Industrial Alcohol Technology Handbook
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Postulated Physiological Roles of the Seven-Carbon Sugars, Mannoheptulose, and Perseitol in Avocado
J. AMER. SOC. HORT. SCI. 127(1):108–114. 2002. Postulated Physiological Roles of the Seven-carbon Sugars, Mannoheptulose, and Perseitol in Avocado Xuan Liu,1 James Sievert, Mary Lu Arpaia, and Monica A. Madore2 Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 ADDITIONAL INDEX WORDS. ‘Hass’ avocado on ‘Duke 7’ rootstock, phloem transport, ripening, Lauraceae ABSTRACT. Avocado (Persea americana Mill.) tissues contain high levels of the seven-carbon (C7) ketosugar mannoheptulose and its polyol form, perseitol. Radiolabeling of intact leaves of ‘Hass’ avocado on ‘Duke 7’ rootstock indicated that both perseitol and mannoheptulose are not only primary products of photosynthetic CO2 fixation but are also exported in the phloem. In cell-free extracts from mature source leaves, formation of the C7 backbone occurred by condensation of a three-carbon metabolite (dihydroxyacetone-P) with a four-carbon metabolite (erythrose-4-P) to form sedoheptulose-1,7- bis-P, followed by isomerization to a phosphorylated D-mannoheptulose derivative. A transketolase reaction was also observed which converted five-carbon metabolites (ribose-5-P and xylulose-5-P) to form the C7 metabolite, sedoheptu- lose-7-P, but this compound was not metabolized further to mannoheptulose. This suggests that C7 sugars are formed from the Calvin Cycle, not oxidative pentose phosphate pathway, reactions in avocado leaves. In avocado fruit, C7 sugars were present in substantial quantities and the normal ripening processes (fruit softening, ethylene production, and climacteric respiration rise), which occurs several days after the fruit is picked, did not occur until levels of C7 sugars dropped below an apparent threshold concentration of ≈20 mg·g–1 fresh weight. -
The Alcohol Textbook 4Th Edition
TTHEHE AALCOHOLLCOHOL TEXTBOOKEXTBOOK T TH 44TH EEDITIONDITION A reference for the beverage, fuel and industrial alcohol industries Edited by KA Jacques, TP Lyons and DR Kelsall Foreword iii The Alcohol Textbook 4th Edition A reference for the beverage, fuel and industrial alcohol industries K.A. Jacques, PhD T.P. Lyons, PhD D.R. Kelsall iv T.P. Lyons Nottingham University Press Manor Farm, Main Street, Thrumpton Nottingham, NG11 0AX, United Kingdom NOTTINGHAM Published by Nottingham University Press (2nd Edition) 1995 Third edition published 1999 Fourth edition published 2003 © Alltech Inc 2003 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers. ISBN 1-897676-13-1 Page layout and design by Nottingham University Press, Nottingham Printed and bound by Bath Press, Bath, England Foreword v Contents Foreword ix T. Pearse Lyons Presient, Alltech Inc., Nicholasville, Kentucky, USA Ethanol industry today 1 Ethanol around the world: rapid growth in policies, technology and production 1 T. Pearse Lyons Alltech Inc., Nicholasville, Kentucky, USA Raw material handling and processing 2 Grain dry milling and cooking procedures: extracting sugars in preparation for fermentation 9 Dave R. Kelsall and T. Pearse Lyons Alltech Inc., Nicholasville, Kentucky, USA 3 Enzymatic conversion of starch to fermentable sugars 23 Ronan F. -
United States Patent 1191 Lll] 3,983,266 Bahls [451 Sept
United States Patent 1191 lll] 3,983,266 Bahls [451 Sept. 28, 1976 [54] METHOD FOR APPLYING METALLIC 3.776.740 [2/1973 Sivcrz ct al. .......................... .. l06/l SILVER TO A SUBSTRATE OTHER PUBLICATIONS [75] Inventor: Harry Bahls, Wayne, Pa. lvanov et al., Chem. Abs. 43:2548c, I949, [73] Assignee: Peacock Laboratories, Inc., Philadelphia, Pa. Primary Examiner-Ralph S. Kendall [22] Filed: Oct. 9, I974 I 57] ABSTRACT [2!] ,Appl. No.: 513,417 High efficiency deposition of silver on the surface of a substrate is obtained by providing a solution contain [52] [1.8. CI ............................... .. 