Wadsworth-Emmons Reaction
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
"Alcohol Activation" That Would Be Stereochemically Complementary to That Involving Reaction of an Alcohol with P / S Halides (Notes of Nov 20)
CHEM 203 Topics Discussed on Nov. 23 Desirability of a method for "alcohol activation" that would be stereochemically complementary to that involving reaction of an alcohol with P / S halides (notes of Nov 20): PBr3 CH S Na 3 overall (inversion of H (inversion) H retention configuration) Br SMe (S)-2-bromobutane (R)-configured pdt. H OH (R)-2-butanol ? (S)-configured pdt. overall H inversion SMe Sulfonyl chlorides: para-toluenesulfonyl ("tosyl") chloride, methanesulfonyl ("mesyl") chloride O O O R S Cl H3C S Cl S Cl O O O A generic sulfonyl methanesulfonyl chloride Toluene para-toluenesulfonyl chloride chloride: R = any ( "mesyl chloride" ) (= methyl benzene) ( "tosyl chloride" ) alkyl group Pyridine: a weakly basic, nucleophilic analog of benzene in which an N atom replaces a CH unit: pyridine N Reaction of primary and secondary alcohols with sulfonyl chlorides in the presence of pyridine: formation of sulfonate esters (= alkyl sulfonates): R1 O R1 O OH + Cl S R N O S R + R2 O R2 N O H Cl a generic primary or an "alkyl sulfonate" secondary alcohol ("tosylate", "mesylate," etc.) note: tertiary alcohols are insufficiently nucleophilic to react with sulfonyl chlorides Presumed mechanism for the formation of sulfonate esters from primary and secondary (but not tertiary) alcohols and sulfonyl chlorides: • slow rate of reaction of an alcohol with sulfonyl chlorides in the presence of generic bases Lecture of Nov. 23 p. 2 • pyridine as a nucleophilic catalyst that greatly accelerates the reaction of an alcohol with a sulfonyl chloride by: (i) -
Radical Approaches to Alangium and Mitragyna Alkaloids
Radical Approaches to Alangium and Mitragyna Alkaloids A Thesis Submitted for a PhD University of York Department of Chemistry 2010 Matthew James Palframan Abstract The work presented in this thesis has focused on the development of novel and concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards (±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical cyclisation to form the tri-cyclic core. O O O N N N O O O H H H H H H O N NH N Protoemetinol OH HO a Psychotrine Deoxytubulosine b c Chapter 1 gives a general overview of radical chemistry and it focuses on the application of radical intermolecular and intramolecular reactions in synthesis. Consideration is given to the mediator of radical reactions from the classic organotin reagents, to more recently developed alternative hydrides. An overview of previous synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. Chapter 2 follows on from previous work within our group, involving the use of phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach was unsuccessful and it highlighted some limitations of the methodology. Chapter 3 explores the radical and ionic chemistry of a range of silanes. -
Hydrophilic Thin Coating and Method of Manufacturing the Same
Europaisches Patentamt European Patent Office © Publication number: 0 599 150 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 93118306.5 int. CIA B05D 1/18, C03C 17/30, C08J 7/04 @ Date of filing: 11.11.93 ® Priority: 12.11.92 JP 302124/92 © Applicant: MATSUSHITA ELECTRIC INDUSTRIAL Co., Ltd. @ Date of publication of application: 1006-banchi, Oaza-Kadoma 01.06.94 Bulletin 94/22 Kadoma-shi, Osaka(JP) © Designated Contracting States: @ Inventor: Ohtake, Tadashi DE FR GB Kawakitanaka-machi 30-15 Neyagawa-shi, Osaka 572(JP) Inventor: Mino, Norihisa Senrioka Higashi 4-6-8-806 Settsu-shi, Osaka 566(JP) Inventor: Ogawa, Kazufumi Aoyama 2-3-50 Nara-shi, Nara 630(JP) © Representative: VOSSIUS & PARTNER Siebertstrasse 4 D-81675 Munchen (DE) © Hydrophilic thin coating and method of manufacturing the same. © The invention relates to a hydrophilic thin film and a method of manufacturing the same in which a hydrophilic thin film 4 is formed by incorporating or fixing molecules comprising hydrophilic groups to a chemically adsorbed film on the surface of a substrate 1 . 