Partial Altitudinal Migration of the Near Threatened Satyr Tragopan Tragopan Satyra in the Bhutan Himalayas: Implications for Conservation in Mountainous Environments

Total Page:16

File Type:pdf, Size:1020Kb

Partial Altitudinal Migration of the Near Threatened Satyr Tragopan Tragopan Satyra in the Bhutan Himalayas: Implications for Conservation in Mountainous Environments Erschienen in: Oryx ; 51 (2017), 1. - S. 166-173 https://dx.doi.org/10.1017/S0030605315000757 Partial altitudinal migration of the Near Threatened satyr tragopan Tragopan satyra in the Bhutan Himalayas: implications for conservation in mountainous environments N AWANG N ORBU,UGYEN,MARTIN C. WIKELSKI and D AVID S. WILCOVE Abstract Relative to long-distance migrants, altitudinal mi- To view supplementary material for this article, please visit grants have been understudied, perhaps because of a percep- http://dx.doi.org/./S tion that their migrations are less complex and therefore easier to protect. Nonetheless, altitudinal migrants may be at risk as they are subject to ongoing anthropogenic pressure from land use and climate change. We used global position- Introduction ing system/accelerometer telemetry to track the partial alti- tudinal migration of the satyr tragopan Tragopan satyra in elative to long-distance migrants, altitudinal migrants central Bhutan. The birds displayed a surprising diversity of Rhave been understudied, perhaps because of a percep- migratory strategies: some individuals did not migrate, tion that their migrations are less complex and easier to pro- others crossed multiple mountains to their winter ranges, tect. In montane regions many species migrate altitudinally others descended particular mountains, and others as- up and down mountain slopes (Stiles, ; Powell & Bjork, cended higher up into the mountains in winter. In all ; Burgess & Mlingwa, ; Chaves-Champos et al., cases migration between summer breeding and winter ; Faaborg et al., ). Although attempts have been non-breeding grounds was accomplished largely by walk- made (Laymon, ; Cade & Hoffman, ; Powell & ing, not by flying. Females migrated in a south-easterly dir- Bjork, ; Chaves-Champos et al., ; Hess et al., ection whereas males migrated in random directions. ), few studies have illustrated patterns of altitudinal mi- During winter, migrants occupied south-east facing slopes gration using telemetry (but see Norbu et al., ). whereas residents remained on south-west facing slopes. Montane regions, which cover an estimated .% of land Migratory and resident tragopans utilized a range of forest surface area (Kapos et al., ), are being exposed to cli- types, with migratory individuals preferring cool broad- mate change (Nogués-Bravo et al., ) and loss of forest leaved forests during winter. These complex patterns of mi- cover (Blyth et al., ; Pandit et al., ), both of gration suggest that conservation measures should extend which will put mountain species and their migrations at across multiple mountains, protect the full range of forest risk (Inouye et al., ). types and encompass multiple landscape configurations to In general, animal migrations are undergoing decline protect aspect diversity. Given the diversity of migratory (Wilcove & Wikelski, ; Harris et al., ) as a result strategies employed by this single species it seems clear of habitat loss and climate change (Both et al., ; that more research on altitudinal migrants is needed to Møller et al., ). These declines are of concern because understand what must be done to ensure their future in migration is important in maintaining ecological processes an era of widespread land-use and climate change. and shaping ecosystems (Holland et al., ; Wilcove & Wikelski, ; Bowlin et al., ). However, the conserva- Keywords Altitudinal migration, Bhutan, conservation, tion of migratory species remains a daunting task, given the mountains, partial migration, protected areas, satyr trago- complexity of the phenomenon and the geographical scale pan, Thrumshingla National Park at which it occurs (Moore et al., ; Wilcove, ; Faaborg et al., ). NAWANG NORBU* (Corresponding author) and UGYEN Ugyen Wangchuck In comparison to long-distance migrants, the conserva- Institute for Conservation and Environment, Lamai Gompa Dzong, Bumtang, tion of altitudinal migrants may be perceived to be relatively Bhutan. E-mail [email protected] easier given their occurrence over a smaller geographical MARTIN C. WIKELSKI Max Planck Institute for Ornithology, Radolfzell, Germany area. This may not