Microbial and Metabolic Relationships of the Preterm Gut Microbiome in Response to Antibiotic and Dietary Interventions

Total Page:16

File Type:pdf, Size:1020Kb

Microbial and Metabolic Relationships of the Preterm Gut Microbiome in Response to Antibiotic and Dietary Interventions Microbial and Metabolic Relationships of the Preterm Gut Microbiome in Response to Antibiotic and Dietary Interventions by Sandi Yen A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy In Molecular and Cellular Biology Guelph, Ontario, Canada © Sandi Yen, November 2019 ABSTRACT MICROBIAL AND METABOLIC RELATIONSHIPS OF THE PRETERM GUT MICROBIOME IN RESPONSE TO ANTIBIOTIC AND DIETARY INTERVENTIONS Sandi Yen Advisors: University of Guelph, 2019 Emma Allen-Vercoe Marc G. Aucoin The progression of preterm infant gut microbiome development is intricately linked with the development of the infant, such that disruptions to the microbial system can manifest as neonatal necrotizing enterocolitis (NEC) in the infant. One of the proposed aetiologies of NEC is that disease onset occurs when microbiome development is challenged by an external perturbation, such as antibiotic treatment. The research conducted in this thesis was motivated by the overarching hypothesis that infant health occurs when homeostatic microbial relationships have been established. Conversely, when microbiome development is disrupted, the preterm infant is susceptible to diseases such as NEC. Therefore, the driving hypothesis of this thesis was that external factors, such as antibiotic therapy or formula milk, impair microbial interactions such that the preterm gut microbiome no longer sustains healthy infant development, leading to NEC onset. This hypothesis was tested using fecal microbiota from two preterm infants with different antibiotic exposures while in hospital. Propagation of these preterm fecal microbiota in an in vitro continuous culture system allowed for compositional, metabonomic, culture-based annotation of the ecosystems. Longitudinal analysis of each community revealed differences in each community’s functional capacity. The Infant 1 community, which was antibiotic-naïve, was able to restore that same steady-state by 1-2 weeks after antibiotic treatment ended. In contrast, the Infant 2 community (had prior exposure to antibiotics) was not able to re-gain the same compositional state after antibiotic treatment, nor was it able to carry out similar secondary metabolisms. The differences in the two community’s resilience to in vitro antibiotic treatment was attributed to the microbial-microbial relationships in the in vitro communities. This work demonstrated that parenteral antibiotic therapy has the potential to disrupt microbe-microbe relationships such that the microbiome is hindered in its ability to function as a cohesive ecosystem. This work, which includes several other studies focused on examining the metabolic capacity of the early gut microbiome, provides groundwork that potentiates development of therapy alternatives that target endogenous microbial relationships to steer the preterm gut ecosystem towards a state of health. iii DEDICATION This thesis is dedicated to Nicholas Menzies, who has carried me through to the finish line. iv ACKNOWLEDGEMENTS This body of work would be incomplete without the support and contributions of many, many people: Mentorship and guidance from my supervisors: Dr. Emma Allen-Vercoe and Dr. Marc G. Aucoin Support from my advisory committee: Dr. Cezar Khursigara and Dr. Hermann Eberl Strong partnership with collaborators: Dr. Erika Claud, Dr. Prameet Sheth, Dr. Lars Bode, Dr. Jacque Belik Mentorship from NMR wizard: Sameer Al-Abdul-Wahid Advisement from Genomics Guru: Jeff Gross Scientific and personal growth from peer mentors: Dr. Kaitlyn Oliphant, Dr. Rafael José Marques Peixoto, Dr. Christian Carlucci, Dr. Stanislav Sokolenko Collaboration and friendship of colleagues and peers: Erin Shackleton, Alex Pritchard-Oh, Greg Higgins, Charley Carriero, Michelle Daigneault, Chris Ambrose, Dr. Kyla Chochrane, Dr. Kathleen Schroeter, Dr. Julie McDonald, Caroline Ganobis, Simone Renwick, Avery Robertson, Jacob Wilde, Connor Gianetto-Hill, Dr. Claire Watkins, Erin Bolte, AJ Stirling, Keith Sheriff, Joseph Ciufo, Karen Gonzalez, Alyssa Koch, Craig Moore Ineffable support from family: Dad, Mom, Danny, Judy, Anita; Craig, Terry, Justin, Samantha, Jackie, Theo Dedication and trust from: NICU staff, nurses, doctors, parents, and infants at the Comer Children’s Hospital, Kingston General Hospital, Toronto SickKids Hospital v TABLE OF CONTENTS Abstract....................................................................................................................................... ii Dedication .................................................................................................................................. iv Acknowledgements ..................................................................................................................... v Table of Contents ....................................................................................................................... vi List of Tables ............................................................................................................................. xi List of Figures ........................................................................................................................... xii List of Supplementary Tables ................................................................................................... xiv List of Supplementary Figures ................................................................................................... xv List of Supplementary Equations .............................................................................................. xvi List of Abbreviations ................................................................................................................ xvii 1 Literature Review ............................................................................................................... 