Bamforth Emily L 200807 Msc.Pdf (4.122Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Bamforth Emily L 200807 Msc.Pdf (4.122Mb) MULTIBRANCHED RANGEOMORPHS FROM THE EDIACARAN MISTAKEN POINT ASSEMBLAGE, NEWFOUNDLAND, CANADA by Emily Louise Bamforth A thesis submitted to the Department of Geological Sciences and Geological Engineering In conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada (July, 2008) Copyright ©Emily Louise Bamforth, 2008 Abstract Rangeomorphs are a distinct group of millimeter- to meter-scale soft-bodied macrofossils that are restricted to the latter half of the late Neoproterozoic Ediacaran Period (635Ma- 542Ma). These fossils represent an extinct higher level taxon characterized by a modular construction based on a single architectural unit: the centimeter-scale, chevron-shaped rangeomorph element which displays several orders of self-similar branching. These elements could be arranged in a variety of different ways, constituting the wide array of gross morphologies found within the Group Rangeomorpha. The largest and most diverse assemblage of rangeomorph fossils in the world is found at Mistaken Point, on the Avalon Peninsula of Newfoundland, Canada, where these organisms are preserved within their original, in situ paleocommunities. Multibranched rangeomorphs are typified by bush-, comb- and network-shaped fossils which display multiple rangeomorph-bearing structures attached to an untethered basal stolon or central attachment point. Multibranched, comb-shaped rangeomorphs are endemic to Mistaken Point, and are represented by fossils displaying multiple parallel struts emerging along one side of an elongate, curved pedicle rod. Morphological and taphonomic evidence suggests that, in life, this organism had two rows of struts, each bearing a rangeomorph frondlet, arranged in an alternating pattern along the curved, tubular pedicle rod. Biometric analyses imply that the struts were added to both ends of the pedicle rod throughout the organism’s lifetime, with later inflation of the rangeomorph frondlets. Each comb-shaped rangeomorph locality likely represents a different age cohort within the organism’s lifecycle, providing rare evidence for spatfall reproduction in Ediacarans, which is similar to that found in modern macrobenthic organisms with pelagic larvae. ii Network-shaped multibranched rangeomorphs, represented by symmetrical to asymmetrical net- like fossils, are also endemic to Mistaken Point. This genus is reconstructed as having a symmetrical arrangement of flexible, rangeomorph-bearing leaflets that were, in part, neutrally buoyant with respect to the seawater. This flexible leaflet structure is unique, and shared only with a rare, previously undescribed, Ediacaran frond-like organism. It is suggested that the enigmatic leaflet structures shared by these two morphologically distinct taxa represent a new type of rangeomorph branching architecture, and therefore constitute a new type of rangeomorph. iii Statement of Co-Authorship While this thesis is substantially my own work, my supervisor and colleagues have actively contributed to its development. A modification of Chapter 2 is published in the Journal of Paleontology (Bamforth et al. 2008), and is co-authored by Guy M. Narbonne, who helped greatly in the development and editing of the manuscript, and by Michael M. Anderson, who collected the type specimens. Chapter 3 is in preparation for submission to an international journal, and will also be co-authored by Guy M. Narbonne. Taxonomic Statement The systematic paleontology of the three new Ediacaran genera and species described in this thesis does not constitute the official description of these taxa in accordance with the International Code of Zoological Nomenclature (third edition). Chapter 2 is a modification of the paper officially describing Pectinifrons abyssalis, which is published in the Journal of Paleontology (Bamforth et al. 2008). The official descriptions of a Hapsidophyllas flexibilis and Frondophyllas grandis will appear in a modified version of Chapter 3, which is currently being prepared for submission to an international journal. iv Acknowledgements I would like to extend my profound thanks to my supervisor, Guy Narbonne, for his scientific guidance, patient tutelage, and endless enthusiasm for this project and for all of my scholarly pursuits. Guy’s contributions to my development as an academic are numerous and invaluable, but above all, his encouragement to propose, pursue and defend my scientific theories and ideas has given me confidence in myself and in my work that will last a lifetime. A debt of gratitude is also owed to Marc Laflamme for his outstanding mentorship throughout my time at Queens. His advice, and the hours he spent with me in patient explanations and insightful discussions, has significantly improved many aspects of this thesis. Lija Flude has been a valuable colleague and comrade for the past three years. Fieldwork on the Avalon was made more pleasant by her cheerful assistance and her excellent navigational skills along the fog-obscured, moose-infested, flat-tire-inducing back roads of Newfoundland. Fieldwork in the Mistaken Point Ecological Reserve was carried out under scientific permits granted by the Parks and Natural Areas Division, Government of Newfoundland and Labrador. Thanks are also due to the kind and courageous people of Portugal Cove South, Trepassey and Spaniard’s Bay for their hospitality and their constant vigilance and protection of their fossil heritage. This research was generously funded by Queen’s Graduate Awards and an Ontario Graduate Scholarship, in addition to the support granted by the Natural Sciences and Engineering Research Council to my supervisor, Guy Narbonne. Special thanks are extended to Noel James and Bob Dalrymple for patiently providing me with the ‘crash courses’ in geology required when I