Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/12477 SHARE Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges DETAILS 172 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-12660-1 | DOI 10.17226/12477 CONTRIBUTORS GET THIS BOOK U.S. Committee on the Internationalization of the Civilian Nuclear Fuel Cycle; Committee on International Security and Arms Control; Policy and Global Affairs; Nuclear and Radiation Studies Board; Division on Earth and Life FIND RELATED TITLES Studies; National Academy of Sciences; National Research Council; Russian Committee on the Internationalization of the Civilian Nuclear Fuel Cycle; Russian Academy of Sciences Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges U. S. Committee on the Internationalization of the Civilian Nuclear Fuel Cycle Committee on International Security and Arms Control, Policy and Global Affairs Nuclear and Radiation Studies Board Division on Earth and Life Sciences Russian Committee on the Internationalization of the Civilian Nuclear Fuel Cycle RUSSIAN ACADEMY OF SCIENCES Copyright National Academy of Sciences. All rights reserved. Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study was supported by Grants from the John D. and Catherine T. MacArthur Foundation and the Carnegie Corporation of New York. Additional support was provided by the Russian Academy of Sciences. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. International Standard Book Number: 13-978-0-309-12660-1 Library of Congress Catalog Card Number: 10-0-309-12660-6 A limited number of complimentary copies are available from the Committee on International Security and Arms Control, National Academy of Sciences, 500 Fifth Street, N.W., Washington, DC 20001; +202-334- 2811. Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2009 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Copyright National Academy of Sciences. All rights reserved. Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council. www.national-academies.org Copyright National Academy of Sciences. All rights reserved. Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges Copyright National Academy of Sciences. All rights reserved. Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges COMMITTEE ON THE INTERNATIONALIZATION OF THE CIVILIAN NUCLEAR FUEL CYCLE NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES JOHN F. AHEARNE, (Chair), Sigma XI ROBERT J. BUDNITZ, Lawrence Berkeley National Laboratory MATTHEW BUNN, Harvard University WILLIAM F. BURNS, Major General (USA, retired) STEVE FETTER, University of Maryland ROSE GOTTEMOELLER, Carnegie Moscow Center MILTON LEVENSON, Bechtel International (retired) COMMITTEE ON THE INTERNATIONALIZATION OF THE CIVILIAN NUCLEAR FUEL CYCLE RUSSIAN ACADEMY OF SCIENCES NIKOLAY P. LAVEROV, (Chair), Russian Academy of Sciences VALERY S. BEZZUBTSEV, Rostekhnadzor ALEXANDER V. BYCHKOV, Research Institute of Atomic Reactors VALENTIN B. IVANOV, Institute of Ore Deposits, Petrography, Mineralogy, and Geochemistry BORIS F. MYASOEDOV, Russian Academy of Sciences VLADISLAV A. PETROV, Institute of Ore Deposits, Petrography, Mineralogy, and Geochemistry MIKHAIL I. SOLONIN, Technology and Innovation Center of the TVEL Corporation National Research Council Staff MICAH D. LOWENTHAL, Study Director, Nuclear and Radiation Studies Board ANNE M. HARRINGTON, Director, Committee on International Security and Arms Control RITA S. GUENTHER, Senior Program Associate, Committee on International Security and Arms Control Russian Academy of Sciences Staff YURI K. SHIYAN, Director, Office for North American Scientific Cooperation v Copyright National Academy of Sciences. All rights reserved. Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges Copyright National Academy of Sciences. All rights reserved. Internationalization of the Nuclear Fuel Cycle: Goals, Strategies, and Challenges PREFACE AND ACKNOWLEDGMENTS The so-called nuclear renaissance has increased worldwide interest in nuclear power. This potential growth also has increased, in some quarters, concern that nonproliferation considerations are not being given sufficient attention. In particular, since the introduction of many new power reactors will lead to requiring an increase in uranium enrichment services to provide the reactor fuel, the proliferation risk of adding enrichment facilities in countries that do not have them now led to proposals to provide the needed fuel without requiring new indigenous enrichment facilities. Similar concerns exist for reprocessing facilities. In 2006, International Atomic Energy Agency (IAEA) Director General Mohamed ElBaradei, Russian President Vladimir V. Putin, and U.S. President George W. Bush each announced plans to assure the provision of fuel to countries that want to develop nuclear power. The proposals were aimed at dissuading these countries from building uranium enrichment plants because such plants could be used to produce weapons-usable highly enriched uranium. In the spring of 2006, members of the Committees on International Security and Arms Control of the U.S. National Academy of Sciences (NAS) and the Russian Academy of Sciences (RAS), which have had a productive partnership for more than 25 years, met with each other, with senior officials in their respective governments, and with Director General ElBaradei to identify issues of national and international importance on which independent advice from the two academies would be useful.