1 1.1 Introduction .................................................................................................................. 1 1.2 Investigating Microbial Composition with 16S rRNA Gene Sequencing........................ 2 1.2.1 Taxonomic Limitations of 16S rRNA Gene ............................................................ 2 1.3 Preterm Infant Gut Microbiome .................................................................................... 3 1.4 Neonatal Necrotizing Enterocolitis ............................................................................... 6 1.4.1 Risk Factors and Pathogenesis of NEC ................................................................ 6 1.4.2 Antibiotics and NEC .............................................................................................. 8 1.4.3 NEC and the Early Gut Microbiome ...................................................................... 9 1.4.4 Host and Microbial Metabonome during NEC ......................................................10 1.4.5 Feeding Strategies and NEC ...............................................................................12 1.5 Breast Milk Composition and Benefits .........................................................................13 1.5.1 Human Milk Oligosaccharides ..............................................................................14 1.5.2 HMO Metabolism and Distribution ........................................................................20 1.5.3 Biofunctions of HMOs ..........................................................................................22 1.5.4 HMOs and NEC ...................................................................................................24 1.5.5 HMOs Modulate the Gut Microbiota .....................................................................25 1.5.6 HMOs in Infant Formula Milk ................................................................................26 1.6 Project Overview .........................................................................................................27 1.6.1 Global Hypothesis ................................................................................................27 1.6.2 Bioinformatic Workflow for 16S rRNA gene Analysis ............................................28 1.6.3 Antibiotic Detection in Preterm Infant Stool ..........................................................28 1.6.4 Evaluation of Community Resilience to In vitro Antibiotic Treatment ....................29 vi 1.6.5 HMOs as a Substrate for Microbes Derived from Preterm Infant Stool .................30 1.6.6 Contribution to Early Gut Microbiome Research ..................................................30 2 Employing ASV Denoising Balances Bioinformatic and Biological Resolution Using the seqpipeR Workflow ...................................................................................................................32 2.1 Chapter Objective .......................................................................................................32 2.2 Manuscript Authorship ................................................................................................33 2.3 Abstract ......................................................................................................................33 2.4 Introduction .................................................................................................................35 2.4.1 Current State of 16S rRNA Gene Marker Analysis in Microbiome Research ........35 2.4.2 Taxonomic Limitations of 16S rRNA Gene ...........................................................38 2.4.3 Currently Available
Recommended publications
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Description of Gabonibacter Massiliensis Gen. Nov., Sp. Nov., a New Member of the Family Porphyromonadaceae Isolated from the Human Gut Microbiota
    Curr Microbiol DOI 10.1007/s00284-016-1137-2 Description of Gabonibacter massiliensis gen. nov., sp. nov., a New Member of the Family Porphyromonadaceae Isolated from the Human Gut Microbiota 1,2 1 3,4 Gae¨l Mourembou • Jaishriram Rathored • Jean Bernard Lekana-Douki • 5 1 1 Ange´lique Ndjoyi-Mbiguino • Saber Khelaifia • Catherine Robert • 1 1,6 1 Nicholas Armstrong • Didier Raoult • Pierre-Edouard Fournier Received: 9 June 2016 / Accepted: 8 September 2016 Ó Springer Science+Business Media New York 2016 Abstract The identification of human-associated bacteria Gabonibacter gen. nov. and the new species G. mas- is very important to control infectious diseases. In recent siliensis gen. nov., sp. nov. years, we diversified culture conditions in a strategy named culturomics, and isolated more than 100 new bacterial Keywords Gabonibacter massiliensis Á Taxonogenomics Á species and/or genera. Using this strategy, strain GM7, a Culturomics Á Gabon Á Gut microbiota strictly anaerobic gram-negative bacterium was recently isolated from a stool specimen of a healthy Gabonese Abbreviations patient. It is a motile coccobacillus without catalase and CSUR Collection de Souches de l’Unite´ des oxidase activities. The genome of Gabonibacter mas- Rickettsies siliensis is 3,397,022 bp long with 2880 ORFs and a G?C DSM Deutsche Sammlung von content of 42.09 %. Of the predicted genes, 2,819 are Mikroorganismen protein-coding genes, and 61 are RNAs. Strain GM7 differs MALDI-TOF Matrix-assisted laser desorption/ from the closest genera within the family Porphyromon- MS ionization time-of-flight mass adaceae both genotypically and in shape and motility.