7\ oj— Cl O I OH 2 ^4 $ -0— Si — 0 Si — 0 Si- -o- -Si-0- I I I I 0 0 0 0 — > 7> , , , 1 , , r-i-. i ///////////// X FIG . Rank Xerox (UK) Business Services (3. 10/3.09/3.3.4) EP 0 599 150 A1 The invention relates to a hydrophilic thin film and a method of manufacturing the same. More specifically, the invention relates to a hydrophilic thin film and its method of manufacture, in which molecules comprising hydrophilic groups are incorporated or chemically bonded to the surface of a chemically adsorbed film on a substrate surface. -
R. B. Woodward Precipitation of Barium in the Copper-Tin Group Of
HETEROCYCLES, Vol. 7, No. 1. 1977 R. B. Woodward Precipitation of barium in the copper-tin group of qualitative analysis. W.J.Hal1 and RBW, -Ind. Eng. Chem., Anal. Ed., 6, 478 (1934). A new pressure regulator for vacuum distillation. R.L.Emerson and RBW, g.,2, 347 (1937). The Staling of coffee. II. S.C.Prescott, R.L.Emerson, RBW, and R. Heggie, Food Re- --search, 2, 165 (1937). Pyrolysis of organomagnesium compounds. I. A new agent for the reduction of bemophenone. D.B.Clapp, and RBW, 1. ---Am. Chem. Soc., -60, 1019 (1938). The direct introduction of the angular methyl group. RBW, Ibid., 62, 1208 (1940). Experiments on the synthesis of oestrone. I. 2-(8-phenylethy1)-furans as components in the diene synthesis. RBW, Ibid., 62, 1478 (1940). The formation of Reissert's compounds in non-aqueous media. RBW, Ibid., 62, 1626 (1940). A new optically active reagent for carbonyl compounds. The resolution of -dl-camphor. RBW, T. P. Kohman, and G. C. Harris, Ibid., 63, lu) (1941). The isolation and properties of 1, 1-dineopentylethylene, a component of triisobutylene. P.D.Bartlett, G.L. Fraser, and RBW, x.,3, 495 (1941). Structure and absorption spectra of a,p-unsaturated ketones. RBW, Ibid., 3, 1123 (1941). 5 Structure and absorption spectra. II. 3-Acetoxy-A -(6)-~cholestene-7-carboxylicacid. RBW, and A.F.Clifiord, -Ibid., -63, 2727 (1941). The structure of cantharidine and the synthesis of desoxycantharidine. RLW, and R.B. Loftfield, Ibid., 3, 3167 (1941). -t-Butyllithium. P.D.Bardett, C .G.Swain, and RBW, --Ibid., 63, 3229 (1941). -
Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: the Effect of Reaction Conditions
polymers Article Synthesis of Tosyl- and Nosyl-Ended Polyisobutylenes with High Extent of Functionalities: The Effect of Reaction Conditions Balázs Pásztói 1,2,* , Tobias M. Trötschler 3,4,5, Ákos Szabó 1, Györgyi Szarka 1, Benjamin Kerscher 3,4 , Rolf Mülhaupt 3,4,5,* and Béla Iván 1,* 1 Polymer Chemistry Research Group, Institute of Materials and Environment Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; [email protected] (Á.S.); [email protected] (G.S.) 2 George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter sétány 2, H-1117 Budapest, Hungary 3 Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany; [email protected] (T.M.T.); [email protected] (B.K.) 4 Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany 5 Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany * Correspondence: [email protected] (B.P.); [email protected] (R.M.); [email protected] (B.I.) Received: 7 October 2020; Accepted: 24 October 2020; Published: 28 October 2020 Abstract: Endfunctional polymers possess significant industrial and scientific importance. Sulfonyl endgroups, such as tosyl and nosyl endfunctionalities, due their ease of substitution are highly desired for a variety of polymer structures. The sulfonylation of hydroxyl-terminated polyisobutylene (PIB-OH), a chemically and thermally stable, biocompatible, fully saturated polymer, with tosyl chloride (TsCl) and nosyl chloride (NsCl) is presented in this study. -
Mild Reductive Functionalization of Amides Into N‐Sulfonylformamidines