arrived in Queen’s geology department with a v biology degree- I learned very quickly that even rocks without fossils in them could be exciting. I would additionally like to express my gratitude to Mike Caldwell, my undergraduate supervisor, and Brian Chatterton from the University of Alberta for their guidance and assistance in my paleontological pursuits as an undergrad. I must also offer my sincerest thanks to my friends, my family, and especially to my sister Lucy, for never failing to provide me with cheerful optimism, comic relief, and a sympathetic ear when I needed it. This thesis is dedicated to my parents, Fiona and Stephen, without whose endless, loving support, my childhood dream of becoming a paleontologist would have remained only a dream. For this and for so much more, I can only offer my most sincere, heartfelt thanks. vi Table of Contents Abstract............................................................................................................................................ii Statement of Co-Authorship ...........................................................................................................iv Taxonomic Statement .................................................................................................................iv Acknowledgements..........................................................................................................................v Table of Contents...........................................................................................................................vii List of Figures.................................................................................................................................ix List of Tables ...................................................................................................................................x Chapter 1 General Introduction .......................................................................................................1 1.1 The Ediacara Biota.................................................................................................................1 1.1.1 The Ediacara Biota in Time and Space...........................................................................1 1.1.2 The Mistaken Point Assemblage.....................................................................................3 1.1.3 Reconstructing Rangeomorphs: Taxonomy and Structure ...........................................10 1.2 General Geology ..................................................................................................................12 1.3 Purpose of Thesis.................................................................................................................15 Chapter 2 Growth and ecology of a new multibranched rangeomorph from the Ediacaran Mistaken Point assemblage, Newfoundland, Canada ....................................................................17 2.1 Abstract................................................................................................................................17 2.2 Introduction..........................................................................................................................17 2.3 Geological and Stratigraphic Setting ...................................................................................19 2.4 Systematic Paleontology......................................................................................................26 2.5 Taphonomy and Structure....................................................................................................33 2.6 Growth and Morphology......................................................................................................46
Recommended publications
  • Lessons from the Fossil Record: the Ediacaran Radiation, the Cambrian Radiation, and the End-Permian Mass Extinction
    OUP CORRECTED PROOF – FINAL, 06/21/12, SPi CHAPTER 5 Lessons from the fossil record: the Ediacaran radiation, the Cambrian radiation, and the end-Permian mass extinction S tephen Q . D ornbos, M atthew E . C lapham, M argaret L . F raiser, and M arc L afl amme 5.1 Introduction and altering substrate consistency ( Thayer 1979 ; Seilacher and Pfl üger 1994 ). In addition, burrowing Ecologists studying modern communities and eco- organisms play a crucial role in modifying decom- systems are well aware of the relationship between position and enhancing nutrient cycling ( Solan et al. biodiversity and aspects of ecosystem functioning 2008 ). such as productivity (e.g. Tilman 1982 ; Rosenzweig Increased species richness often enhances ecosys- and Abramsky 1993 ; Mittelbach et al. 2001 ; Chase tem functioning, but a simple increase in diversity and Leibold 2002 ; Worm et al. 2002 ), but the pre- may not be the actual underlying driving mecha- dominant directionality of that relationship, nism; instead an increase in functional diversity, the whether biodiversity is a consequence of productiv- number of ecological roles present in a community, ity or vice versa, is a matter of debate ( Aarssen 1997 ; may be the proximal cause of enhanced functioning Tilman et al. 1997 ; Worm and Duffy 2003 ; van ( Tilman et al. 1997 ; Naeem 2002 ; Petchey and Gaston, Ruijven and Berendse 2005 ). Increased species rich- 2002 ). The relationship between species richness ness could result in increased productivity through (diversity) and functional diversity has important 1) interspecies facilitation and complementary implications for ecosystem functioning during resource use, 2) sampling effects such as a greater times of diversity loss, such as mass extinctions, chance of including a highly productive species in a because species with overlapping ecological roles diverse assemblage, or 3) a combination of biologi- can provide functional redundancy to maintain cal and stochastic factors ( Tilman et al.