    [Show full text]
  • Supplementary Tables and Figures
    SUPPLEMENTARY TABLES AND FIGURES Table S1: Isolated microorganisms from three fecal samples from controls on five different media. YCFAG SCH Δ0 ΔV ΔS SCH SCH +AAA +FS +AAA +FS +AAA +FS +FS ACTINOBACTERIA Bifidobacteriaceae Bifidobacterium catenulatum/ N N N N N pseudocatenulatum Bifidobacterium longum N N N N Coriobacteriaceae Collinsella aerofaciens N Corynebacteriaceae Corynebacterium sp. O O O Corynebacterium aurimucosum O O Corynebacterium striatum O O BACTEROIDETES Bacteroideaceae Bacteroides caccae N Bacteroides cellulosilyticus N N Bacteroides fragilis N Bacteroides ovatus N N Bacteroides thetaiotaomicron N Bacteroides uniformis N N Bacteroides vulgatus N N N N Tannerellaceae Parabacteroides distasonis N FIRMICUTES Bacillaceae Bacillus sp. O Bacillus pumilus O O Enterococcaceae Enterococcus faecium O/N O/N O/N O O/N Enterococcus mundtii O O O Erysipelotrichaceae Clostridium innocuum N N Staphylococcaceae Staphylococcus sp. O Staphylococcus parasanguinis O PROTEOBACTERIA Enterobacteriaceae Citrobacter amalonaticus O Escherichia coli O/N O/N O/N O/N O/N EUKARYOTES Candida albicans O TOTAL N° OF DIFFERENT ISOLATES 6/9 6/9 6/7 4/7 5/3 (O/N) YCFAG: Yeast Casitone Fatty Acid Glucose medium; Δ0: medium unchanged; ΔV: medium without vitamins; ΔS: medium without short chain fatty acids; FS: fecal suspension; AAA: aromatic amino acids; SCH: Schaedler medium; O: isolated from fecal samples on corresponding medium after aerobic incubation (37 °C for 2 to 5 days); N: isolated from fecal samples on corresponding medium after anaerobic incubation (37 °C for 5 to 7 days). Table S2: Correlation between the abundance of the bacterial taxa, as assessed by means of qPCR, and estimated glomerular filtration rate (eGFR).
    [Show full text]
  • Genomic Characterization of the Uncultured Bacteroidales Family S24-7 Inhabiting the Guts of Homeothermic Animals Kate L
    Ormerod et al. Microbiome (2016) 4:36 DOI 10.1186/s40168-016-0181-2 RESEARCH Open Access Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals Kate L. Ormerod1, David L. A. Wood1, Nancy Lachner1, Shaan L. Gellatly2, Joshua N. Daly1, Jeremy D. Parsons3, Cristiana G. O. Dal’Molin4, Robin W. Palfreyman4, Lars K. Nielsen4, Matthew A. Cooper5, Mark Morrison6, Philip M. Hansbro2 and Philip Hugenholtz1* Abstract Background: Our view of host-associated microbiota remains incomplete due to the presence of as yet uncultured constituents. The Bacteroidales family S24-7 is a prominent example of one of these groups. Marker gene surveys indicate that members of this family are highly localized to the gastrointestinal tracts of homeothermic animals and are increasingly being recognized as a numerically predominant member of the gut microbiota; however, little is known about the nature of their interactions with the host. Results: Here, we provide the first whole genome exploration of this family, for which we propose the name “Candidatus Homeothermaceae,” using 30 population genomes extracted from fecal samples of four different animal hosts: human, mouse, koala, and guinea pig. We infer the core metabolism of “Ca. Homeothermaceae” to be that of fermentative or nanaerobic bacteria, resembling that of related Bacteroidales families. In addition, we describe three trophic guilds within the family, plant glycan (hemicellulose and pectin), host glycan, and α-glucan, each broadly defined by increased abundance of enzymes involved in the degradation of particular carbohydrates. Conclusions: “Ca. Homeothermaceae” representatives constitute a substantial component of the murine gut microbiota, as well as being present within the human gut, and this study provides important first insights into the nature of their residency.
