% for cloud base identification Atmospheric Research under the Federal Aviation is used to also allow for model moisture errors and Administration’s Aviation Weather Research the expectation that cloud base is found at warmer Program. It uses 20-km resolution Rapid Update temperatures where RH and RHi are more Cycle (RUC) model output to determine the equivalent. -
Automated Underway Oceanic and Atmospheric Measurements from Ships
AUTOMATED UNDERWAY OCEANIC AND ATMOSPHERIC MEASUREMENTS FROM SHIPS Shawn R. Smith (1), Mark A. Bourassa (1), E. Frank Bradley (2), Catherine Cosca (3), Christopher W. Fairall (4), Gustavo J. Goni (5), John T. Gunn (6), Maria Hood (7), Darren L. Jackson (8), Elizabeth C. Kent (9), Gary Lagerloef (6), Philip McGillivary (10), Loic Petit de la Villéon (11), Rachel T. Pinker (12), Eric Schulz (13), Janet Sprintall (14), Detlef Stammer (15), Alain Weill (16), Gary A. Wick (17), Margaret J. Yelland (9) (1) Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306-2840, USA, Emails: [email protected], [email protected] (2) CSIRO Land and Water, PO Box 1666, Canberra, ACT 2601, AUSTRALIA, Email: [email protected] (3) NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115, USA, Email: [email protected] (4) NOAA/ESRL/PSD, R/PSD3, 325 Broadway, Boulder, CO 80305-3328, USA, Email: [email protected] (5) USDC/NOAA/AOML/PHOD, 4301 Rickenbacker Causeway, Miami, FL 33149, USA, Email: [email protected] (6) Earth and Space Research, 2101 Fourth Ave., Suite 1310, Seattle, WA, 98121, USA, Emails: [email protected], [email protected] (7) Intergovernmental Oceanographic Commission UNESCO, 1, rue Miollis, 75732 Paris Cedex 15, FRANCE, Email: [email protected] (8) Cooperative Institute for Research in Environmental Sciences, NOAA/ESRL/PSD, 325 Broadway, R/PSD2, Boulder, CO 80305, USA, Email: [email protected] (9) National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK, Emails: [email protected], -
VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD)
Effective Date: April 22, 2011 Revision - GSFC JPSS CMO December 5, 2011 Released Joint Polar Satellite System (JPSS) Ground Project Code 474 474-00045 Joint Polar Satellite System (JPSS) VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD) For Public Release The information provided herein does not contain technical data as defined in the International Traffic in Arms Regulations (ITAR) 22 CFC 120.10. This document has been approved For Public Release to the NOAA Comprehensive Large Array-data Stewardship System (CLASS). Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use. JPSS VIIRS Cloud Base Height ATBD 474-00045 Effective Date: April 22, 2011 Revision - This page intentionally left blank. Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use. JPSS VIIRS Cloud Base Height ATBD 474-00045 Effective Date: April 22, 2011 Revision - Joint Polar Satellite System (JPSS) VIIRS Cloud Base Height Algorithm Theoretical Basis Document (ATBD) JPSS Electronic Signature Page Prepared By: Neal Baker JPSS Data Products and Algorithms, Senior Engineering Advisor (Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm ) Approved By: Heather Kilcoyne DPA Manager (Electronic Approvals available online at https://jpssmis.gsfc.nasa.gov/mainmenu_dsp.cfm ) Goddard Space Flight Center Greenbelt, Maryland i Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use. -
The Monterey Area Ship Track Experiment
Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications 2000-08-15 The Monterey Area Ship Track Experiment Durkee, Philip A. Journal of the Atmospheric Sciences, Vol. 57, 15 August 2000, pp. 2523-2541. http://hdl.handle.net/10945/46745 15 AUGUST 2000 DURKEE ET AL. 2523 The Monterey Area Ship Track Experiment PHILIP A. DURKEE Department of Meteorology, Naval Postgraduate School, Monterey, California KEVIN J. NOONE Stockholm University, Stockholm, Sweden ROBERT T. B LUTH Office of Naval Research, Arlington, Virginia (Manuscript received 14 November 1996, in final form 23 February 1999) ABSTRACT In June 1994 the Monterey Area Ship Track (MAST) experiment was conducted off the coast of California to investigate the processes behind anthropogenic modification of cloud albedo. The motivation for the MAST experiment is described here, as well as details of the experimental design. Measurement platforms and strategies are explained, and a summary of experiment operations is presented. The experiment produced the largest dataset to date of direct measurements of the effects of ships on the microphysics and radiative properties of marine stratocumulus clouds as an analog for the indirect effects of anthropogenic pollution on cloud albedo. 