    [Show full text]
  • A Rich Ediacaran Assemblage from Eastern Avalonia: Evidence of Early
    Publisher: GSA Journal: GEOL: Geology Article ID: G31890 1 A rich Ediacaran assemblage from eastern Avalonia: 2 Evidence of early widespread diversity in the deep ocean 3 [[SU: ok? need a noun]] 4 Philip R. Wilby, John N. Carney, and Michael P.A. Howe 5 British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 6 ABSTRACT 7 The Avalon assemblage (Ediacaran, late Neoproterozoic) constitutes the oldest 8 evidence of diverse macroscopic life and underpins current understanding of the early 9 evolution of epibenthic communities. However, its overall diversity and provincial 10 variability are poorly constrained and are based largely on biotas preserved in 11 Newfoundland, Canada. We report coeval high-diversity biotas from Charnwood Forest, 12 UK, which share at least 60% of their genera in common with those in Newfoundland. 13 This indicates that substantial taxonomic exchange took place between different regions 14 of Avalonia, probably facilitated by ocean currents, and suggests that a diverse deepwater 15 biota that had a probable biogeochemical impact may already have been widespread at 16 the time. Contrasts in the relative abundance of prostrate versus erect taxa record 17 differential sensitivity to physical environmental parameters (hydrodynamic regime, 18 substrate) and highlight their significance in controlling community structure. 19 INTRODUCTION 20 The Ediacaran (late Neoproterozoic) Avalon assemblage (ca. 578.8–560 Ma) 21 preserves the oldest evidence of diverse macroorganisms and is key to elucidating the 22 early radiation of macroscopic life and the assembly of benthic marine communities Page 1 of 15 Publisher: GSA Journal: GEOL: Geology Article ID: G31890 23 (Clapham et al., 2003; Van Kranendonk et al., 2008).
    [Show full text]
  • Retallack 2014 Newfoundland Ediacaran
    Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Geological Society of America Bulletin Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J. Retallack Geological Society of America Bulletin 2014;126, no. 5-6;619-638 doi: 10.1130/B30892.1 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes © 2014 Geological Society of America Downloaded from gsabulletin.gsapubs.org on May 2, 2014 Volcanosedimentary paleoenvironments of Ediacaran fossils in Newfoundland Gregory J.