    [Show full text]
  • Intestinal Microbiota: a Novel Target to Improve Anti-Tumor Treatment?
    Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? Romain Villeger, Amélie Lopès, Guillaume Carrier, Julie Veziant, Elisabeth Billard, Nicolas Barnich, Johan Gagnière, Emilie Vazeille, Mathilde Bonnet To cite this version: Romain Villeger, Amélie Lopès, Guillaume Carrier, Julie Veziant, Elisabeth Billard, et al.. Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment?. International Journal of Molecular Sciences, MDPI, 2019, 20 (18), pp.4584. 10.3390/ijms20184584. hal-02518541 HAL Id: hal-02518541 https://hal.archives-ouvertes.fr/hal-02518541 Submitted on 8 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License International Journal of Molecular Sciences Review Intestinal Microbiota: A Novel Target to Improve Anti-Tumor Treatment? 1, , 1,2, 1,3 1,4,5 Romain Villéger * y , Amélie Lopès y , Guillaume Carrier , Julie Veziant , Elisabeth Billard 1 , Nicolas Barnich 1 , Johan Gagnière 1,4,5, Emilie Vazeille 1,5,6 and Mathilde Bonnet 1 1 Microbes,
    [Show full text]
  • Coaggregation of Gut Bacteroides & Parabacteroides with Probiotic Lactobacillus Rhamnosus GG Samuel Schotten
    Eastern Michigan University DigitalCommons@EMU Senior Honors Theses Honors College 2016 Coaggregation of Gut Bacteroides & Parabacteroides with Probiotic Lactobacillus Rhamnosus GG Samuel Schotten Follow this and additional works at: http://commons.emich.edu/honors Recommended Citation Schotten, Samuel, "Coaggregation of Gut Bacteroides & Parabacteroides with Probiotic Lactobacillus Rhamnosus GG" (2016). Senior Honors Theses. 474. http://commons.emich.edu/honors/474 This Open Access Senior Honors Thesis is brought to you for free and open access by the Honors College at DigitalCommons@EMU. It has been accepted for inclusion in Senior Honors Theses by an authorized administrator of DigitalCommons@EMU. For more information, please contact lib- [email protected]. Coaggregation of Gut Bacteroides & Parabacteroides with Probiotic Lactobacillus Rhamnosus GG Abstract Coaggregation has been indicated as a key mechanism in the formation of biofilms. This research sought to characterize the interactions occurring between native gastrointestinal Bacteroides & Parabacteroides and the probiotic strain Lactobacillus rhamnosus GG (LGG) cultured in Todd Hewitt TH( ), deMan, Rogosa, and Sharpe (MRS), and Brain Heart Infusion (BHI) using in vitro coaggregation assays. In the coaggregation survey of interactions, a trend of growth medium-dependent coaggregation variability was displayed with LGG grown in TH displaying the widest spectrum of coaggregation with Bacteroides/Parabacteroides strains and narrower spectrum from the other cultures of LGG. By protease inhibition, it was confirmed that the presence of novel adhesin(s) occurs on LGG, mediating coaggregation with moderate strength to a variety of Bacteroides & Parabacteroides strains abundant in the large intestine, including selective interactions with capsule-deficient mutants of B. thetaiotaomicron VPI-5482. In the case of LGG grown in MRS, bimodal adhesin interaction with involvement of Bacteroides/Parabacteroides partners was observed.
