Systematik Der Schizomycetes, Rickettsiales, Virales, Eumycetes, Protozoa Und Vermes 1147

Total Page:16

File Type:pdf, Size:1020Kb

Systematik Der Schizomycetes, Rickettsiales, Virales, Eumycetes, Protozoa Und Vermes 1147 Systematik der Schizomycetes, Rickettsiales, Virales, Eumycetes, Protozoa und Vermes 1147 Systematik der Schizomycetes, Rickettsiales, Virales, Eumycetes, Protozoa und Vermes* 1m Hinblick auf das stiindig sich erweiternde Krankheiten; eine Systematik dieser Organismen \Yissensgut ist es heute noch unmoglich, eine scheint heute noch verfrl1ht zu sein (vgl. auch Systematik der verschiedenen Organismen aufzu­ BREED et aI., loco cit.). stellen, die Anspruch auf Endgiiltigkeit erheben Die Systematik der Eumycetes (Fungi, Pilze) konnte. wurdeingekl1rzter Formentnommen: COUDERT,J., Die Systematik der Schizomycetes (Bakterien) Guide pratique de mycologie medicale, Paris (1955). und Rickettsiales wurde entnommen: BREED et Die Anordnung der Protozoa (Protozoen) und aI., Bergey7s Manual of Determinative Bacterio­ Vermes CWl1rmer) erfolgte nach PIEKARSKI, G., logy, 7. AufI., Baltimore (1957). Der kleinste Teil Lehrbuch der Parasitologie, Berlin (1954). Dber der hierbei aufgeziihlten Familien ist pathogen. eine ausfUhrliche Systematik der Parasiten vgl. Frl1here Systematiken vgI. LEmIANN und NEU­ FIEBIGER, J., Die tierischen Parasiten der Haus­ MAXN, Bakteriologie, insbesondere bakteriolo­ und Nutztiere sowie des Menschen, 4. AufI., Wien gische Diagnostik, 2 Bande, 7. AufI., :Ml1nchen (1947). (1926/27); WEINBERG et aI., Les microbes anaero­ Die Zahlen hinter den N amen sind Bezugs­ bies, Paris (1937); PRIBRAlII, E., Klassifikation der ziffern, um die in den Tabellen"Infektionserreger Schizomyceten, Wien (1933). und Infektionskrankheiten", S. 1151-1188, an­ Die Anordnung der Virales (Viren) erfolgte gefl1hrten Infektionserreger zuordnen zu konnen unter Zusammenfassung der Erreger iihnlicher (1. Spalte, fettgedruckte Zahlen). Schizomycetes, Rickettsiales, Virales Klasse: Schizomycetes vos NXGELI Genus: II. M acromonas UTER~[6HL und KOPE 33 Genus: III. Thiovulum HINZE . 34 Onlnung I. Pseudomonadales ORLA-JEl<SEN Genus: IV. Thiospira VISLOUCH . 3S Genus: V. Thiobacillus BEIJERINCK . 36 rnterordnung I. Rhodobacteriineae BREED, MURRAY und HITCHENS Familie I V: Pseudomonadaceae WINSLOW et al. Familie: Thiorbodaceae lIfOLISCH Genus: I. Pseudomonas MIGULA. 31 Genus: I. Thiosarcina 'VINOGRADSKY 1 Genus: II. Xanthomonas DOWSON . 38 Genus: II. Thiopedia WINOGRADSKY . 2 Genus: III. Acetobacter BEIJERINCK. 39 Genus: III. Thiocapsa WINOGRADSKY . 3 Genus: IV. AeromonasKLUYVERUndvANJ'i'IEL 40 Genus: IV. Thiodictyon WINOGRADSKY 4 Genus: V. Photobacterium BEIJERINCK emend. Genus: V. Thiothece WINOGRADSKY . 5 BREED und LESSEL . 41 Genus: VI. 'I'hiocystis WINOGRADSKY . 6 Genus: VI. Azotomonas STAPP . 42 Genus: VII. Lamprocystis SCHROETER . ,- Genus: VII. Zymomonas KLUYVER und Genus: VIII. Amoebacter WINOGRADSKY. 8 VAN NIEL. 43 Genus: IX. Thiopolycoccus WINOGRADSKY . 9 Genus: VIII. Protaminobacter DEN DOOREN DE Genus: X. Thiospi1'illum WINOGRADSKY 10 JONG ............ U Genus: XI. Rhabdomonas COHN II Genus: IX. Alginomonas TH.JOTTA und KASS. 4S Genus: XII. Rhodothece lVIoLISOH 12 Genus: X. Mycoplana GRAY und THORNTON 46 Genus: XIII. Chromatium PERTY .. 