    [Show full text]
  • PERSATUAN GEOLOGI MALAYSIA WARTA GEOLOGI NEWSLETTER of the GEOLOGICAL SOCIETY of MALAYSIA
    PERSATUAN GEOLOGI MALAYSIA WARTA GEOLOGI NEWSLETTER of the GEOLOGICAL SOCIETY OF MALAYSIA 50TH ANNIVERSARY SPECIAL ISSUE Jilid 43 OCTOBER – DECEMBER Volume 43 No. 4 2017 No. 4 ISSN 0126 - 5539 PP2509/07/2013(032786) Warta Geologi Newsletter of the Geological Society of Malaysia PERSATUAN GEOLOGI MALAYSIA Editor Geological Society of Malaysia Wan Hasiah Abdullah (University of Malaya) Council 2017/2018 Editorial Board President : Mr. Abd. Rasid Jaapar Chow Weng Sum Vice President : Dr. Che Aziz Ali Universiti Teknologi Petronas, Malaysia Secretary : Mr. Lim Choun Sian Azman A. Ghani Assistant Secretary : Mr. Askury Abd Kadir University of Malaya, Malaysia Treasurer : Mr. Ahmad Nizam Hasan Harry Doust Editor : Prof. Dr. Wan Hasiah Abdullah The Netherlands & Vrije Universiteit, Immediate Past President : Dr. Mazlan Madon Amsterdam Councillors : Ms. Marelyn Telun Daniel Robert Hall Dr. Meor Hakif Amir Hassan University of London, UK Mr. Muhammad Ashahadi Dzulkafli Dr. Norbet Simon Howard Johnson Imperial College London, UK Mr. Nicholas Jacob Dr. Nur Iskandar Taib Ibrahim Komoo Mr. Tan Boon Kong Universiti Kebangsaan Malaysia, Malaysia Dato’ Yunus Abdul Razak Alfredo Lagmay University of the Philippine, Philippine Lee Chai Peng University of Malaya, Malaysia The Geological Society of Malaysia was founded in Mohd Shafeea Leman 1967 with the aim of promoting the advancement of Universiti Kebangsaan Malaysia, Malaysia geoscience, particularly in Malaysia and Southeast Asia. The Society has a membership of about 600 Ian Metcalfe local and international geoscientists. University of New England, Australia Ng Tham Fatt Warta Geologi (Newsletter of the Geological University of Malaya, Malaysia Society of Malaysia) is published quarterly by the Society. Warta Geologi covers short geological Peter R.
    [Show full text]
  • Ordination Methods and the Evaluation of Ediacaran Communities
    Chapter 1 Ordination Methods and the Evaluation of Ediacaran Communities Matthew E. Clapham Contents 1.1 Introduction...................................................................................................................... 000 1.2 Dataset Summary............................................................................................................. 000 1.3 Data Standardization........................................................................................................ 000 1.4 Ordination Methods......................................................................................................... 000 1.4.1 Principal Components Analysis (PCA)................................................................ 000 1.4.2 Correspondence and Detrended Correspondence Analysis (CA/DCA)............................................................................................. 000 1.4.3 Non-Metric Multidimensional Scaling (NMDS)................................................. 000 1.5 Comparison and Interpretation of Results....................................................................... 000 1.6 Conclusion....................................................................................................................... 000 References................................................................................................................................. 000 Abstract Analysis of paleocommunity data poses a challenge because of its multivariate nature, containing counts of many species in many samples.
    [Show full text]
  • Of Time and Taphonomy: Preservation in the Ediacaran
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127997 Of time and taphonomy: preservation in the Ediacaran CHAPTER · JANUARY 2014 READS 36 2 AUTHORS, INCLUDING: Charlotte Kenchington University of Cambridge 5 PUBLICATIONS 2 CITATIONS SEE PROFILE Available from: Charlotte Kenchington Retrieved on: 02 October 2015 ! OF TIME AND TAPHONOMY: PRESERVATION IN THE EDIACARAN CHARLOTTE G. KENCHINGTON! 1,2 AND PHILIP R. WILBY2 1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK <[email protected]! > 2British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK ABSTRACT.—The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved.