necessarily be the case, however. For ex- DAVID S. WILCOVE Woodrow Wilson School for Public and International Affairs ample, telemetry studies (Powell & Bjork, , , ) and Department of Ecology and Evolutionary Biology, Princeton University, USA have shown that habitat types required by two altitudinally migrating species, the resplendent quetzal Pharomachrus *Also at: The International Max Planck Research School for Organismal Biology, University of Konstanz, Germany mocinno and three-wattled bellbird Procnias tricarunculata, ’ Received January . Revision requested February . were not included within Costa Rica s protected area system. Accepted June . First published online March . To ensure the protection of altitudinal migrants, the Oryx, 2017, 51(1), 166–173 © 2016 Fauna & Flora International doi:10.1017/S0030605315000757 Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-397930 Satyr tragopan in the Bhutan Himalayas 167 FIG. 1 Location of the study area in Thrumshingla National Park, Bhutan. incorporation of all habitat types within reserve systems has are believed to be extant in the wild (BirdLife International, been recommended as a principle of effective reserve design b). The tragopan has been shown to be a partial altitud- (Powell & Bjork, , , ). inal migrant (Norbu et al., ). Here, we assess the adequacy Establishment of protected areas (Terborgh et al., ; of a protected area in Bhutan to provide protection for an alti- Brooks et al., ; Cantú-Salazar et al., ) and biological tudinal migrant, by examining the migration mode, patterns corridors (Roever et al., ) has become one of the key and habitat requirements of the tragopan. strategies to protect biodiversity. However, the adequacy and effectiveness of protected areas and corridors have Study area been questioned (Hobbs, ; Beier & Noss, ; Ervin, ), particularly regarding the conservation of migratory We studied the tragopan in Thrumshingla National Park, a species (Moore et al., ; Thirgood et al., ; Martin km protected area in central Bhutan (Fig. ), at ,– et al., ); for example, wildlife movement data have , m elevation. Mean daily temperature is −–°C. The been used in only a few instances to influence corridor de- area has four distinct seasons, with most rainfall occurring sign (Zeller et al., ). during May–August as part of the Asian monsoons. The With protected areas, the network of protected areas study area is mostly covered by conifer forests dominated in the Himalayas covers an estimated , km (Chettri by Bhutan fir Abies densa, with rhododendron understorey et al., ). Despite this extensive coverage we are not at higher elevations (. , m) transitioning to mixed aware of any telemetry-based study of altitudinal migrants conifer forests (,–, m) comprising Sikkim spruce to assess the effectiveness of protected areas in the Picea spinulosa, Himalayan hemlock Tsuga dumosa and Himalayas. Given that the Himalayas are undergoing habi- Sikkim larch Larix griffithii. Below , m conifer forests tat loss (Pandit et al., ) and climate change (Shrestha give way to conifer–broadleaved mixed forests and to cool et al., ), and noting that many of the birds in the broadleaved forests of oak Quercus glauca and Quercus la- Himalayas are altitudinal migrants (Inskipp et al., ; mellosa. There are also a few patches of open grazing areas Grimmet et al., ; BirdLife International, ), data that are used by nomadic cattle herders. are needed to test the adequacy of conservation landscapes in protecting altitudinally migrating species. We used global positioning system (GPS)/accelerometer Methods telemetry to track the seasonal migration of the satyr trago- Trapping We trapped tragopans during June–October in pan Tragopan satyra, a pheasant endemic to the central and , and using neck noose traps laid along ridges eastern Himalayas of Bhutan, India and Nepal. The species known to be used by tragopans, which we barricaded with (hereafter referred to as the tragopan) is categorized as Near bamboo and shrubs. We flushed tragopans towards traps Threatened on the IUCN Red List (BirdLife International, during early mornings and evenings. In , when the a) and listed on Appendix III of CITES (). Only an birds were trapped for the first time, all captured individuals estimated , individuals (c. ,–, mature adults) were released immediately after GPS tags were attached, to Oryx, 2017, 51(1), 166–173 © 2016 Fauna & Flora International doi:10.1017/S0030605315000757 168 N. Norbu et al. reduce the risk of any handling-related fatalities. Tragopans