Recommended publications
  • The Making of an Atomic Bomb
    (Image: Courtesy of United States Government, public domain.) INTRODUCTORY ESSAY "DESTROYER OF WORLDS": THE MAKING OF AN ATOMIC BOMB At 5:29 a.m. (MST), the world’s first atomic bomb detonated in the New Mexican desert, releasing a level of destructive power unknown in the existence of humanity. Emitting as much energy as 21,000 tons of TNT and creating a fireball that measured roughly 2,000 feet in diameter, the first successful test of an atomic bomb, known as the Trinity Test, forever changed the history of the world. The road to Trinity may have begun before the start of World War II, but the war brought the creation of atomic weaponry to fruition. The harnessing of atomic energy may have come as a result of World War II, but it also helped bring the conflict to an end. How did humanity come to construct and wield such a devastating weapon? 1 | THE MANHATTAN PROJECT Models of Fat Man and Little Boy on display at the Bradbury Science Museum. (Image: Courtesy of Los Alamos National Laboratory.) WE WAITED UNTIL THE BLAST HAD PASSED, WALKED OUT OF THE SHELTER AND THEN IT WAS ENTIRELY SOLEMN. WE KNEW THE WORLD WOULD NOT BE THE SAME. A FEW PEOPLE LAUGHED, A FEW PEOPLE CRIED. MOST PEOPLE WERE SILENT. J. ROBERT OPPENHEIMER EARLY NUCLEAR RESEARCH GERMAN DISCOVERY OF FISSION Achieving the monumental goal of splitting the nucleus The 1930s saw further development in the field. Hungarian- of an atom, known as nuclear fission, came through the German physicist Leo Szilard conceived the possibility of self- development of scientific discoveries that stretched over several sustaining nuclear fission reactions, or a nuclear chain reaction, centuries.
    [Show full text]
  • Chicago Pile-1 - Wikipedia, the Free Encyclopedia
    Chicago Pile-1 - Wikipedia, the free encyclopedia Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Chicago Pile-1 From Wikipedia, the free encyclopedia Coordinates : 41°47′32″N 87°36′3″W Main page Contents Chicago Pile-1 (CP-1) was the world's first nuclear Site of the First Self Sustaining Nuclear Featured content reactor to achieve criticality. Its construction was part of Reaction Current events the Manhattan Project, the Allied effort to create atomic U.S. National Register of Historic Places Random article bombs during World War II. It was built by the U.S. National Historic Landmark Donate to Wikipedia Manhattan Project's Metallurgical Laboratory at the Wikipedia store Chicago Landmark University of Chicago , under the west viewing stands of Interaction the original Stagg Field . The first man-made self- Help sustaining nuclear chain reaction was initiated in CP-1 About Wikipedia on 2 December 1942, under the supervision of Enrico Community portal Recent changes Fermi, who described the apparatus as "a crude pile of [4] Contact page black bricks and wooden timbers". Tools The reactor was assembled in November 1942, by a team What links here that included Fermi, Leo Szilard , discoverer of the chain Related changes reaction, and Herbert L. Anderson, Walter Zinn, Martin Upload file D. Whitaker, and George Weil . It contained 45,000 Drawing of the reactor Special pages graphite blocks weighing 400 short tons (360 t) used as Permanent link a neutron moderator , and was fueled by 6 short tons Page information Wikidata item (5.4 t) of uranium metal and 50 short tons (45 t) of Cite this page uranium oxide.