    [Show full text]
  • Parabacteroides Distasonis
    University of Groningen Parabacteroides distasonis Ezeji, Jessica C.; Sarikonda, Daven K.; Hopperton, Austin; Erkkila, Hailey L.; Cohen, Daniel E.; Martinez, Sandra P.; Cominelli, Fabio; Kuwahara, Tomomi; Dichosa, Armand E. K.; Good, Caryn E. Published in: Gut Microbes DOI: 10.1080/19490976.2021.1922241 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2021 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Ezeji, J. C., Sarikonda, D. K., Hopperton, A., Erkkila, H. L., Cohen, D. E., Martinez, S. P., Cominelli, F., Kuwahara, T., Dichosa, A. E. K., Good, C. E., Jacobs, M. R., Khoretonenko, M., Veloo, A., & Rodriguez- Palacios, A. (2021). Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes, 13(1), [1922241]. https://doi.org/10.1080/19490976.2021.1922241 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment.
    [Show full text]
  • Thi Na Utaliblat in Un Minune Talk
    THI NA UTALIBLATUS010064900B2 IN UN MINUNE TALK (12 ) United States Patent ( 10 ) Patent No. : US 10 , 064 ,900 B2 Von Maltzahn et al . ( 45 ) Date of Patent: * Sep . 4 , 2018 ( 54 ) METHODS OF POPULATING A (51 ) Int. CI. GASTROINTESTINAL TRACT A61K 35 / 741 (2015 . 01 ) A61K 9 / 00 ( 2006 .01 ) (71 ) Applicant: Seres Therapeutics, Inc. , Cambridge , (Continued ) MA (US ) (52 ) U . S . CI. CPC .. A61K 35 / 741 ( 2013 .01 ) ; A61K 9 /0053 ( 72 ) Inventors : Geoffrey Von Maltzahn , Boston , MA ( 2013. 01 ); A61K 9 /48 ( 2013 . 01 ) ; (US ) ; Matthew R . Henn , Somerville , (Continued ) MA (US ) ; David N . Cook , Brooklyn , (58 ) Field of Classification Search NY (US ) ; David Arthur Berry , None Brookline, MA (US ) ; Noubar B . See application file for complete search history . Afeyan , Lexington , MA (US ) ; Brian Goodman , Boston , MA (US ) ; ( 56 ) References Cited Mary - Jane Lombardo McKenzie , Arlington , MA (US ); Marin Vulic , U . S . PATENT DOCUMENTS Boston , MA (US ) 3 ,009 ,864 A 11/ 1961 Gordon - Aldterton et al. 3 ,228 ,838 A 1 / 1966 Rinfret (73 ) Assignee : Seres Therapeutics , Inc ., Cambridge , ( Continued ) MA (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 CN 102131928 A 7 /2011 EA 006847 B1 4 / 2006 U .S . C . 154 (b ) by 0 days. (Continued ) This patent is subject to a terminal dis claimer. OTHER PUBLICATIONS ( 21) Appl . No. : 14 / 765 , 810 Aas, J ., Gessert, C . E ., and Bakken , J. S . ( 2003) . Recurrent Clostridium difficile colitis : case series involving 18 patients treated ( 22 ) PCT Filed : Feb . 4 , 2014 with donor stool administered via a nasogastric tube .
    [Show full text]
  • Isolation and Characterization of ISA Degrading Alkaliphilic Bacteria
    Isolation and Characterization of ISA Degrading Alkaliphilic Bacteria Zohier Salah (Researcher) A thesis submitted to the University of Huddersfield in the partial fulfilment of the requirements for the degree of Doctor of Philosophy School of Applied Science December 2017 Acknowledgment Praise be to Allah through whose mercy (and favors) all good things are accomplished Firstly, I would like to express my sincere gratitude to my main supervisor Professor Paul N. Humphreys who gave me the opportunity to work with him and for the continuous support of my PhD study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Also, I wish to express my appreciation to my second supervisor, Professor Andy Laws for all the assistance he offered. Without they precious support it would not be possible to conduct this research. Special thanks go to the Government of Libya for providing me with the financial support for this study. I would also like to thank all the laboratory support staff in the School of Applied Sciences, University of Huddersfield, for all the support. Sincerely appreciations also go to my family especially, my parents and my virtuous wife Zainab, my son Mohamed and the extended my family, especially my brother Mr. Ahmed Salah. Finally, but by no means least, thanks to all my colleagues in the research group who helped with experience, ideas and discussions during my studies, Dr Simon P Rout, Dr Isaac A Kyeremeh, Dr Christopher J Charles and to all who contributed in diverse ways to make my research at the University of Huddersfield a success.
