Thesis Reference
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Original Article Prevalence of Dyslipidemia and Its Risk Factors in the Chinese Maonan and Han Populations
Int J Clin Exp Pathol 2016;9(10):10603-10616 www.ijcep.com /ISSN:1936-2625/IJCEP0037464 Original Article Prevalence of dyslipidemia and its risk factors in the Chinese Maonan and Han populations Yong Wang1,2, Lynn Htet Htet Aung2, Ji-Ying Tan3, Rui-Xing Yin2, Xi-Jiang Hu2, Xing-Jiang Long2, Dong-Feng Wu2, Lin Miao2, De-Zhai Yang4, Shang-Ling Pan5 1Department of Cardiology, Liuzhou People’s Hospital, Liuzhou, Guangxi, China; 2Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China; 3Department of General Practice, Xianan Health Station of Huanjiang Maonan Autonomous County, Hechi, Guangxi, China; 4Department of Molecular Genetics, Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China; 5Department of Pathophysiology, School of Premedical Science, Guangxi Medical University, Nanning, Guangxi, China Received August 7, 2016; Accepted August 23, 2016; Epub October 1, 2016; Published October 15, 2016 Abstract: Chinese Maonan nationality is an isolated minority with a population of 107,166 in 2010. They mainly reside in several townships of Huanjiang Maonan Autonomous County in the Northwestern of Guangxi, China. The prevalence and epidemiological characters of dyslipidemia in this ethnic group have not been studied previously. The objective of the present study was to assess the difference in serum lipid levels, the prevalence of dyslipidemia and the risk factors in the Maonan and Han populations. A cross-sectional study of dyslipidemia was conducted in 1332 unrelated subjects of Maonan and 1344 participants of Han ethnic groups. Information on epidemiologi- cal survey was collected with standardized questionnaires. Anthropometric and biochemical data were obtained. -
Download 375.48 KB
ASIAN DEVELOPMENT BANK TAR:PRC 31175 TECHNICAL ASSISTANCE (Financed by the Cooperation Fund in Support of the Formulation and Implementation of National Poverty Reduction Strategies) TO THE PEOPLE'S REPUBLIC OF CHINA FOR PARTICIPATORY POVERTY REDUCTION PLANNING FOR SMALL MINORITIES August 2003 CURRENCY EQUIVALENTS (as of 31 July 2003) Currency Unit – yuan (CNY) Y1.00 = $0.1208 $1.00 = Y8.2773 ABBREVIATIONS ADB – Asian Development Bank FCPMC – Foreign Capital Project Management Center LGOP – State Council Leading Group on Poverty Alleviation and Development NGO – nongovernment organization PRC – People's Republic of China RETA – regional technical assistance SEAC – State Ethnic Affairs Commission TA – technical assistance UNDP – United Nations Development Programme NOTES (i) The fiscal year (FY) of the Government ends on 31 December (ii) In this report, "$" refers to US dollars. This report was prepared by D. S. Sobel, senior country programs specialist, PRC Resident Mission. I. INTRODUCTION 1. During the 2002 Asian Development Bank (ADB) Country Programming Mission to the People's Republic of China (PRC), the Government reconfirmed its request for technical assistance (TA) for Participatory Poverty Reduction Planning for Small Minorities as a follow-up to TA 3610- PRC: Preparing a Methodology for Development Planning in Poverty Blocks under the New Poverty Strategy. After successful preparation of the methodology and its adoption by the State Council Leading Group on Poverty Alleviation and Development (LGOP) to identify poor villages within the “key working counties” (which are eligible for national poverty reduction funds), the Government would like to apply the methodology to the PRC's poorest minority areas to prepare poverty reduction plans with villager, local government, and nongovernment organization (NGO) participation. -
Bibliography
Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P. -