    [Show full text]
  • Multilateral Approaches to the Nuclear Fuel Cycle Expert Group Report to the Director General of the IAEA MULTILATERAL APPROACHES to the NUCLEAR FUEL CYCLE
    Multilateral Approaches to the Nuclear Fuel Cycle Expert Group Report to the Director General of the IAEA MULTILATERAL APPROACHES TO THE NUCLEAR FUEL CYCLE EXPERT GROUP REPORT TO THE DIRECTOR GENERAL OF THE INTERNATIONAL ATOMIC ENERGY AGENCY The report of the Expert Group was officially released on 22 February 2005 as an IAEA Information Circular (INFCIRC/640), and circulated for discussion among IAEA Member States, as well as others. This version of the Expert Group's report has been published by the IAEA for the benefit of a wider audience. MULTILATERAL APPROACHES TO THE NUCLEAR FUEL CYCLE EXPERT GROUP REPORT TO THE DIRECTOR GENERAL OF THE INTERNATIONAL ATOMIC ENERGY AGENCY INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2005 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and will be considered on a case by case basis. Enquiries should be addressed by email to the Publishing Section, IAEA, at [email protected] or by post to: Sales and Promotion Unit, Publishing Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 http://www.iaea.org/Publications/index.html © IAEA, 2005 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramer Strasse 5, P.O.
    [Show full text]
  • Oak Ridgers Helped Fermi Usher in Atomic Age (As Published in the Oak Ridger’S Historically Speaking Column on December 17, 2012)
    Oak Ridgers helped Fermi usher in Atomic Age (As published in The Oak Ridger’s Historically Speaking column on December 17, 2012) For the past three weeks, readers of Historically Speaking have been treated to articles written by Carolyn Krause, now retired, who was a science writer at Oak Ridge National Laboratory for 35 years and editor of the ORNL Review research magazine for 25 years. She is a good friend and offered to provide a few articles to give me a well needed break from weekly deadlines. Previously, Carolyn worked as a feature writer for the Pittsburgh Press and science reporter for The Oak Ridger. She is a fellow of the Society for Technical Communication and served as president of STC’s East Tennessee Chapter for a year. A native of Pittsburgh, Pa., Carolyn holds a B.A. degree in English from the College of Wooster, an M.A.T. degree from the University of Pittsburgh and an M.S.J. degree from the Medill School of Journalism of Northwestern University. So, she is well qualified to research and write historical materials for your reading pleasure. Currently, she is engaged in volunteer publicity and newsletter writing for the Rotary Club of Oak Ridge, First Presbyterian Church, and Oak Ridge Institute for Continued Learning. She is a member of the ORICL board and the Oak Ridge Civic Music Association board, for which she does publicity for concerts and fundraising events and manages the content of the ORCMA website (www.orcma.org). She is a volunteer in ORNL’s History Room and has assisted in editing oral histories, which form the basis for contributions she has made and intends to make for The Oak Ridger’s weekly Historically Speaking column.
    [Show full text]
  • Officials Launch Carbon Fiber Technology Facility, Announce New Manufacturing Initiative
    ReporterRetiree Newsletter April/May 2013 SCIENCE Officials launch Carbon Fiber Technology Facility, announce new manufacturing initiative Gov. Bill Haslam, Congressman Chuck Fleischmann, DOE Assistant Secretary David Danielson, Council on Competitiveness President & CEO Deborah Wince-Smith, R&D leaders from Ford Motor Company and Dow Chemical Company and a large crowd of local business and civic leaders came to the Carbon Fiber Technology Facility (CFTF) March 26 to dedicate the new materials research lab and to kick off a new EERE initiative. Danielson, who is assistant secretary for Energy Efficiency & Renewable Energy, announced the launch of the Clean Energy Manufacturing Initiative, an effort to bolster U.S. competitiveness in (Foreground, from left) DOE Assistant Secretary David Danielson joined Congressman Chuck Fleischmann, Council on producing clean energy technologies and increasing energy productivity. Competitiveness CEO Deborah Wince-Smith and Gov. Bill Haslam “Our nation faces a stark choice: The energy technologies of the future for the dedication of DOE’s Carbon Fiber Technology Facility at can be developed and manufactured in America for export around the Oak Ridge National Laboratory. (Photo by Jason Richards) world, or we can cede global leadership and import these technologies from other nations,” Danielson said. Referring to the CFTF’s efforts to reduce carbon fiber’s high cost, Danielson noted: “Many of these new Table of Contents Carbon fiber has tremendous clean energy technologies are within reach of being opportunity to boost cost competitive.” Officials launch Carbon Nearly all the speakers cited the CFTF’s example American competitiveness Fiber Technology Facility . 1 of bringing public research together with private as the leading manufacturer entrepreneurship to push important energy saving Janet Swift travels of fuel-efficient gasoline and technologies to the market.