http://www.diva-portal.org This is the published version of a paper published in ChemistryOpen. Citation for the original published paper (version of record): Trillo, P., Slagbrand, T., Tinnis, F., Adolfsson, H. (2017) Mild Reductive Functionalization of Amides into N-Sulfonylformamidines. ChemistryOpen, 6(4): 484-487 https://doi.org/10.1002/open.201700087 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138585 DOI:10.1002/open.201700087 Mild Reductive Functionalization of Amides into N- Sulfonylformamidines Paz Trillo,[a] Tove Slagbrand,[a] Fredrik Tinnis,*[a] and Hans Adolfsson*[a, b] The development of aprotocolfor the reductivefunctionaliza- tion of amides into N-sulfonylformamidines is reported. The one-pot procedure is based on amild catalytic reduction of tertiaryamides into the corresponding enamines by the use of Mo(CO)6 (molybdenum hexacarbonyl) and TMDS (1,1,3,3-tetra- methyldisiloxane). The formed enamines were allowed to react with sulfonyl azidestogive the target compounds in moderate to good yields. The amidine functional group is frequently found in biological- ly activecompounds possessing anti-inflammatory,antibacteri- al, antiviral, antibiotic, and anestheticproperties.[1] They are also employed as intermediates and precursors in organic syn- thesis of importantheterocyclic compounds such as imida- zoles, quinazolines,isoquinolines, and pyrimidines.[2] Further- more, amidines are employed as ligandsinmetal complexes and as protecting groups for primary amines.[3] Scheme1.Preparation of amidines through a–c) electrophilic amide activa- The stability of amides makes this functional group valuable tion and d) reductive functionalization of amides. -
Appendix I: Named Reactions Single-Bond Forming Reactions Co
Appendix I: Named Reactions 235 / 335 432 / 533 synthesis / / synthesis Covered in Covered Featured in problem set problem Single-bond forming reactions Grignard reaction various Radical couplings hirstutene Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) various (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) Asymmetric aldol reactions: Evans / Carreira etc. saframycin A Organocatalytic asymmetric aldol saframycin A Pseudoephedrine glycinamide alkylation saframycin A Prins reaction Prins-pinacol reaction problem set # 2 Morita-Baylis-Hillman reaction McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction prostaglandin Horner-Wadsworth-Emmons reaction prostaglandin Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination prostaglandin Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions tetrodotoxin hirstutene / Selenoxide elimination tetrodotoxin Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction prostaglandin Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement hirstutene Oxidations – Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. N1999A2 Jones oxidation -
Elimination Reactions Are Described
Introduction In this module, different types of elimination reactions are described. From a practical standpoint, elimination reactions widely used for the generation of double and triple bonds in compounds from a saturated precursor molecule. The presence of a good leaving group is a prerequisite in most elimination reactions. Traditional classification of elimination reactions, in terms of the molecularity of the reaction is employed. How the changes in the nature of the substrate as well as reaction conditions affect the mechanism of elimination are subsequently discussed. The stereochemical requirements for elimination in a given substrate and its consequence in the product stereochemistry is emphasized. ELIMINATION REACTIONS Objective and Outline beta-eliminations E1, E2 and E1cB mechanisms Stereochemical considerations of these reactions Examples of E1, E2 and E1cB reactions Alpha eliminations and generation of carbene I. Basics Elimination reactions involve the loss of fragments or groups from a molecule to generate multiple bonds. A generalized equation is shown below for 1,2-elimination wherein the X and Y from two adjacent carbon atoms are removed, elimination C C C C -XY X Y Three major types of elimination reactions are: α-elimination: two atoms or groups are removed from the same atom. It is also known as 1,1-elimination. H R R C X C + HX R Both H and X are removed from carbon atom here R Carbene β-elimination: loss of atoms or groups on adjacent atoms. It is also H H known as 1,2- elimination. R C C R R HC CH R X H γ-elimination: loss of atoms or groups from the 1st and 3rd positions as shown below. -