13 Genus: XI. Zoogloea COHN. 41 Genus: XII. Halobacterium ELAZARI-VOI,OANI. 48 }'amilie II: Athiorbodaceae MOLISCH Familie V: Caulobacteraceae HENRIeI und JOHNSON Genus: I. Rhodopseudomonas KLUYVER und emend. BREED VAN NIEL emend. VAN NIEL .. 14 Genus: II. Rhodospirillum MOLISCH emend. Genus: I. Caulobacter HENRICI und JOHNSON 49 VAN NIEL ..... 15 Genus: II. Gallionella EHRENBERG SO Genus: III. Siderophacus BEGER . SI Familie III: Chlorobacteriaceae LAUTERBORN Genus: IV. Nevskia FAMINTZIN. 52 ({enus: I. Chlorobium NADSON . 16 Familie VI: Siderocapsaceae PRIBRU[ Genus: II. Pe{odictyon LAUTERBORN n Genus: I. Siderocapsa MOLISOH . 53 Genus: III. Clathrochloris GEITLER . 18 Genus: II. Siderosphaera BEGER . 54 Genus: IV. Chlorobacterium LAUTERBORN 19 Genus: III. Sideronema BEGER. 5S Genus: V. Chlorochromatium LAUTERBORN 20 Genus: IV. Ferribacterium BRUSSOFF S6 Genus: VI. Cylindrigloea PERFILIEV. 21 Genus: V. Sideromonas CHOLODNY 51 Genus: VI. Naumanniella DORFF. 58 rnterordnung II. Pseudomonadineae BREED, MURRAY Genus: VII. Ochrobium PERFILIEV. 59 und S~!ITH, sub-ordo nov. Genus: VIII. Siderococcus DORFF 60 Familie I: Nitrobacteraceae BUOHANAN Genus: IX. Siderobacter NAUMANN . 61 Genus: I. N itrosomonas WINOGRADSKY. 22 Genus: X. Ferrobacillus LEATHEN und BRALEY 62 Genus: II. Nitrosococcus WINOGRAD SKY . 23 Familie VII: Spirillaceae MIGULA Genus: III, Nitrososp;ra WINOGRADSKY . 24 Genus: IV. Nitrosocystis WINOGRADSKY. 25 Genus: I. Vibrio MULLER . .. 63 Genus: V. Nitrosogloea H. WINOGRAD SKY . 26 Genus: II. Desuljovibrio KLUYVER und Genus: VI. Nitrobacter WINOGRADSKY .. 21 VANNIEL .......... 64 Genus: III. Methanobacterium KLUYVER und Genus: VII. Nitrocystis H. WINO ORAD SKY 28 VAN NIEL . 65 Familie II: M ethanomonadaceae BREED, jam. nov. Genus: IV. Cellvibrio WINOGRADSKY . 66 Genus: I. Methanomonas ORLA-JENSEN 29 Genus: V. Celljalcicula WINOGRADSKY 61 Genus: II. Hydrogenomonas ORLA-JENSEN 30 Genus: VI. Microcyclus 0RSKOV . 68 Genus: III. Carboxydomonas ORLA-JENSEN. 31 Genus: VII. Spirillum EIIltENBERG . 69 Genus: VIII. Paraspirillum DOBELL . 10 Familie III: Thiobacteriaceae JANKE Genus: IX. Selenomonas VON PROWAZEK. 11 Genus: I. Thiobacterium JANKE 32 Genus: X. Myconostoc COHN 12 * Die Systematik der Krankheitserreger und Tabellen" entnommen. Der J. R. Geigy AG., Infektionskrankheiten wurde auszugsweise der Basel, sind wir dafl1r zu Dank verpflichtet. 6. AufI. der Documenta Geigy "Wissenschaftliche 1148 Systematik der Schizomycetes, Rickettsiales, Virales, Eumycetes, Protozoa und Vermes Systemstik der Schizomycetes, Ricksettsiales, Virales, Eumycetes, Protozoa und Vermes (Fortsetzung) Schizomycetes, Rickettsiales, Virales (Forts.) Familie VII: Micrococcaceae PRIBRAM Genus: I. Micrococcus COHN 111 Genus: II. Staphylococcus ROSENBACH 118 Ordnung II. Chlamydobacteriales BUCHANAN Genus: III. Gajjhya TREVISAN . 119 Familie I: Chlamydobacteriaceae MIGULA Genus: IV. Sarcina GOODSIR 120 Genus: I. Sphaerotilus KiiTZING 13 Subgenus: I. Zymosarcina SMIT Genus: II. Leptothrix KtlTZING 14 Subgenus: II. Methanosarcina KLUYVER und VAN NIEL Genus: III. Toxothrix MOLISCH 15 Subgenus: III. Sarcinacoccus BREED Familie II: Peloplocaceae BEGER, jam. nov. Subgenus: IV. Urosarcina MIQUEL Genus: I. Peloploca LAUTERBORN 16 Genus: V. Methanococcus KLUYVER und VAN Genus: II. Pelonema LAUTERBORN 11 NIEL emend. BARKER. 