    [Show full text]
  • The Academic Trajectory of Nuclear Engineering in the USA and UK
    CORE Metadata, citation and similar papers at core.ac.uk Provided by PhilPapers Minerva DOI 10.1007/s11024-009-9114-6 Implanting a Discipline: The Academic Trajectory of Nuclear Engineering in the USA and UK Sean F. Johnston Ó Springer Science+Business Media B.V. 2009 Abstract The nuclear engineer emerged as a new form of recognised technical professional between 1940 and the early 1960s as nuclear fission, the chain reaction and their applications were explored. The institutionalization of nuclear engineer- ing—channelled into new national laboratories and corporate design offices during the decade after the war, and hurried into academic venues thereafter—proved unusually dependent on government definition and support. This paper contrasts the distinct histories of the new discipline in the USA and UK (and, more briefly, Canada). In the segregated and influential environments of institutional laboratories and factories, historical actors such as physicist Walter Zinn in the USA and industrial chemist Christopher Hinton in the UK proved influential in shaping the roles and perceptions of nuclear specialists. More broadly, I argue that the State- managed implantation of the new subject within further and higher education cur- ricula was shaped strongly by distinct political and economic contexts in which secrecy, postwar prestige and differing industrial cultures were decisive factors. Keywords Discipline Á Nuclear engineer Á University Á Expertise Á Training Á National laboratory Introduction During the twentieth century, and particularly from the 1930s, nuclear physics was one of the most rapidly growing fields of scientific knowledge. Dramatically accelerated by the Second World War, this expertise was marshalled to develop not just the first nuclear weapons but also civilian applications.
    [Show full text]
  • The Contribution of Multilateral Nuclear Approaches (Mnas) to the Sustainability of Nuclear Energy
    Sustainability 2012, 4, 1755-1775; doi:10.3390/su4081755 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Dissertation The Contribution of Multilateral Nuclear Approaches (MNAs) to the Sustainability of Nuclear Energy Makiko Tazaki * and Yusuke Kuno Nuclear Non-Proliferation Research Laboratory, Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-029-284-3851; Fax: +81-029-284-3678. Received: 2 July 2012; in revised form: 24 July 2012 / Accepted: 30 July 2012 / Published: 13 August 2012 Abstract: Multilateral Nuclear Approaches (MNAs) is a concept of international and/or multilateral control of nuclear material and/or nuclear fuel cycle facilities. It is a strategy for contributing to and promoting the sustainability of nuclear energy while enhancing nuclear nonproliferation, by ensuring nuclear fuel supplies and fuel cycle services, and risk control and reducing risk regarding nuclear safety. In order to establish such a MNA, the authors draw out 12 features of the MNA by analyzing various past and current MNA proposals, together with the current environment surrounding nuclear energy use. Those proposals are: (A) nuclear nonproliferation, (B) assurance of supply of nuclear material and fuel cycle services, (C) access to technologies, (D) multilateral involvement, (E) siting—choice of host state, (F) legal aspects, (G) political and public acceptance, (H) economics, (I) nuclear safety, (J) nuclear liability, (K) transportation, and (L) geopolitics.