1006134632-Mckeown-1960.Pdf
PROOF OF STRUCTURE OF SOME CONTROVERSIAL SULFONYL CHLORIDES by GEORGE BAKER McKEOWN H A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry in the School of Chemistry in the Graduate School of the University of Alabama UNIVERSITY, ALABAMA 1960 I ACKNOWLEDGMENT I wish to express my great indebtedness to Dr. R. B. Scott, Jr. for his supervision and numerous suggestions during the course of this work. G. B. M. CONTENTS Page INTRODUCTION • • • • • • • • • • • • • • • • • • • 1 THE PHOTOCHEMICAL CHLOROSULFANYLATION OF ALKANES ••••••••••••• . 3 TERTIARY SULFONYL CHLORIDES •• . 9 DECOMPOSITION OF SULFONYL CHLORIDES • • 13 CONCERNING A CLAIM AND A COUNTER-CLAIM TO PREP.A~ING TERTIARY SULFONYL CHLORIDES PHOTOCHEMICALLY • • • • • • • • • 15 EXPERIMENTAL • • • • • • • • • • • • • • • • • • 17 Preparation of 4-Chloro-2-methyl-l-butanesulfonyl Chloride from 4-Chloro-2-Methylbutane. • • • • . 17 Preparation of 4-Hydroxy-2-methyl-l-butanesulfonic Acid Sultone. • • • . • • • • • • • • • • . • . • • • 18 Conversion of 4-Chloro-2-methyl-l-butanesulfonyl Chloride to 2-Methyl -1-butanethiol • . .. • • . • • • 19 Preparation of 2-Methyl-1-butanethiol from 2-Methyl- 1-butanol. • • • • • • • • • • . • • • • . • • • . • 21 Preparation of 4-Chloro-2-methyl-1-pentanesulfonyl Chloride • • . • • • • • . • • • • • • • • • • • • • • 23 Preparation of 4-Hydroxy-2-methyl-l-pentanesulfonic Acid Sultone . • • • • • • • • • • • • • • • • • • • 25 Conversion of 4-Chloro-2-methyl-1-pentanesulfonyl Chloride to 2-Methyl-1-pentanethiol -
Fluoropropanesulfonyl Chloride As a Prosthetic Agent for The
Use of 3-[18F]fluoropropanesulfonyl chloride as a prosthetic agent for the radiolabelling of amines: Investigation of precursor molecules, labelling conditions and enzymatic stability of the corresponding sulfonamides Reik Löser*1,2, Steffen Fischer3, Achim Hiller3, Martin Köckerling4, Uta Funke3, Aurélie Maisonial3, Peter Brust3 and Jörg Steinbach1,2,3 Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2013, 9, 1002–1011. 1Institute of Radiopharmaceutical Cancer Research (formerly Institute doi:10.3762/bjoc.9.115 of Radiopharmacy), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany, 2Department of Received: 05 February 2013 Chemistry and Food Chemistry, Technical University of Dresden, Accepted: 26 April 2013 Bergstraße 66c, 01062 Dresden, Germany, 3Institute of Published: 27 May 2013 Radiopharmaceutical Cancer Research, HZDR Research Site Leipzig, Permoserstraße 15, 04318 Leipzig, Germany and 4Institute of This article is part of the Thematic Series "Synthetic probes for the study Chemistry, University of Rostock, Inorganic Solid-State Chemistry of biological function". Group, Albert-Einstein-Straße 3a, 18059 Rostock, Germany Guest Editor: J. Aubé Email: Reik Löser* - [email protected] © 2013 Löser et al; licensee Beilstein-Institut. License and terms: see end of document. * Corresponding author Keywords: fluorine-18; hydrolytic metabolism; prosthetic groups; radiochemistry; sulfonamides Abstract 3-[18F]Fluoropropanesulfonyl chloride, a recently proposed prosthetic agent for fluorine-18 labelling, was prepared in a two-step radiosynthesis via 3-[18F]fluoropropyl thiocyanate as an intermediate. Two benzenesulfonate-based radiolabelling precursors were prepared by various routes. Comparing the reactivities of 3-thiocyanatopropyl nosylate and the corresponding tosylate towards [18F]fluoride the former proved to be superior accounting for labelling yields of up to 85%. -
Application of Complex Aldol Reactions to the Total Synthesis of Phorboxazole B