Allele Polymorphism and Haplotype Diversity of HLA-A, -B and -DRB1 Loci in Sequence-Based Typing for Chinese Uyghur Ethnic Group
Allele Polymorphism and Haplotype Diversity of HLA-A, -B and -DRB1 Loci in Sequence-Based Typing for Chinese Uyghur Ethnic Group Chun-mei Shen1,2,3, Bo-feng Zhu1,2,3,4*, Ya-jun Deng5, Shi-hui Ye2, Jiang-wei Yan6, Guang Yang7, Hong-dan Wang1,3,4, Hai-xia Qin8, Qi-zhao Huang9, Jing-Jing Zhang10 1 The Key Laboratory of Environment and Gene Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, People’s Republic of China, 2 Blood Center of Shaanxi Province, Xi’an, Shaanxi, People’s Republic of China, 3 The Key Laboratory of Ministry of Health for Forensic Sciences, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China, 4 Department of Forensic Sciences, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China, 5 Center of Forensic Sciences, Beijing Genomics Institute, Beijing, People’s Republic of China, 6 Beijing Institute of Genomics, Chinese Academy of Science, Beijing, People’s Republic of China, 7 Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, United States of America, 8 Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, United States of America, 9 The Second Team of Students Brigade, Third Military Medical University, Chongqing, People’s Republic of China, 10 Beijing Genomics Institute, Beijing, People’s Republic of China Abstract Background: Previous studies indicate that the frequency distributions of HLA alleles and haplotypes vary from one ethnic group to another or between the members of the same ethnic group living in different geographic areas. -
Harvard University Press, 2015)
This is a preprint draft of a chapter that appeared in Jeremy Brown and Matthew Johnson, eds. Maoism at the Grassroots (Harvard University Press, 2015). Youth and the "Great Revolutionary Movement" of Scientific Experiment in 1960s-70s Rural China Sigrid Schmalzer1 During the 1960s and 1970s, millions of young Chinese people moved to the countryside to be tempered by the "three great revolutionary movements." Originating in a May 1963 quotation from Chairman Mao, this became a stock phrase in the Cultural Revolution. But what were these three movements? The first two are familiar enough. Class struggle: political study meetings, criticism/self-criticism sessions, violent and sometimes deadly assaults on people identified as "class enemies." The struggle for production: back-breaking labor that defined life for rural people and offered a profound, and often bitter, lesson for sentdown urbanites. But what of the third? Rarely discussed in secondary literature, the “great revolutionary movement” of scientific experiment was nonetheless a significant experience for millions of people in rural China, and especially educated youth. In some areas, as many as one-third of urban, sent-down youth participated in scientific experiment.2 Whether cultivating bacterial fertilizer in makeshift laboratories, observing insect behavior to develop more effective control technologies, or designing new agricultural machinery, youth provided key support to the state's goal of transforming agriculture, and participating in scientific experiment presented opportunities for 1 young people to pursue both intellectual and revolutionary dreams. The idea that science should be pitched to youth is common in modern societies, but the Chinese case stands out because of the degree to which science itself was characterized as youthful, and youth themselves understood as agents of revolutionary scientific transformation. -
Association Between the PLTP Rs4810479 SNP and Serum Lipid Traits in the Chinese Maonan and Han Populations