    [Show full text]
  • Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power
    Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power Mary Beth Nikitin, Coordinator Specialist in Nonproliferation Anthony Andrews Specialist in Energy and Defense Policy Mark Holt Specialist in Energy Policy October 19, 2012 Congressional Research Service 7-5700 www.crs.gov RL34234 CRS Report for Congress Prepared for Members and Committees of Congress Managing the Nuclear Fuel Cycle Summary After several decades of widespread stagnation, nuclear power has attracted renewed interest in recent years. New license applications for 30 reactors have been announced in the United States, and another 548 are under construction, planned, or proposed around the world. In the United States, interest appears driven, in part, by tax credits, loan guarantees, and other incentives in the 2005 Energy Policy Act, as well as by concerns about carbon emissions from competing fossil fuel technologies. A major concern about the global expansion of nuclear power is the potential spread of nuclear fuel cycle technology—particularly uranium enrichment and spent fuel reprocessing—that could be used for nuclear weapons. Despite 30 years of effort to limit access to uranium enrichment, several undeterred states pursued clandestine nuclear programs, the A.Q. Khan black market network’s sales to Iran and North Korea representing the most egregious examples. However, concern over the spread of enrichment and reprocessing technologies may be offset by support for nuclear power as a cleaner and more secure alternative to fossil fuels. The Obama Administration has expressed optimism that advanced nuclear technologies being developed by the Department of Energy may offer proliferation resistance. The Administration has also pursued international incentives and agreements intended to minimize the spread of fuel cycle facilities.
    [Show full text]
  • Critical Facilities Building No. 1 Critical Assembly Building No. 2
    Combustion Engineering, Inc. Windsor, Connecticut Critical Facilities Building No. 1 r Critical Assembly Building No. 2 Prepared for: Prepared by: Combustion Engineering, Inc. Historical Technologies 2000 Day Hill Road 1230 Copper Hill Road Windsor, CT 06095 West Suffield, CT 06093 200-1e Combustion_Engineering_01.06_0305_a COMBUSTION ENGINEERING, INC. - BUILDINGS 1 AND 2 Location: 2000 Day Hill Road (formerly 1000 Prospect Hill Road) Windsor Hartford County Connecticut UTM: USGS Windsor Locks, Connecticut Quadrangle, 1:24000 UTM Coordinates: Zone18 - Easting 689575 - Northing 4639425 Date of Construction: 1956 Engineers: Stone & Webster; Combustion Engineering, Inc. Present Owner: Combustion Engineering, Inc. Present Use: Demolished Significance: Building #1 housed the Flexible Critical Experiment, a research reactor that operated at a virtually zero power level. The reactor first achieved a self-sustaining nuclear chain reaction in July, 1956. Building #2 was the site of the Advanced Critical Experiment, a research reactor for complex developmental work. This reactor achieved a self-sustaining nuclear chain reaction in November of 1956. Finalized specific engineering and physics design of individual reactors were carried out in these facilities. Project Information: This documentation commenced in 2002 in compliance with a Letter of Agreement between ABB Prospects, Inc. and the Connecticut Historical Commission. Historian: Robert C. Stewart - Historical Technologies - West Suffield, Connecticut Acknowledgement: The author wishes to thank Elaine Hammick and John Conant of Combustion Engineering, Inc. for their efforts in obtaining historic materials and for their reviews of the final report. A taped interview with Richard Knapp, retired engineer, contributed useful insight into the working environment at the site. Cover Photograph: Technician charging experimental reactor mock-up in building No.