    [Show full text]
  • Mistaken Point Ecological Reserve Management Plan
    Mistaken Point Ecological Reserve Management Plan MISTAKEN POINT Ecological Reserve Management Plan Parks and Natural Areas Division Department of Environment and Conservation Mistaken Point Ecological Reserve Management Plan Recommended Citation: Government of Newfoundland and Labrador. 2009. Mistaken Point Ecological Reserve Management Plan. Parks and Natural Areas Division, Department of Environment and Conservation, Deer Lake, NL. 26 pp. For more information about Mistaken Point Ecological Reserve: Parks and Natural Areas Division Department of Environment and Conservation Government of Newfoundland and Labrador 33 Reid’s Lane, Deer Lake Newfoundland and Labrador A8A 2A3 Phone: 709.635.4520 Fax: 709.635.4541 Website: www.gov.nl.ca/parks Email: [email protected] March 2009 Management Plan prepared by: Richard Thomas, Erika Pittman, Siân French, Sean Greene, Jeri Graham, Tina Leonard, Doug Boyce, Dave Elliott and Valerie Sullivan Photo credits: Parks and Natural Areas Division (PNAD), Erika Pittman (unless otherwise noted) Mistaken Point Ecological Reserve Management Plan Foreword Newfoundland and Labrador’s protected areas are special places. They preserve examples of woodland caribou herds, diverse seabird colonies, globally important fossil sites, endangered and threatened plants and animals, and globally rare habitats. Our protected areas provide natural venues for scientifi c research, education, and enjoyment for current and future generations. Parks and Natural Areas Division of the Department of Environment and Conservation
    [Show full text]
  • Ediacara Biota'
    Edinburgh Research Explorer There is no such thing as the 'Ediacara Biota' Citation for published version: MacGabhann, BA 2014, 'There is no such thing as the 'Ediacara Biota'', Geoscience Frontiers, vol. 5, no. 1, pp. 53-62. https://doi.org/10.1016/j.gsf.2013.08.001 Digital Object Identifier (DOI): 10.1016/j.gsf.2013.08.001 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Geoscience Frontiers Publisher Rights Statement: Open Access General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 08. Oct. 2021 Geoscience Frontiers 5 (2014) 53e62 Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Focus paper There is no such thing as the ‘Ediacara Biota’ Breandán Anraoi MacGabhann* School of GeoSciences, University of Edinburgh, King’s Buildings,
    [Show full text]
  • A Unique View on the Evolution of Marine Life
    EXCEPTIONAL FOSSIL PRESERVATION: A Unique View on the Evolution of Marine Life Edited by DAVID J. BOTTJER COLUMBIA UNIVERSITY PRESS Bottjer_00FM 5/16/02 1:23 PM Page i EXCEPTIONAL FOSSIL PRESERVATION Critical Moments and Perspectives in Earth History and Paleobiology DAVID J. BOTTJER RICHARD K. BAMBACH Editors Bottjer_00FM 5/16/02 1:23 PM Page ii Critical Moments and Perspectives in Earth History and Paleobiology David J. Bottjer and Richard K. Bambach, Editors The Emergence of Animals: The Cambrian Breakthrough Mark A. S. McMenamin and Dianna L. S. McMenamin Phanerozoic Sea-Level Changes Anthony Hallam The Great Paleozoic Crisis: Life and Death in the Permian Douglas H. Erwin Tracing the History of Eukaryotic Cells: The Enigmatic Smile Betsey Dexter Dyer and Robert Alan Obar The Eocene-Oligocene Transition: Paradise Lost Donald R. Prothero The Late Devonian Mass Extinction: The Frasnian/Famennian Crisis George R. McGhee Jr. Dinosaur Extinction and the End of an Era: What the Fossils Say J. David Archibald One Long Experiment: Scale and Process in Earth History Ronald E. Martin Interpreting Pre-Quaternary Climate from the Geologic Record Judith Totman Parrish Theoretical Morphology: The Concept and Its Applications George R. McGhee Jr. Principles of Paleoclimatology Thomas M. Cronin The Ecology of the Cambrian Radiation Andrey Yu. Zhuravlev and Robert Riding, Editors Plants Invade the Land: Evolutionary and Environmental Perspectives Patricia G. Gensel and Dianne Edwards, Editors Bottjer_00FM 5/16/02 1:23 PM Page iii EXCEPTIONAL FOSSIL PRESERVATION A Unique View on the Evolution of Marine Life Edited by DAVID J. BOTTJER, WALTER ETTER, JAMES W.