Hindawi Genetics Research Volume 2021, Article ID 9925272, 12 pages https://doi.org/10.1155/2021/9925272 Research Article Association between the PLTP rs4810479 SNP and Serum Lipid Traits in the Chinese Maonan and Han Populations Fen-Han Zhang,1 Rui-Xing Yin ,1 Li-Mei Yao,1 Wei-Xiong Lin,2 Jin-Zhen Wu,1 and De-Zhai Yang2 1Department of Cardiology, Institute of Cardiovascular Diseases, e First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China 2Department of Molecular Genetics, Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, China Correspondence should be addressed to Rui-Xing Yin; [email protected] Received 24 March 2021; Accepted 22 June 2021; Published 3 July 2021 Academic Editor: Chaeyoung Lee Copyright © 2021 Fen-Han Zhang et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -e association between the phospholipid transfer protein (PLTP) gene rs4810479 single-nucleotide polymorphism (SNP) and serum lipid levels is largely unknown. -is investigation aimed to evaluate the relationship between the PLTP rs4810479 SNP, several environmental risk factors, and serum lipid parameters in the Chinese Maonan and Han nationalities. Polymerase chain reaction-restriction fragment length polymorphism, gel electrophoresis, and direct sequencing were employed to determine the PLTP rs4810479 genotypes in 633 Maonan and 646 Han participants. -e frequencies of CC, CT, and TT genotypes and the C allele were different between Maonan and Han groups (29.07%, 53.08%, 17.85%, and 55.61% vs. 35.60%, 49.70%, 14.70%, and 60.45%, respectively, P < 0:05). -
Homo Erectus: a Bigger, Faster, Smarter, Longer Lasting Hominin Lineage
Homo erectus: A Bigger, Faster, Smarter, Longer Lasting Hominin Lineage Charles J. Vella, PhD August, 2019 Acknowledgements Many drawings by Kathryn Cruz-Uribe in Human Career, by R. Klein Many graphics from multiple journal articles (i.e. Nature, Science, PNAS) Ray Troll • Hominin evolution from 3.0 to 1.5 Ma. (Species) • Currently known species temporal ranges for Pa, Paranthropus aethiopicus; Pb, P. boisei; Pr, P. robustus; A afr, Australopithecus africanus; Ag, A. garhi; As, A. sediba; H sp., early Homo >2.1 million years ago (Ma); 1470 group and 1813 group representing a new interpretation of the traditionally recognized H. habilis and H. rudolfensis; and He, H. erectus. He (D) indicates H. erectus from Dmanisi. • (Behavior) Icons indicate from the bottom the • first appearance of stone tools (the Oldowan technology) at ~2.6 Ma, • the dispersal of Homo to Eurasia at ~1.85 Ma, • and the appearance of the Acheulean technology at ~1.76 Ma. • The number of contemporaneous hominin taxa during this period reflects different Susan C. Antón, Richard Potts, Leslie C. Aiello, 2014 strategies of adaptation to habitat variability. Origins of Homo: Summary of shifts in Homo Early Homo appears in the record by 2.3 Ma. By 2.0 Ma at least two facial morphs of early Homo (1813 group and 1470 group) representing two different adaptations are present. And possibly 3 others as well (Ledi-Geraru, Uraha-501, KNM-ER 62000) The 1813 group survives until at least 1.44 Ma. Early Homo erectus represents a third more derived morph and one that is of slightly larger brain and body size but somewhat smaller tooth size. -
Fossil Evidence of Hominins Preying on Rhinoceroses Jun Yana; Tuong-Vi Nguyena; Briana Pobiner, Phdb; Elizabeth V
Fossil evidence of hominins preying on rhinoceroses Jun Yana; Tuong-Vi Nguyena; Briana Pobiner, PhDb; Elizabeth V. Berkeley, PhDa a Biology Department, James Madison University, Harrisonburg, VA, b Human Origins Program, NMNH, Smithsonian Institution, Washington, D.C. Introduction Results Currently, rhinoceroses are mainly hunted for their horns. In prehistoric times, hominins were likely interested in rhinoceroses for their meat. Evidence from butchered bones Figure 1. Interactive map containing 58 detailed specimen data entries and stone tools indicate that hominins first started consuming created using ZeeMaps. Different color pins correspond to the five meat from large animals at least 2.6 Ma5 