period (December–February) we extracted the aspect (in captured in and were weighed (to the nearest g) degrees) of the given location from a digital elevation and their tarsus length (mm) and beak size (mm) were model at a spatial resolution of x m . For each measured. All trapping was approved by the Ministry of individual, using the Rayleigh statistic at a significance Agriculture and Forests in Bhutan. level of ., we assessed whether the aspect data were distributed uniformly or whether the individual showed a preference for a particular aspect. For individuals with a GPS/accelerometer tags and data acquisition We used significant preference for a certain aspect, we calculated GPS/accelerometer tags (e-obs, Munich, Germany) to the mean aspect for each individual and calculated record the location
Recommended publications
  • Partial Altitudinal Migration of the Near Threatened Satyr Tragopan Tragopan Satyra in the Bhutan Himalayas: Implications for Conservation in Mountainous Environments
    Partial altitudinal migration of the Near Threatened satyr tragopan Tragopan satyra in the Bhutan Himalayas: implications for conservation in mountainous environments N AWANG N ORBU,UGYEN,MARTIN C. WIKELSKI and D AVID S. WILCOVE Abstract Relative to long-distance migrants, altitudinal mi- To view supplementary material for this article, please visit grants have been understudied, perhaps because of a percep- http://dx.doi.org/./S tion that their migrations are less complex and therefore easier to protect. Nonetheless, altitudinal migrants may be at risk as they are subject to ongoing anthropogenic pressure from land use and climate change. We used global position- Introduction ing system/accelerometer telemetry to track the partial alti- tudinal migration of the satyr tragopan Tragopan satyra in elative to long-distance migrants, altitudinal migrants central Bhutan. The birds displayed a surprising diversity of Rhave been understudied, perhaps because of a percep- migratory strategies: some individuals did not migrate, tion that their migrations are less complex and easier to pro- others crossed multiple mountains to their winter ranges, tect. In montane regions many species migrate altitudinally others descended particular mountains, and others as- up and down mountain slopes (Stiles, ; Powell & Bjork, cended higher up into the mountains in winter. In all ; Burgess & Mlingwa, ; Chaves-Champos et al., cases migration between summer breeding and winter ; Faaborg et al., ). Although attempts have been non-breeding grounds was accomplished largely by walk- made (Laymon, ; Cade & Hoffman, ; Powell & ing, not by flying. Females migrated in a south-easterly dir- Bjork, ; Chaves-Champos et al., ; Hess et al., ection whereas males migrated in random directions.
    [Show full text]
  • Status of Galliformes in Pipar Pheasant Reserve and Santel, Annapurna, Nepal
    Status of Galliformes in Pipar Pheasant Reserve and Santel, Annapurna, Nepal 1 2 3 4 LAXMAN P. POUDYAL *, NAVEEN K. MAHATO , PARAS B. SINGH , POORNESWAR SUBEDI , HEM S. BARAL 5 and PHILIP J. K. MCGOWAN 6 1 Department of National Parks and Wildlife Conservation, PO Box 860, Babarmahal, Kathmandu, Nepal. 2 Red Panda Network – Nepal, PO Box 21477, Kathmandu, Nepal. 3 Biodiversity Conservation Society, PO Box 24304, Kathmandu, Nepal. 4 Department of Forests, Kathmandu, Nepal. 5 Bird Conservation Nepal, PO Box 12465, Lazimpat, Kathmandu, Nepal. 6 World Pheasant Association, Newcastle University Biology Field Station, Close House Estate, Heddon on the Wall, Newcastle upon Tyne, NE15 0HT UK. *Correspondence author - [email protected] Paper presented at the 4 th International Galliformes Symposium, 2007, Chengdu, China. Abstract The Galliformes of Pipar have been surveyed seven times between 1979 and 1998. The nearby area of Santel was surveyed using comparable methods in 2001. In continuance of the long- term monitoring at Pipar and to provide a second count at Santel, dawn call counts were conducted in both areas, using the same survey points as previous surveys, between 29 th April and 9 th May 2005. The aim of those surveys was to collect information on the status of pheasants and partridges and to look for any changes over time. In both areas, galliform numbers were higher in 2005 than in previous surveys, for most species. For each species there was no evidence of decline since the first counts were conducted nearly 30 years ago. Both areas provide good habitat for Galliformes and disturbance is not a serious issue.