J. Am. Chem. Soc. 2000, 122, 10033-10046 10033 Application of Complex Aldol Reactions to the Total Synthesis of Phorboxazole B David A. Evans,* Duke M. Fitch,1 Thomas E. Smith, and Victor J. Cee Contribution from the Department of Chemistry and Chemical Biology, HarVard UniVersity, Cambridge, Massachusetts 02138 ReceiVed June 29, 2000 Abstract: The synthesis of phorboxazole B has been accomplished in 27 linear steps and an overall yield of 12.6%. The absolute stereochemistry of the C4-C12,C33-C38, and C13-C19 fragments was established utilizing catalytic asymmetric aldol methodology, while the absolute stereochemistry of the C20-C32 fragment was derived from an auxiliary-based asymmetric aldol reaction. All remaining chirality was incorporated through internal asymmetric induction, with the exception of the C43 stereocenter which was derived from (R)-trityl glycidol. Key fragment couplings include a stereoselective double stereodifferentiating aldol reaction, a metalated oxazole alkylation, an oxazole-stabilized Wittig olefination, and a chelation-controlled addition of the fully elaborated alkenyl metal side chain. Introduction and HT29 (3.31 × 10-10 M), as well as leukemia CCRF-CBM (2.45 × 10-10 M), prostate cancer PC-3 (3.54 × 10-10 M), and Phorboxazoles A (1)andB(2) are marine natural products breast cancer MCF7 cell lines (5.62 × 10-10 M).2b In addition isolated from a recently discovered species of Indian Ocean to this impressive anticancer activity, phorboxazoles A and B sponge (genus Phorbas sp.) near Muiron Island, Western also exhibit potent in vitro antifungal activity against Candida Australia.2 These substances are representative of a new class albicans and Saccharomyces carlsbergensis at 0.1 µg/disk in of macrolides differing only in their C hydroxyl-bearing 13 the agar disk diffusion assay.2a stereocenters. -
Olefination Reactions Lecture Notes OTBS OPMB O
Olefination Reactions Lecture Notes OTBS OPMB O Key Reviews: O Me O Me XX Wittig Reaction K. C. Nicolaou and co-workers, Ann. 1997, 1283. Horner-Wadsworth-Emmons and Tebbe Olefinations S. E. Kelly, Comprehensive Org. Synth. 1991, Vol. 1, 729. Peterson Olefination D. J. Ager, Synthesis 1984, 384. Julia (Julia-Lythgoe) Olefination B. M. Trost, Bull. Chem. Soc. Jpn. 1988, 61, 107. Wittig Olefination: Background and Principles R1 n-BuLi, Ph P 3 O X LDA, R R1 LiHMDS PPh + 1 3 X Ph3P + R1 Ph3P pKa = 18-20 ylide when R = alkyl, H Ph Ph Ph Ph Ph R1 P Ph P -[Ph3P=O] O R1 O R strong bond 1 formation drives reaction oxaphosphatane betaine G. Wittig and G. Schollkopf, Chem. Ber. 1954, 87, 1318. Wittig Olefination: Background and Principles Stereoselectivity with non-stabilized ylides Me OMe Me Ph3P Ph3P Ph3P Me Ph3P Ph3P Not stable; must be made in situ and used immediately Wittig Olefination: Background and Principles Stereoselectivity with non-stabilized ylides Me OMe Me Ph3P Ph3P Ph3P Me Ph3P Ph3P Not stable; must be made in situ and used immediately Addition to carbonyl is an irreversible and concerted [2+2] cycloaddition such that the R groups on the aldehyde and the ylide are as far apart as possible PPh3 Ph3P O H H H O + Me Me Ph3P R O R H -[Ph3P=O] As the size of the R groups increases, selectivity for Z-alkene increases Me Nonpolar solvents favor initial addition Polar solvents favor the elimination Z-alkene Wittig Olefination: Background and Principles Stereoselectivity with stabilized ylides Me O O Ph P Ph3P 3 Ph3P Me OEt semistabilized Incredibly stable; not moisture sensitive, can be chromatographed Price for stability is lower reactivity: reacts well with aldehydes, slowly with ketones Wittig Olefination: Background and Principles Stereoselectivity with stabilized ylides Me O O Ph P Ph3P 3 Ph3P Me OEt semistabilized Incredibly stable; not moisture sensitive, can be chromatographed Price for stability is lower reactivity: reacts well with aldehydes, slowly with ketones Initial addition to carbonyl is reversible so the thermodynamic elimination product results.