and then migrated out different categories based on the interaction between rhinoceros and of Africa around 1.9 Ma9*, their diets became broader and more hominin (detailed descriptions of each category are available on the flexible. As the consumption of animal-based foods (especially actual map). Detailed data for each entry can be seen by clicking on meat) provided more calories for various amino acids and the “entry name” on the right list or by clicking on the actual pin point. micronutrients used for rapid development1, the selective Viewers of the map will be able to download the entire database as a pressure to consume these foods increased. We conducted a CSV file. Admin access will also be available for scientist to modify literature review to determine when and where early humans current data or add a data entry. started preying on rhinoceroses, and how rhinoceroses may have been used as food. We also intended explore the evidence for the interactions of hominin and rhinoceros species that inhabited the same geographical location during the same period of time and how often rhinoceros consumption events (a) 0 (c) 14.9KA took place. -
Genetic Affinity Between the Kamsui Speaking Chadong and Mulam
Journal of Systematics and Evolution 51 (3): 263–270 (2013) doi: 10.1111/jse.12009 Research Article Genetic affinity between the Kam‐Sui speaking Chadong and Mulam people 1Qiong‐Ying DENG*y 2Chuan‐Chao WANGy 1Xiao‐Qing WANGy 2Ling‐Xiang WANG 2Zhong‐Yan WANG 2Wen‐Jun WU 2Hui LI* the Genographic Consortium‡ 1(Department of Anatomy, Guangxi Medical University, Nanning 530021, China) 2(State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China) Abstract The origins of Kam‐Sui speaking Chadong and Mulam people have been controversial subjects in ethnic history studies and other related fields. Here, we studied Y chromosome (40 informative single nucleotide polymorphisms and 17 short tandem repeats in a non‐recombining region) and mtDNA (hypervariable segment I and coding region single nucleotide polymorphisms) diversities in 50 Chadong and 93 Mulam individuals. The Y chromosome and mtDNA haplogroup components and network analyses indicated that both Chadong and Mulam originated from the admixture between surrounding populations and the indigenous Kam‐Sui populations. The newly found Chadong is more closely related to Mulam than to Maonan, especially in the maternal lineages. Key words East Asian population, genetic structure, mitochondrial DNA, Tai‐Kadai, Y chromosome. Chadong dialect is a newly discovered Kam‐Sui and Mulam languages are both Kam‐Sui languages language spoken by some 20 000 people, mainly in spoken mainly in northern Guangxi by Maonan and Chadong Township, Lingui County, northeastern Mulao people, respectively (Li, 2001; Anthony et al., Guangxi Zhuang Autonomous Region, China. Accord- 2008). -
Handbook of Chinese Mythology TITLES in ABC-CLIO’S Handbooks of World Mythology
Handbook of Chinese Mythology TITLES IN ABC-CLIO’s Handbooks of World Mythology Handbook of Arab Mythology, Hasan El-Shamy Handbook of Celtic Mythology, Joseph Falaky Nagy Handbook of Classical Mythology, William Hansen Handbook of Egyptian Mythology, Geraldine Pinch Handbook of Hindu Mythology, George Williams Handbook of Inca Mythology, Catherine Allen Handbook of Japanese Mythology, Michael Ashkenazi Handbook of Native American Mythology, Dawn Bastian and Judy Mitchell Handbook of Norse Mythology, John Lindow Handbook of Polynesian Mythology, Robert D. Craig HANDBOOKS OF WORLD MYTHOLOGY Handbook of Chinese Mythology Lihui Yang and Deming An, with Jessica Anderson Turner Santa Barbara, California • Denver, Colorado • Oxford, England Copyright © 2005 by Lihui Yang and Deming An All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except for the inclusion of brief quotations in a review, without prior permission