    [Show full text]
  • Thursday 26Th, July 2018
    THURSDAY 26TH, JULY 2018 7:30 – 8:00 Registration 8:00 - 8:30 National Geographic Society Grants Program 8:30 – 9:30 Plenary: Dr Howard Nelson 9:30 – 10:00 Break SY3: MECHANISMS OF CONSERVATION ON SY2: AN INSIGHT INTO THE ORINOCO MINING ARC PRIVATE LANDS (LTA) (LTB) 10:00 – Sebastian Case Study: Santa Rosa Watershed, José R Lozada Environmental and Social Aspects Associated 10:15 Orjuela Conservation and Sustainable Production. with the various types of mining in the Venezuelan Guayana. 10:15 – Bibiana S Socioecological connectivity for the conservation Bram Ebus Digging into the Mining Arc 10:30 Salamanca and restoration of dry forests and their threatened tree species. 10:30 – Andrés GEF-Satoyama Project: Mainstreaming Vilisa I Southern Orinoco's protected areas, in risk? 10:45 Quintero-Angel Biodiversity Conservation and Sustainable Morón- Management in Priority SEPLS Zambrano 10:45 – Ana Reboredo Does land tenure clarification and delimitation Juan C Deforestation in the Venezuelan Amazon and the 11:00 Segovia decrease deforestation in protected areas? A case Amilibia advancement of illegal mining study from an intervention in Guatemala 11:00 – German Forero- Biodiversity conservation at the landscape scale: Francoise The Orinoco Mining Arc and the Caribbean: 11:15 Medina common benefits in private lands Cabada possible impacts over marine ecological processes 11:15 – Carlos Saavedra Conservation agreements and incentives in rural José R Ferrer- Risk of ecosystem collapse under different 11:30 (TR5) CONNECTIVITY areas of Colombia Paris scenarios of management as a measure of conservation opportunities and challenges in Venezuela's Mining Arc 11:30 – TS1: SPEED PRESENTATIONS (LTA) 12:00 Sarah-Lee Manmohan: The psychological effect of bushfires on local people: a study on the perception of bushfires in Trinidad, West Indies.
    [Show full text]
  • Hybridization & Zoogeographic Patterns in Pheasants
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Johnsgard Collection Papers in the Biological Sciences 1983 Hybridization & Zoogeographic Patterns in Pheasants Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/johnsgard Part of the Ornithology Commons Johnsgard, Paul A., "Hybridization & Zoogeographic Patterns in Pheasants" (1983). Paul Johnsgard Collection. 17. https://digitalcommons.unl.edu/johnsgard/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Johnsgard Collection by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HYBRIDIZATION & ZOOGEOGRAPHIC PATTERNS IN PHEASANTS PAUL A. JOHNSGARD The purpose of this paper is to infonn members of the W.P.A. of an unusual scientific use of the extent and significance of hybridization among pheasants (tribe Phasianini in the proposed classification of Johnsgard~ 1973). This has occasionally occurred naturally, as for example between such locally sympatric species pairs as the kalij (Lophura leucol11elana) and the silver pheasant (L. nycthelnera), but usually occurs "'accidentally" in captive birds, especially in the absence of conspecific mates. Rarely has it been specifically planned for scientific purposes, such as for obtaining genetic, morphological, or biochemical information on hybrid haemoglobins (Brush. 1967), trans­ ferins (Crozier, 1967), or immunoelectrophoretic comparisons of blood sera (Sato, Ishi and HiraI, 1967). The literature has been summarized by Gray (1958), Delacour (1977), and Rutgers and Norris (1970). Some of these alleged hybrids, especially those not involving other Galliformes, were inadequately doculnented, and in a few cases such as a supposed hybrid between domestic fowl (Gallus gal/us) and the lyrebird (Menura novaehollandiae) can be discounted.