427/164; 427/165; ing reducible dissolved silver in the presence of an al 427/168; 427/424; 427/426; l06/l kali metal hydroxide and ammonia, all of which are [51] Int. CLZ. ......................................... .. C23C 3/02 applied to the substrate in the presence of an aqueous [58] Field of Search .............. .. l06/l; 427/l68. I69, solution of a moderating reducer containing :1 poly 427/165, I64, 426, 304, 125, 425 hydric alcohol of the formula CH2OH(CHOH),,C H,OH, where n is an integer from 1 to 6. Preferably [56] References Cited the polyhydric alcohol is sorbitol, and in a preferred UNITED STATES PATENTS embodiment a moderator is the form of a thio glycerol is present. 2,996,406 8/l96l Weinrich ........... ............ .. 427/168 3,772,078 ll/l973 Polichcttc ct al ................. .. l06/l X l5 Claims, No Drawings 3,983,266 1 Other objects and advantages of this invention, in METHOD FOR APPLYING METALLIC SILVER TO cluding the economy of the same, and the case with A SUBSTRATE which it may be applied to existing silver coating equip ment and apparatus, will further become apparent BRIEF SUMMARY OF THE INVENTION 5 hereinafter. -
Benzyl-L-Threitol
A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein. -
Amino Mannitol Dehydrogenases on the Azasugar Biosynthetic Pathway
Send Orders for Reprints to [email protected] 10 Protein & Peptide Letters, 2014, 21, 10-14 Medium-Chain Dehydrogenases with New Specificity: Amino Mannitol Dehydrogenases on the Azasugar Biosynthetic Pathway Yanbin Wu, Jeffrey Arciola, and Nicole Horenstein* Department of Chemistry, University of Florida, Gainesville Florida, 32611-7200, USA Abstract: Azasugar biosynthesis involves a key dehydrogenase that oxidizes 2-amino-2-deoxy-D-mannitol to the 6-oxo compound. The genes encoding homologous NAD-dependent dehydrogenases from Bacillus amyloliquefaciens FZB42, B. atrophaeus 1942, and Paenibacillus polymyxa SC2 were codon-optimized and expressed in BL21(DE3) Escherichia coli. Relative to the two Bacillus enzymes, the enzyme from P. polymyxa proved to have superior catalytic properties with a Vmax of 0.095 ± 0.002 mol/min/mg, 59-fold higher than the B. amyloliquefaciens enzyme. The preferred substrate is 2- amino-2-deoxy-D-mannitol, though mannitol is accepted as a poor substrate at 3% of the relative rate. Simple amino alco- hols were also accepted as substrates at lower rates. Sequence alignment suggested D283 was involved in the enzyme’s specificity for aminopolyols. Point mutant D283N lost its amino specificity, accepting mannitol at 45% the rate observed for 2-amino-2-deoxy-D-mannitol. These results provide the first characterization of this class of zinc-dependent medium chain dehydrogenases that utilize aminopolyol substrates. Keywords: Aminopolyol, azasugar, biosynthesis, dehydrogenase, mannojirimycin, nojirimycin. INTRODUCTION are sufficient to convert fructose-6-phosphate into manno- jirimycin [9]. We proposed that the gutB1 gene product was Azasugars such as the nojirimycins [1] are natural prod- responsible for the turnover of 2-amino-2-deoxy-D-mannitol ucts that are analogs of monosaccharides that feature a nitro- (2AM) into mannojirimycin as shown in Fig. -
Reports of the Scientific Committee for Food
Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Commission of the European Communities food - science and techniques Reports of the Scientific Committee for Food (Sixteenth series) Directorate-General Internal Market and Industrial Affairs 1985 EUR 10210 EN Published by the COMMISSION OF THE EUROPEAN COMMUNITIES Directorate-General Information Market and Innovation Bâtiment Jean Monnet LUXEMBOURG LEGAL NOTICE Neither the Commission of the European Communities nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information This publication is also available in the following languages : DA ISBN 92-825-5770-7 DE ISBN 92-825-5771-5 GR ISBN 92-825-5772-3 FR ISBN 92-825-5774-X IT ISBN 92-825-5775-8 NL ISBN 92-825-5776-6 Cataloguing data can be found at the end of this publication Luxembourg, Office for Official Publications of the European Communities, 1985 ISBN 92-825-5773-1 Catalogue number: © ECSC-EEC-EAEC, Brussels · Luxembourg, 1985 Printed in Luxembourg CONTENTS Page Reports of the Scientific Committee for Food concerning - Sweeteners (Opinion expressed 14 September 1984) III Composition of the Scientific Committee for Food P.S. Elias A.G. Hildebrandt (vice-chairman) F. Hill A. Hubbard A. Lafontaine Mne B.H. MacGibbon A. Mariani-Costantini K.J. Netter E. Poulsen (chairman) J. Rey V. Silano (vice-chairman) Mne A. Trichopoulou R. Truhaut G.J. Van Esch R. Wemig IV REPORT OF THE SCIENTIFIC COMMITTEE FOR FOOD ON SWEETENERS (Opinion expressed 14 September 1984) TERMS OF REFERENCE To review the safety in use of certain sweeteners. -