in writing from the publishers. Library of Congress Cataloging-in-Publication Data Yang, Lihui. Handbook of Chinese mythology / Lihui Yang and Deming An, with Jessica Anderson Turner. p. cm. — (World mythology) Includes bibliographical references and index. ISBN 1-57607-806-X (hardcover : alk. paper) — ISBN 1-57607-807-8 (eBook) 1. Mythology, Chinese—Handbooks, Manuals, etc. I. An, Deming. II. Title. III. Series. BL1825.Y355 2005 299.5’1113—dc22 2005013851 This book is also available on the World Wide Web as an eBook. Visit abc-clio.com for details. ABC-CLIO, Inc. 130 Cremona Drive, P.O. Box 1911 Santa Barbara, California 93116–1911 This book is printed on acid-free paper. -
Associations of PRKN–PACRG Snps and G × G and G × E Interactions
www.nature.com/scientificreports OPEN Associations of PRKN–PACRG SNPs and G × G and G × E interactions with the risk of hyperlipidaemia Peng‑Fei Zheng1, Rui‑Xing Yin 1,2,3*, Bi‑Liu Wei1, Chun‑Xiao Liu1, Guo‑Xiong Deng1 & Yao‑Zong Guan1 This research aimed to assess the associations of 7 parkin RBR E3 ubiquitin protein ligase (PRKN) and 4 parkin coregulated gene (PACRG ) single-nucleotide polymorphisms (SNPs), their haplotypes, gene–gene (G × G) and gene-environment (G × E) interactions with hyperlipidaemia in the Chinese Maonan minority. The genotypes of the 11 SNPs in 912 normal and 736 hyperlipidaemic subjects were detected with next-generation sequencing technology. The genotypic and allelic frequencies of the rs1105056, rs10755582, rs2155510, rs9365344, rs11966842, rs6904305 and rs11966948 SNPs were diferent between the normal and hyperlipidaemic groups (P < 0.05–0.001). Correlations between the above 7 SNPs and blood lipid levels were also observed (P < 0.0045–0.001, P < 0.0045 was considered statistically signifcant after Bonferroni correction). Strong linkage disequilibrium was found among the 11 SNPs (r2 = 0.01–0.64). The most common haplotypes were PRKN C-G-T-G-T-T-C (> 15%) and PACRG A-T-A-T (> 40%). The PRKN C-G-C-A-T-T-C and PRKN–PACRG C-G-T-G-T-T-C-A-T-A-T haplotypes were associated with an increased risk of hyperlipidaemia, whereas the PRKN–PACRG C-G-T-G-C-T-C- A-T-C-T and C-G-T-G-T-T-C-A-T-C-T haplotypes provided a protective efect. -
Appendix 1. a Brief Description of China's 56 Ethnic Groups
Appendix 1. A Brief Description of China’s 56 Ethnic Groups Throughout history, race, language and religion have divided China as much as physical terrain, political fiat and conquest.1 However, it is always a politically sensitive issue to identify those non-Han people as different ethnic groups. As a result, the total number of ethnic groups has never been fixed precisely in China. For example, in 1953, only 42 ethnic peoples were identified, while the number increased to 54 in 1964 and 56 in 1982. Of course, this does not include the unknown ethnic groups as well as foreigners with Chinese citizenship.2 Specifically, China’s current 56 ethnic groups are, in alphabetical order, Achang, Bai, Baonan, Blang, Buyi, Dai, Daur, Deang, Derung, Dong, Dongxiang, Ewenki, Gaoshan, Gelao, Han, Hani, Hezhe, Hui, Jing, Jingpo, Jino, Kazak, Kirgiz, Korean, Lahu, Lhoba, Li, Lisu, Manchu, 1 The text is prepared by Rongxing Guo based on the following sources: (i) The Ethnic Minorities in China (title in Chinese: “zhongguo shaoshu minzu”, edited by the State Ethnic Affairs Commission (SEAC) of the People’s Republic of China and published in 2010 by the Central Nationality University Press, Beijing) and (ii) the introductory text of China’s 56 ethnic groups (in Chinese, available at http://www.seac.gov.cn/col/col107/index.html, accessed on 2016–06–20). 2 As of 2010, when the Sixth National Population Census of the People’s Republic of China was conducted, the populations of the unknown ethnic groups and foreigners with Chinese citizenship were 640,101 and 1448, respectively.