    [Show full text]
  • Raptor Migration in the Neotropics: Patterns, Processes, and Consequences
    ORNITOLOGIA NEOTROPICAL 15 (Suppl.): 83–99, 2004 © The Neotropical Ornithological Society RAPTOR MIGRATION IN THE NEOTROPICS: PATTERNS, PROCESSES, AND CONSEQUENCES Keith L. Bildstein Hawk Mountain Sanctuary Acopian Center, 410 Summer Valley Road, Orwigsburg, Pennsylvania 17961, USA. E-mail: [email protected] Resumen. – Migración de rapaces en el Neotrópico: patrones, procesos y consecuencias. – El Neotró- pico alberga poblaciones reproductivas y no reproductivas de 104 de las 109 especies de rapaces del Nuevo Mundo (i.e., miembros del suborden Falconides y de la subfamilia Cathartinae), incluyendo 4 migrantes obligatorios, 36 migrantes parciales, 28 migrantes irregulares o locales, y 36 especies que se presume que no migran. Conteos estandarizados de migración visible iniciados en la década de los 1990, junto con una recopilación de literatura, nos proveen con una idea general de la migración de rapaces en la región. Aquí describo los movimientos de las principales especies migratorias y detallo la geografía de la migración en el Neotrópico. El Corredor Terrestre Mesoamericano es la ruta de migración mas utilizada en la región. Tres especies que se reproducen en el Neártico, el Elanio Colinegro (Ictina mississippiensis), el Gavilán Aludo (Buteo platypterus) y el Gavilán de Swainson (B. swainsoni), de los cuales todos son migrantes obligatorios, junto con las poblaciones norteamericanas del Zopilote Cabecirrojo (Cathartes aura), dominan numérica- mente este vuelo norteño o “boreal”. Cantidades mucho menores de Aguilas Pescadoras (Pandion haliaetus), Elanios Tijereta (Elanoides forficatus), Esmerejónes (Falco columbarius) y Halcones Peregrinos (Falco peregrinus), ingresan y abandonan el Neotrópico rutinariamente utilizando rutas que atraviesan el Mar Caribe y el Golfo de México. Los movimientos sureños o “australes” e intra-tropicales, incluyendo la dispersión y la colonización en respuesta a cambios en el hábitat, son conocidos pero permanecen relativamente poco estudiados.
    [Show full text]
  • MONITORING PHEASANTS (Phasianidae) in the WESTERN HIMALAYAS to MEASURE the IMPACT of HYDRO-ELECTRIC PROJECTS
    THE RING 33, 1-2 (2011) DOI 10.2478/v10050-011-0003-7 MONITORING PHEASANTS (Phasianidae) IN THE WESTERN HIMALAYAS TO MEASURE THE IMPACT OF HYDRO-ELECTRIC PROJECTS Virat Jolli, Maharaj K. Pandit ABSTRACT Jolli V., Pandit M.K. 2011. Monitoring pheasants (Phasianidae) in the Western Himalayas to measure the impact of hydro-electric projects. Ring 33, 1-2: 37-46. In this study, we monitored pheasants abundance to measure the impact of a hydro- electric development project. The pheasants abundance was monitored using “call count” and line transect methods during breeding seasons in 2009-2011. Three call count stations and 3 transects were laid with varying levels of anthropogenic disturbance. To understand how the hydro power project could effect the pheasant population in the Jiwa Valley, we monitored it under two conditions; in the presence of hydro-electric project (HEP) con- struction and when human activity significantly declined. The Koklass Pheasant (Pucrasia macrolopha), Cheer Pheasant (Catreus wallichi) and Western Tragopan (Tragopan melano- cephalus) were not recorded in Manjhan Adit in 2009. During 2010 and 2011 springs, the construction activity was temporarily discontinued in Manjhan Adit. The pheasants re- sponded positively to this and their abundance increased near disturbed sites (Manjhan Adit). The strong response of pheasants to anthropogenic disturbance has ecological appli- cation and thus can be used by wildlife management in the habitat quality monitoring in the Himalayan Mountains. V. Jolli (corresponding author), M.K. Pandit, Centre for Inter-disciplinary Studies of Mountain and Hill Environment, Academic Research Building, Patel Road, Univ. of Delhi, Delhi, India, E-mail: [email protected] Key words: call count, anthropogenic disturbance, pheasant, monitoring, hydro-electric project INTRODUCTION Birds have been used extensively in environment and habitat quality monitoring.