1. Introduction ever, the upper limit of the indirect aerosol forcing es timate was 21.5 W m22. Clearly, reducing the uncer Determining the effects of atmospheric aerosol par tainty in, or even arriving at, a central value for the ticles on the radiative balance of the earth has been a estimates of the indirect radiative effect of aerosols is major focus of recent climate research. -
Levey Tran ME ID: 214-765 MCEN – 4228 – 002 Flow Visualizations
Levey Tran ME ID: 214-765 MCEN – 4228 – 002 Flow Visualizations Clouds 1 Image Report The image described in this report is one that completes the Clouds 1 image assignment. The purpose of this assignment was to photograph numerous images of clouds and after many photographs were taken, the photographer was to choose a final desired cloud image. The photographs were meant to help the photographer visualize and experience the physics and flow phenomena of clouds. Too often clouds are overlooked and their beauty misjudged, but when one pays close attention and learns the physics behind the numerous types of clouds, a true appreciation can be achieved. For this assignment, I was trying to find a cloud image that resembled a stormy cloud. The image was taken on February 13, 2010 at Boulder Reservoir in the afternoon at about 2:00 PM looking between the south and south-east direction. This large group of clouds was several miles away in the distance, so the picture was taken at a small angle above the horizon. The first few images showed the horizon about 1/5th of the way from the bottom of the image. But the original photograph to this image was zoomed in and taken at an angle slightly greater than those images with the horizon in the picture. When I first began analyzing the cloud image, I had thought it looked very much like a Cumulus Congestus cloud. But I was only paying attention to the top of the cloud where it looks like cauliflowers. I also found that for it to be classified as a Cumulus Congestus, it needs to be taller than it is wide, and this cloud does not fit that description. -
Experimental Studies on Particle Emissions from Cruising Ship, Their Characteristic Properties, Transformation and Atmospheric Lifetime in the Marine Boundary Layer
Atmos. Chem. Phys., 8, 2387–2403, 2008 www.atmos-chem-phys.net/8/2387/2008/ Atmospheric © Author(s) 2008. This work is distributed under Chemistry the Creative Commons Attribution 3.0 License. and Physics Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer A. Petzold1, J. Hasselbach1, P. Lauer2, R. Baumann1, K. Franke3, C. Gurk4, H. Schlager1, and E. Weingartner5 1Dt. Zentrum fur¨ Luft- und Raumfahrt, Inst. fur¨ Physik der Atmosphare,¨ Oberpfaffenhofen, 82234 Wessling, Germany 2MAN Diesel SE, Stadtbachstr. 1, 86135 Augsburg, Germany 3Institute for Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany 4Max-Planck-Institute for Chemistry, Johann-Joachim-Becher-Weg 27, 55128 Mainz, Germany 5Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland Received: 9 October 2007 – Published in Atmos. Chem. Phys. Discuss.: 19 October 2007 Revised: 17 March 2008 – Accepted: 15 April 2008 – Published: 6 May 2008 Abstract. Particle emissions from ship engines and their ship exhaust particle number concentrations in an expanding atmospheric transformation in the marine boundary layer plume, a maximum plume life time of approx. 24 h is esti- (MBL) were investigated in engine test bed studies and in mated for a well-mixed marine boundary layer. airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chem- ical properties were measured in the exhaust gas of a serial 1 Introduction MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were Shipping represents a major contribution to the international complemented by airborne aerosol transformation studies in transportation sector which, however, is not well quantified the plume of a large container ship in the English Chan- in terms of global emissions and climate impacts.