WO 2016/022464 Al 11 February 2016 (11.02.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/022464 Al 11 February 2016 (11.02.2016) P O P C T (51) International Patent Classification GELMAN, Leonid; 260 E. Grand Avenue, 2nd Floor, A61K 31/7068 (2006.01) A61K 31/519 (2006.01) South San Francisco, CA 94080 (US). SMITH, David, A61K 31/4184 (2006.01) A61K 31/166 (2006.01) Bernard; 260 E. Grand Avenue, 2nd Floor, South San A61K 31/675 (2006.01) A61K 31/41 (2006.01) Francisco, CA 94080 (US). WANG, Guangyi; 260 E. A61K 31/513 (2006.01) A61K 38/21 (2006.01) Grand Avenue, 2nd Floor, South San Francisco, CA 94080 A61K 31/506 (2006.01) A61K 38/16 (2006.01) (US). A61K 31/437 (2006.01) A61K 39/155 (2006.01) (74) Agent: MILLER, Kimberly, J.; Knobbe Martens Olson A61K 31/4709 (2006.01) A61K 39/42 (2006.01) & Bear, LLP, 2040 Main Street, 14th Floor, Irvine, CA A61K 31/4188 (2006.01) A61P 31/14 (2006.01) 92614 (US). A61K 31/517 (2006.01) A61P 11/00 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: PCT/US20 15/043402 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 3 August 2015 (03.08.2015) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, English (25) Filing Language: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/033,55 1 5 August 2014 (05.08.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries
energies Review Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries Kirtika Kohli 1 , Ravindra Prajapati 2 and Brajendra K. Sharma 1,* 1 Prairie Research Institute—Illinois Sustainable Technology Center, University of Illinois, Urbana Champaign, IL 61820, USA; [email protected] 2 Conversions & Catalysis Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India; [email protected] * Correspondence: [email protected] Received: 10 December 2018; Accepted: 4 January 2019; Published: 13 January 2019 Abstract: The production of chemicals from biomass, a renewable feedstock, is highly desirable in replacing petrochemicals to make biorefineries more economical. The best approach to compete with fossil-based refineries is the upgradation of biomass in integrated biorefineries. The integrated biorefineries employed various biomass feedstocks and conversion technologies to produce biofuels and bio-based chemicals. Bio-based chemicals can help to replace a large fraction of industrial chemicals and materials from fossil resources. Biomass-derived chemicals, such as 5-hydroxymethylfurfural (5-HMF), levulinic acid, furfurals, sugar alcohols, lactic acid, succinic acid, and phenols, are considered platform chemicals. These platform chemicals can be further used for the production of a variety of important chemicals on an industrial scale. However, current industrial production relies on relatively old and inefficient strategies and low production yields, which have decreased their competitiveness with fossil-based alternatives. The aim of the presented review is to provide a survey of past and current strategies used to achieve a sustainable conversion of biomass to platform chemicals. This review provides an overview of the chemicals obtained, based on the major components of lignocellulosic biomass, sugars, and lignin. -
Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis. -
The Generation and Reactivity of Organozinc Carbenoids