    [Show full text]
  • 31St August 2021 Name and Address of Collection/Breeder: Do You Closed Ring Your Young Birds? Yes / No
    Page 1 of 3 WPA Census 2021 World Pheasant Association Conservation Breeding Advisory Group 31st August 2021 Name and address of collection/breeder: Do you closed ring your young birds? Yes / No Adults Juveniles Common name Latin name M F M F ? Breeding Pairs YOUNG 12 MTH+ Pheasants Satyr tragopan Tragopan satyra Satyr tragopan (TRS ringed) Tragopan satyra Temminck's tragopan Tragopan temminckii Temminck's tragopan (TRT ringed) Tragopan temminckii Cabot's tragopan Tragopan caboti Cabot's tragopan (TRT ringed) Tragopan caboti Koklass pheasant Pucrasia macrolopha Himalayan monal Lophophorus impeyanus Red junglefowl Gallus gallus Ceylon junglefowl Gallus lafayettei Grey junglefowl Gallus sonneratii Green junglefowl Gallus varius White-crested kalij pheasant Lophura l. hamiltoni Nepal Kalij pheasant Lophura l. leucomelana Crawfurd's kalij pheasant Lophura l. crawfurdi Lineated kalij pheasant Lophura l. lineata True silver pheasant Lophura n. nycthemera Berlioz’s silver pheasant Lophura n. berliozi Lewis’s silver pheasant Lophura n. lewisi Edwards's pheasant Lophura edwardsi edwardsi Vietnamese pheasant Lophura e. hatinhensis Swinhoe's pheasant Lophura swinhoii Salvadori's pheasant Lophura inornata Malaysian crestless fireback Lophura e. erythrophthalma Bornean crested fireback pheasant Lophura i. ignita/nobilis Malaysian crestless fireback/Vieillot's Pheasant Lophura i. rufa Siamese fireback pheasant Lophura diardi Southern Cavcasus Phasianus C. colchicus Manchurian Ring Neck Phasianus C. pallasi Northern Japanese Green Phasianus versicolor
    [Show full text]
  • Survey of Western Tragopan, Koklass Pheasant, and Himalayan Monal Populations in the John Corder, World Pheasant Association
    60 Indian BIRDS Vol. 6 No. 3 (Publ. 7th August 2010) Survey of Western Tragopan, Koklass Pheasant, and Himalayan Monal populations in the Pheasant Association. World John Corder, Great Himalayan National Park, Himachal Pradesh, India Fig. 1. Himalayan Monal Lophophorus Jennifer R. B. Miller impejanus. Miller, J. R. B. 2010. Survey of Western Tragopan, Koklass Pheasant, and Himalayan Monal populations in the Great Himalayan National Park, Himachal Pradesh, India. Indian BIRDS 6 (3): XXX–XXX. Jennifer R. B. Miller1, Yale School of Forestry & Environmental Studies, 195 Prospect Street, New Haven Connecticut 06511, USA. Email: [email protected] Surveys conducted in the late 1990’s indicated that pheasant populations in the Great Himalayan National Park, Himachal Pradesh, India were declining. In 1999, the government legally notified the park and authorities began enforcing the Indian Wildlife (Protection) Act, banning biomass extraction within park boundaries and reducing human disturbance. Populations of three pheasant species (Western Tragopan, Koklass Pheasant and Himalayan Monal) were subsequently surveyed in the park during the breeding season (April–May) in 2008. Call counts and line transects were used to assess current abundances and gather more information on the characteristics of these species in the wild. Relative abundances of all three species were significantly higher than in previous surveys. Tragopan males began their breeding calls in late April and continued through May whereas Koklass males called consistently throughout the study period. The daily peak calling periods of the two species overlapped, but Tragopan males began calling earlier in the morning than Koklass males. Monals were most often sighted alone or in pairs and larger groups tended to have equal sex composition or a slightly higher number of females than males.
    [Show full text]
  • Migration of Birds Circular 16
    U.S. Fish and Wildlife Service Migration of Birds Circular 16 Migration of Birds Circular 16 by Frederick C. Lincoln, 1935 revised by Steven R. Peterson, 1979 revised by John L. Zimmerman, 1998 Division of Biology, Kansas State University, Manhattan, KS Associate editor Peter A. Anatasi Illustrated by Bob Hines U.S. FISH & WILDLIFE SERVICE D E R P O A I R R E T T M N EN I T OF THE U.S. Department of the Interior U.S. Fish and Wildlife Service TABLE OF CONTENTS Page PREFACE..............................................................................................................1 INTRODUCTION ................................................................................................2 EARLY IDEAS ABOUT MIGRATION............................................................4 TECHNIQUES FOR STUDYING MIGRATION..........................................6 Direct Observation ....................................................................................6 Aural ............................................................................................................7 Preserved Specimens ................................................................................7 Marking ......................................................................................................7 Radio Tracking ..........................................................................................8 Radar Observation ....................................................................................9 EVOLUTION OF MIGRATION......................................................................10
    [Show full text]
  • Seasonality and Elevational Migration in an Andean Bird Community
    SEASONALITY AND ELEVATIONAL MIGRATION IN AN ANDEAN BIRD COMMUNITY _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by CHRISTOPHER L. MERKORD Dr. John Faaborg, Dissertation Supervisor MAY 2010 © Copyright by Christopher L. Merkord 2010 All Rights reserved The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled ELEVATIONAL MIGRATION OF BIRDS ON THE EASTERN SLOPE OF THE ANDES IN SOUTHEASTERN PERU presented by Christopher L. Merkord, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor John Faaborg Professor James Carrel Professor Raymond Semlitsch Professor Frank Thompson Professor Miles Silman For mom and dad… ACKNOWLEDGMENTS This dissertation was completed with the mentoring, guidance, support, advice, enthusiasm, dedication, and collaboration of a great many people. Each chapter has its own acknowledgments, but here I want to mention the people who helped bring this dissertation together as a whole. First and foremost my parents, for raising me outdoors, hosting an endless stream of squirrels, snakes, lizards, turtles, fish, birds, and other pets, passing on their 20-year old Spacemaster spotting scope, showing me every natural ecosystem within a three day drive, taking me on my first trip to the tropics, putting up with all manner of trouble I’ve gotten myself into while pursuing my dreams, and for offering my their constant love and support. Tony Ortiz, for helping me while away the hours, and for sharing with me his sense of humor.