    [Show full text]
  • Nuclear Navy United States Atomic Energy Commission Historical Advisory Committee
    Nuclear Navy United States Atomic Energy Commission Historical Advisory Committee Chairman, Alfred D. Chandler, Jr. Harvard University John T. Conway Consolidated Edison Company Lauchlin M. Currie Carmel, California A. Hunter Dupree Brown University Ernest R. May Harvard University Robert P. Multhauf Smithsonian Institution Nuclear Navy 1946-1962 Richard G. Hewlett and Francis Duncan The University of Chicago Press Chicago and London The University of Chicago Press Chicago 60637 The University of Chicago Press Ltd., London Published 1974 Printed in the United States of America International Standard Book Number: 0-226-33219-5 Library of Congress Catalog Card Number: 74-5726 RICHARD G. HEWLETT is chief historian of the U. S. Atomic Energy Commission. He is coauthor, with Oscar E. Anderson, Jr., of The New World, 1939-1946 and, with Francis Duncan, of Atomic Shield, 1947-1952. FRANCIS DUNCAN is assistant historian of the U.S. Atomic Energy Commission. He is the coauthor of Atomic Shield. [1974] VA Contents Illustrations vii Foreword ix Preface xi 1 2 3 4 Control The The The of the Idea Question of Structure Sea and the Leadership of Responsi- 1 Challenge 52 bility 15 88 5 6 7 8 Emerging Prototypes Toward Nuclear Patterns of and a Nuclear Power Technical Submarines Fleet Beyond Management 153 194 the Navy 121 225 9 10 11 12 Propulsion Building Fleet The for the the Nuclear Operation Measure Fleet Fleet and of Accom- 258 297 Maintenance plishment 340 377 Appendix 1: Table of Organization Abbreviations 404 393 Notes 405 Appendix 2: Construction of the Sources 453 Nuclear Navy 399 Index 461 Appendix 3: Financial Data 402 V Illustrations Charts 8.
    [Show full text]
  • THE IAEA LEU BANK an INVESTMENT in a More Secure Future
    THE IAEA LEU BANK AN INVESTMENT IN A More Secure Future THE IAEA LEU BANK: AN INVESTMENT IN A MORE SECURE FUTURE I ON AUGUST 29, 2017, I was privileged to join Kazakhstan President Nursultan Nazarbayev, IAEA Director General Yukiya Amano, NTI Co-Chairman Sam Nunn and colleagues from the Nuclear Threat Initiative in Astana, Kazakhstan for a momentous and inspiring event: the launch of the IAEA’s new low-enriched uranium bank. A project jump-started by NTI more than a decade ago with an extraordinary investment from Warren Buffett, the bank is the result of an unprecedented international effort to reduce nuclear dangers and make the world safer—now and for future generations. Its physical reserve will give countries investing in nuclear energy an assured supply of fuel for peaceful purposes without incurring the significant costs of developing indigenous enrichment capabilities and without adding to the risks of global proliferation of nuclear technology, materials and weapons. Its launch was a great success, and the IAEA LEU Bank now stands as a vivid example of what can be accomplished when countries come together to address global security risks. The world owes a particular debt of gratitude to the IAEA and its leaders, including former IAEA Director General Mohamed ElBaradei, and to Kazakhstan, long a global model of nonproliferation, which volunteered to host the bank. A number of countries, including the United States, helped finance development of the bank, and Russia and China have signed important transit agreements crucial to its operation. In the United States, the George W. Bush and Barack Obama administrations endorsed and promoted the bank.
    [Show full text]
  • The Plutonium Business
    WALTER C. PATTERSON for the Nuclear Control Institute The Plutonium Business and the Spread of the Bomb Granada Publishing 1 Paladin Books Granada Publishing Ltd 8 Grafton Street, London WIX MA Published by Paladin Books 1984 Copyright Nuclear Control Institute 1984 ISBN 0-586-08482-7 Reproduced, printed and bound in Great Britain by Hazell Watson & Viney Limited, Aylesbury, Bucks Set in Ehrhardt All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers. This book is sold subject to the conditions that it shall not, by way of trade or otherwise, be lent, re- sold , hired out or otherwise circulated without the publisher's prior consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser. Walter C. Patterson was born in Canada in 1936. He took a postgraduate degree in nuclear physics at the University of Manitoba. In 1960 he moved to Britain, where he became involved in environmental issues. He joined the staff of Friends of the Earth in London in 1972, was their energy specialist until 1978 and was their lead witness at the Windscale Inquiry. Since 1978 he has been an independent commentator and consultant, dealing with energy and nuclear policy issues. He is energy consultant to Friends of the Earth, and was a witness at the Sizewell Inquiry.
    [Show full text]