    [Show full text]
  • A Synbiotic Concept Containing Spore-Forming Bacillus Strains and A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography International Journal of Pharmaceutics: X 1 (2019) 100021 Contents lists available at ScienceDirect International Journal of Pharmaceutics: X journal homepage: www.journals.elsevier.com/international-journal-of-pharmaceutics-x A synbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently enhanced metabolic activity by modulation of the T gut microbiome in vitro Cindy Duysburgha, Pieter Van den Abbeelea, Kiran Krishnanb, Thomas F. Bayneb, ⁎ Massimo Marzoratia,c, a ProDigest bvba, Technologiepark 82, 9052 Ghent, Belgium b Microbiome Labs, 1332 Waukegan Road, Glenview, IL 60025, USA c Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium ARTICLE INFO ABSTRACT Keywords: A standardized in vitro simulation of the human gastrointestinal tract (M-SHIME®) was used to assess the effect of Faecalibacterium prausnitzii repeated daily administration of a synbiotic formulation, containing five spore-forming Bacillus strains and a Endotoxemia prebiotic fiber blend, on the microbial activity and composition of three simulated human subjects. Firstly, while Fructooligosaccharides confirming recent findings, deeper phylogenetic insight was obtained in the resident M-SHIME® microbiota, Galactooligosaccharides demonstrating that the model maintains a diverse and representative, colon region-specific luminal and mucosal Xylooligosaccharides microbial community. Supplementation of the synbiotic concept increased microbial diversity in the distal colon Obesity areas, whereas specific enhancement of Bacillaceae levels was observed in the ascending colon suggesting a successful engraftment of the Bacillus spores, which probably resulted in a stimulatory effect on, among others, Bifidobacteriaceae, Lactobacillaceae, Prevotellaceae, Tannerellaceae and Faecalibacterium prausnitzii contributing directly or indirectly to stimulation of acetate, propionate and butyrate production.
    [Show full text]
  • A Distinct Contractile Injection System Found in a Majority of Adult Human Microbiomes
    bioRxiv preprint doi: https://doi.org/10.1101/865204; this version posted December 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 A Distinct Contractile Injection System Found in a Majority of Adult Human 3 Microbiomes 4 5 6 Maria I. Rojas*1,2, Giselle S. Cavalcanti*1,2, Katelyn McNair1,3, Sean Benler1,2, Amanda 7 T. Alker1,2, Ana G. Cobián-Güemes1,2, Melissa Giluso1,3, Kyle Levi1,3, Forest Rohwer1,2,3, 8 Sinem Beyhan2,4, Robert A. Edwards1,2,3, Nicholas J. Shikuma#1,2,3,4 9 10 11 1Viral Information Institute 12 San Diego State University 13 San Diego, California 92182 USA 14 15 2Department of Biology 16 San Diego State University 17 San Diego, California 92182 USA 18 19 3Computational Science Research Center 20 San Diego State University 21 San Diego, California 92182 USA 22 23 4Department of Infectious Diseases 24 J. Craig Venter Institute 25 La Jolla, California 92037 USA 26 27 *co-first authors 28 #corresponding author 29 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/865204; this version posted December 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 30 ABSTRACT 31 An imbalance of normal bacterial groups such as Bacteroidales within the human gut is 32 correlated with diseases like obesity. A current grand challenge in the microbiome field is 33 to identify factors produced by normal microbiome bacteria that cause these observed 34 health and disease correlations.
    [Show full text]
  • WO 2016/086209 Al June 2016 (02.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/086209 Al June 2016 (02.06.2016) W P O P C T (51) International Patent Classification: (74) Agents: MELLO, Jill, Ann et al; Mccarter & English, A61K 35/74 (2015.01) A61P 1/00 (2006.01) LLP, 265 Franklin Street, Boston, MA 021 10 (US). A61K 35/741 (2015.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US20 15/062809 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 25 November 2015 (25.1 1.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/084,536 25 November 2014 (25. 11.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 62/084,537 25 November 2014 (25. 11.2014) US (84) Designated States (unless otherwise indicated, for every 62/084,540 25 November 2014 (25.
    [Show full text]