The Generation and Reactivity of Organozinc Carbenoids A Thesis Presented by Caroline Joy Nutley In Partial Fulfilment of the Requirements for the Award of the Degree DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON Christopher Ingold Laboratories Department of Chemistry University College London London WCIH OAJ September 1995 ProQuest Number: 10016731 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10016731 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Through doubting we come to questioning and through questioning we come to the truth. Peter Abelard, Paris, 1122 Abstract This thesis concerns an investigation into the generation and reactivity of organozinc carbenoids, from both a practical and mechanistic standpoint, using the reductive deoxygenation of carbonyl compounds with zinc and a silicon electrophile. The first introductory chapter is a review of organozinc carbenoids in synthesis. The second chapter opens with an overview of the development of the reductive deoxygenation of carbonyl compounds with zinc and a silicon electrophile since its inception in 1973. The factors influencing the generation of the zinc carbenoid are then investigated using a control reaction, and discussed. -
Cheminformatics for Genome-Scale Metabolic Reconstructions
CHEMINFORMATICS FOR GENOME-SCALE METABOLIC RECONSTRUCTIONS John W. May European Molecular Biology Laboratory European Bioinformatics Institute University of Cambridge Homerton College A thesis submitted for the degree of Doctor of Philosophy June 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. This dissertation has been typeset using LATEX in 11 pt Palatino, one and half spaced, according to the specifications defined by the Board of Graduate Studies and the Biology Degree Committee. June 2014 John W. May to Róisín Acknowledgements This work was carried out in the Cheminformatics and Metabolism Group at the European Bioinformatics Institute (EMBL-EBI). The project was fund- ed by Unilever, the Biotechnology and Biological Sciences Research Coun- cil [BB/I532153/1], and the European Molecular Biology Laboratory. I would like to thank my supervisor, Christoph Steinbeck for his guidance and providing intellectual freedom. I am also thankful to each member of my thesis advisory committee: Gordon James, Julio Saez-Rodriguez, Kiran Patil, and Gos Micklem who gave their time, advice, and guidance. I am thankful to all members of the Cheminformatics and Metabolism Group. -
Partial Characterization of Soil Humic Acids Through Biodegradation1
PARTIAL CHARACTERIZATION OF SOIL HUMIC ACIDS THROUGH BIODEGRADATION1 S. P. A~IATHUR~AND E. A. PAUL Deparln~enlof Soil Science, University of Saskatchewan, Saskaloon, Saskatchezoan Received October 12, 1966 A strain of Pewicillizi?tz freqzientans was successfully employed for partial degradation and characterization of humic acids. Salicyl alcohol and salicylalcle- hyde were detected in culture filtrates of the fungus ~rtilizinghumates under reduced oxygen tension. The enzyme systems iiivolved in the degradation of humic acids were adaptive. The humate-adapted lnyceliirln was capable of metabolizi~~ga number of co~npoundswhich occur in soil as products of degrada- tion of li~nir~,aromatic amino acids, and plant glycosides but not polyphenolic hydrocarbons, resorcinol, and phlorogluci~~ol. Introduction In a previous paper the authors suggested the use of biodegradation for determining the structural features of hurnic acids and reported isolation of a number of organisms capable of utilizing these acids (7). One such isolate, a strain of Penicilliunz frequentans, degraded 32% of huinic acids in replace- ment-shake culture (7). The organisin appeared to use the predominantly aromatic 'core' of humic acids as a source of carbon (7). This paper reports an attempt to characterize a portion of the humic acids through identification of the initial products of their degradation by the penicillium. Materials and Methods Hzimic Acids The 'mobile' humic acids used in these experiments were extracted from the Ap horizon of a Allelfort Orthic Black soil by standard alkali and acid fraction- For personal use only. ation technique (1). These huinic acids were found, by 14C dating, to have a mean residence time of 785 + 50 years (1).