    [Show full text]
  • Partial Altitudinal Migration of the Near Threatened Satyr Tragopan Tragopan Satyra in the Bhutan Himalayas: Implications for Conservation in Mountainous Environments
    Partial altitudinal migration of the Near Threatened satyr tragopan Tragopan satyra in the Bhutan Himalayas: implications for conservation in mountainous environments N AWANG N ORBU,UGYEN,MARTIN C. WIKELSKI and D AVID S. WILCOVE Abstract Relative to long-distance migrants, altitudinal mi- To view supplementary material for this article, please visit grants have been understudied, perhaps because of a percep- http://dx.doi.org/./S tion that their migrations are less complex and therefore easier to protect. Nonetheless, altitudinal migrants may be at risk as they are subject to ongoing anthropogenic pressure from land use and climate change. We used global position- Introduction ing system/accelerometer telemetry to track the partial alti- tudinal migration of the satyr tragopan Tragopan satyra in elative to long-distance migrants, altitudinal migrants central Bhutan. The birds displayed a surprising diversity of Rhave been understudied, perhaps because of a percep- migratory strategies: some individuals did not migrate, tion that their migrations are less complex and easier to pro- others crossed multiple mountains to their winter ranges, tect. In montane regions many species migrate altitudinally others descended particular mountains, and others as- up and down mountain slopes (Stiles, ; Powell & Bjork, cended higher up into the mountains in winter. In all ; Burgess & Mlingwa, ; Chaves-Champos et al., cases migration between summer breeding and winter ; Faaborg et al., ). Although attempts have been non-breeding grounds was accomplished largely by walk- made (Laymon, ; Cade & Hoffman, ; Powell & ing, not by flying. Females migrated in a south-easterly dir- Bjork, ; Chaves-Champos et al., ; Hess et al., ection whereas males migrated in random directions.
    [Show full text]
  • Assessing Bird Migrations Verônica Fernandes Gama
    Assessing Bird Migrations Verônica Fernandes Gama Master of Philosophy, Remote Sensing Bachelor of Biological Sciences (Honours) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 School of Biological Sciences Abstract Birds perform many types of migratory movements that vary remarkably both geographically and between taxa. Nevertheless, nomenclature and definitions of avian migrations are often not used consistently in the published literature, and the amount of information available varies widely between taxa. Although comprehensive global lists of migrants exist, these data oversimplify the breadth of types of avian movements, as species are classified into just a few broad classes of movements. A key knowledge gap exists in the literature concerning irregular, small-magnitude migrations, such as irruptive and nomadic, which have been little-studied compared with regular, long-distance, to-and- fro migrations. The inconsistency in the literature, oversimplification of migration categories in lists of migrants, and underestimation of the scope of avian migration types may hamper the use of available information on avian migrations in conservation decisions, extinction risk assessments and scientific research. In order to make sound conservation decisions, understanding species migratory movements is key, because migrants demand coordinated management strategies where protection must be achieved over a network of sites. In extinction risk assessments, the threatened status of migrants and non-migrants is assessed differently in the International Union for Conservation of Nature Red List, and the threatened status of migrants could be underestimated if information regarding their movements is inadequate. In scientific research, statistical techniques used to summarise relationships between species traits and other variables are data sensitive, and thus require accurate and precise data on species migratory movements to produce more reliable results.
    [Show full text]