    [Show full text]
  • Lithostratigraphic and Biostratigraphic Studies on the Eastern Bonavista Peninsula: an Update
    Current Research (2006) Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 06-1, pages 257-263 LITHOSTRATIGRAPHIC AND BIOSTRATIGRAPHIC STUDIES ON THE EASTERN BONAVISTA PENINSULA: AN UPDATE S.J. O’Brien, A.F. King1 and H.J. Hofmann2 Regional Geology Section ABSTRACT Recent mapping of well-exposed coastal sections through the Ediacaran succession between Melrose and Maberly, on the northwest coast of Trinity Bay, eastern Newfoundland, has enabled recognition of facies correlatives of the late Neoprotero- zoic Trepassey, Fermeuse and Renews Head formations of the St. John’s Group, and the approximate location of their forma- tional boundaries. Study of this continuous section also reveals that thick, tabular-bedded slumped units, in part diagnostic of the recently defined Back Cove member of the shale-dominant Fermeuse Formation, have much greater vertical stratigraph- ic extent than previously recognized. Further detailed study of the Renews Head Formation and the gradationally overlying Gibbett Hill Formation of the Signal Hill Group has identified regionally developed facies that are indistinguishable from those diagnostic of the lower part of the adjacent Musgravetown Group, west of the Spillars Cove–English Harbour fault zone. The facies commonality may imply linkage of the Neoproterozoic succession across that structure, and original stratigraphic continuity from the Gibbett Hill Formation (Signal Hill Group) and underlying shale-rich succession in the east, upward into the Rocky Harbour Formation (Musgravetown Group) in the west. Several significant new Ediacaran fossil discoveries made in 2005 demonstrate that the stratigraphic range of Bradga- tia, Charnia, Charniodiscus, Ivesheadia and spindles is significantly longer than that reported from equivalent rocks on the southeastern Avalon Peninsula.
    [Show full text]
  • 1-S2.0-S0012825216300058-Main
    Davies, N., Liu, A., Gibling, M., & Miller, R. (2016). Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes. Earth-Science Reviews, 154, 210-246. https://doi.org/10.1016/j.earscirev.2016.01.005 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1016/j.earscirev.2016.01.005 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Elsevier at http://www.sciencedirect.com/science/article/pii/S0012825216300058 University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Earth-Science Reviews 154 (2016) 210–246 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Resolving MISS conceptions and misconceptions: A geological approach to sedimentary surface textures generated by microbial and abiotic processes Neil S. Davies a,⁎, Alexander G. Liu b, Martin R. Gibling c, Randall F. Miller d a Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom b School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom c Department of Earth Sciences, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada d Steinhammer Palaeontology Laboratory, New Brunswick Museum, Saint John, New Brunswick E2K 1E5, Canada article info abstract Article history: The rock record contains a rich variety of sedimentary surface textures on siliciclastic sandstone, siltstone and Received 30 October 2015 mudstone bedding planes.
    [Show full text]
  • The Advent of Animals: the View from the Ediacaran SPECIAL FEATURE
    The advent of animals: The view from the Ediacaran SPECIAL FEATURE Mary L. Drosera,1 and James G. Gehlingb,c aDepartment of Earth Sciences, University of California, Riverside, CA 92521; bSouth Australia Museum, Adelaide, SA 5000, Australia; and cUniversity of Adelaide, Adelaide, SA 5000, Australia Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved December 9, 2014 (received for review April 15, 2014) Patterns of origination and evolution of early complex life on this relationships within the Ediacara Biota and, importantly, reveals the planet are largely interpreted from the fossils of the Precam- morphologic disparity of these taxa. brian soft-bodied Ediacara Biota. These fossils occur globally and However, although fossils of the Ediacara Biota are not easily represent a diverse suite of organisms living in marine environments. classified with modern taxa, they nonetheless provide the record Although these exceptionally preserved fossil assemblages are typi- of early animals. One of the primary issues is that they are soft- cally difficult to reconcile with modern phyla, examination of the bodied and preserved in a manner that is, in many cases, unique to morphology, ecology, and taphonomy of these taxa provides keys to the Ediacaran. An alternative venue for providing insight into these their relationships with modern taxa. Within the more than 30 million organisms and the manner in which they fit into early animal evo- y range of the Ediacara Biota, fossils of these multicellular organisms lution is offered by examination of the paleoecology, morphology, demonstrate the advent of mobility, heterotrophy by multicellular and taphonomy of fossils of the Ediacara Biota.
    [Show full text]