Spatial Analysis of Geohazard on the Fruška Gora Mountain
Total Page:16
File Type:pdf, Size:1020Kb
Spatial analysis of geohazard on the Fruška Gora mountain Ph.D. Dissertation Mészáros Minucsér Supervisor: Dr. Mucsi László Professor Earth Sciences Doctoral School Department of Physical Geography and Geoinformatics Faculty of Science and Informatics, University of Szeged Szeged, 2013 CONTENTS 1 INTRODUCTION ................................................................................................................... 5 1. 1 Background .......................................................................................................................... 5 1. 2 Research goals ...................................................................................................................... 7 2 STUDY AREA ........................................................................................................................ 9 2. 1 Geographic position and general characteristics of the study area ......................................... 9 2. 2 Exodynamic geohazard on the Fruška Gora mountain......................................................... 11 2 .2. 1 Mass movements on the Fruška Gora mountain ....................................................... 11 2 .2. 2 Excessive erosion..................................................................................................... 22 2 .2. 3 Flash floods ............................................................................................................. 23 2. 3 Geological properties of Fruška Gora ................................................................................. 24 2 .3. 1 Literature overview .................................................................................................. 24 2 .3. 2 Geologic and stratigraphic structure of Fruška Gora ................................................. 25 2 .3. 3 The tectonic structure and seismicity of the research area ......................................... 28 2. 4 Geomorphological properties of Fruška gora ...................................................................... 30 2 .4. 1 Literature overview .................................................................................................. 30 2 .4. 2 Morphographic and morphometric properties of Fruška Gora .................................. 31 2 .4. 3 Morphogenetic features of Fruška Gora ................................................................... 32 2. 5 Climatic conditions of the Fruška Gora ............................................................................... 35 2. 6 Hydrological properties of Fruška Gora .............................................................................. 38 2 .6. 1 Groundwater on Fruška Gora ................................................................................... 38 2 .6. 2 Surface waters of Fruška Gora ................................................................................. 39 2 .6. 3 The influence of Danube on surface processes on Fruška Gora ................................ 40 2. 7 Pedological properties of Fruška Gora ................................................................................ 41 2. 8 Biogeographic properties of Fruška Gora............................................................................ 42 2. 9 Demographic and economic factors and geohazard on Fruška Gora .................................... 43 2 .9. 1 Demography and settlements of Fruška Gora ........................................................... 43 2 .9. 2 Economic activities and geohazard on Fruška Gora .................................................. 45 2. 10 Nature protection and geohazard on the Fruška Gora .......................................................... 46 3 GEOHAZARD EVALUATION USING DIGITAL GEOMORPHOMETRY ........................ 48 3. 1 Theoretical Background...................................................................................................... 48 3. 2 Digital elevation model (DEM) generation ......................................................................... 49 3 .2. 1 Determining the model type ..................................................................................... 49 3 .2. 2 Creating DEM from topographic maps ..................................................................... 49 3 .2. 3 Generating DSM from CORONA satellite images ................................................... 51 3 .2. 4 Error detection and correction .................................................................................. 52 3 .2. 5 Sink (pit) filling corrections: .................................................................................... 53 3 .2. 6 DEM based calculation of land surface properties .................................................... 54 3. 3 Landslide susceptibility mapping ........................................................................................ 55 3 .3. 1 Theoretical background ............................................................................................ 55 3. 4 Landslide inventory preparation ......................................................................................... 57 3. 5 Shallow landslide susceptibility assessment using SINMAP model .................................... 58 3 .5. 1 Theoretical background ............................................................................................ 58 3 .5. 2 Model input ............................................................................................................. 61 3 .5. 3 DEM processing in SINMAP ................................................................................... 63 3 .5. 4 Results ..................................................................................................................... 64 3 .5. 5 Analysis of results .................................................................................................... 67 3. 6 Landslide susceptibility analysis using likelihood ratio model ............................................ 69 3 .6. 1 Theoretical background ............................................................................................ 69 3 .6. 2 Input data for the likelihood ratio landslide susceptibility model .............................. 71 3 .6. 3 Landslide susceptibility model calculation using likelihood ratio ............................. 71 3 .6. 4 Analysis of the model performance .......................................................................... 73 3 .6. 5 Analysis of results .................................................................................................... 75 3. 7 Landslide reconstruction from historic topographic maps ................................................... 78 3 .7. 1 The large landslide event in 1941 near Krčedin ........................................................ 78 3 .7. 2 Results of the DEM computation ............................................................................. 81 3 .7. 3 Interpretation of results ............................................................................................ 83 4 HIGH RESOLUTION CORONA STEREOSCOPIC SATELLITE IMAGES IN GEOHAZARD ASSESSMENT .................................................................................................... 85 4. 1 Theoretical background ...................................................................................................... 85 4. 2 CORONA stereo satellite images processing and DSM extraction ...................................... 86 4 .2. 1 Accuracy assessment ............................................................................................... 89 4. 3 Evaluation of suitability of CORONA stereo images for geohazard studies ........................ 90 5 CONCLUSIONS ................................................................................................................... 94 6 ACKNOWLEDGEMENTS ................................................................................................... 98 7 LITERATURE ..................................................................................................................... 100 8 SUMMARY ........................................................................................................................ 115 9 ÖSSZEFOGLALÁS ............................................................................................................ 118 10 ANNEXES .......................................................................................................................... 122 10. 1 ANNEX 1. DETERMINATION OF THE RESEARCH AREA ........................................ 122 10. 2 ANNEX 2. SINMAP STABILITY INDEX GRAPHS ..................................................... 123 10. 3 ANNEX 4. THE LIKELIHOOD RATIO LANDSLIDE SUSCEPTIBILITY MODEL CALCULATION TABLES......................................................................................................... 125 1 Introduction 1. 1 Background The significance of studying geomorphological processes shaping the surface of mountains and the associated vulnerability (geohazard mapping) has increased greatly in the last decades. Geohazard is considered as a geomorphological, geological and environmental process, phenomena and condition that is potentially dangerous or poses a level of threat to human life, health, and property, or to the environment (Komac, Zorn, 2013). The growing demographic pressure at the end of the last century resulted in building of costly or unplanned structures on previously avoided and often hazardous mountainous regions. As a result vulnerability,