121 Genus: VI. PeptococCU8 KLUYVER and VAN Familie III: Crenotrichaceae HANSGIRG NIEL ..... 122 Genus: I. Crenothrix COHN. 18 Familie VIII: N eisseriaceae PREVOT Genus: II. Phragmidiothrix ENGLER 19 Genus: III. Clonothrix ROZE . 80 Genus: I. Neisseria TREVISAN. 123 Genus: II. Veillonella PREVOT . 124 Ordnung III. Hyphomicrobiales DOUGLAS, ordo nov. Familie IX: Brevibacteriaceae BREED Genus: I. Brevibacterium BREED 125 Famille i: H yphomicrobiaceae BABUDIERI Genus: II. Kurthia TREVISAN .. 126 Genus: I. Hyphomicrobium STUTZER und Familie X: Lactobacillaceae WINSLOW et al. HARTLEB ........ 81 Stamm I. Straptocoeceae TREVISAN Genus: II. Rhodomicrobium DUCHOW und Genus: I. Diplococcus WEICHSELBAUM 121 DOUGLAS ........ 82 Genus: II. Streptococcus ROSENBACH . 128 Familie II: Pasteuriaceae LAURENT emend. HENRICI Genus: III. Pediococeus BALCKE emend. MEES 129 und JOHNSON Genus: IV. Leuconostoc VAN TIEGHEM emend. Genus: 1. Pasteuria METCHNIKOFF. 83 HUCKER und PEDERSON. 130 Genus: II. BlastocaulisHENRICI undJOHNsoN 84 Genus: V. Peptostreptococcus KLUYVER und VAN NIEL ....... 131 Stamm II. Lactobacilleae WINSLOW et al. Ordnung IV. Eubacteriales BUCHANAN Genus: I. Lactobacillus BEIJERINCK .. 132 Familie I: Azotobacteraceae BERGEY, BREED und MURRAY Subgenus: I. Lactobacillus BEIJERINCK Genus: I. Azotobacter BEIJERINCK . 85 Subgenus: II. Saccharobacillus VAN LAER Genus: II. Eubacterium PREVOT . 133 Familie II: Rhizobiaceae CONN Genus: III. Catenabacterium PREVOT .. 134 Genus: I. Rhizobium FRANK . 86 Genus: IV. Ramibacterium PREVOT . .. 135 Genus: II. Agrobacterium CONN . 81 Genus: V. Cillobacterium PREVOT . .. 136 Genus: III. Chromobacterium BERGONZINI 88 Familie XI: Propionibacteriaceae DELWICHE, jam. nov. Familie III: Achromobacteraceae BREED Genus: I. Propionibacterium ORLA-JENSEN. 131 Genus: I. Alcaligenes CASTELLANI und CHAL- Genus: II. ButyribacteriumBARKERuudHAAS 138 MERS. 89 Genus: III. Z ymobacterium WACHSMAN und Genus: II. Achromobacter BERGEY et al.. 90 BARKER ........... 139 Genus: III. Flavobacterium BERGEY et al. 91 Familie XII: Corymebacteriaceae LEHMANN und NEU­ Genus: IV. Agarbacterium ANGST. 92 MANN Genus: V. Beneckea CAMPBELL, gen. nov. 93 Genus: I. Corymebacterium LEHMANI" und Familie IV: Enterobacteriaceae RAHN NEUMANN ....... 140 Genus: II. Listeria PIRIE. 141 Stamm I. Escherichiae BERGEY, BREED und MURRAY Genus: III. Erysipelothrix ROSENBACH 142 Genus: I. EschericMa CASTELLANI und CHAL- Genus: IV. Microbacterium ORLA-JENSEN 143 MERS ............ 94 Genus: V. Cellulomonas BERGEY et al. emend. Genus: II. Aerobacter BEIJERINCK . 95 CLARK ........... 144 Genus: III. Klebsiella TREVISAN . 96 Genus: VI. Arthrobacter FISCHER emend. CONK Genus: IV. Paracolobactrum BORMAN, STUART und DnlMICK 145 und WHEELER. .. 91 Familie XIII: Bacillaceae FISCHER Genus: V. Alginobacter THJlJTTA und KASS 98 Genus: I. Bacillus COHN. 146 Stamm II. Erwinieae WINSLOW et al. Genus: II. Clostridium PRAZMOWSKI 141 Genus: VI. Erwinia WINSLOW et al.. .. 99 Stamm III. Serratieae BERGEY, BREED und MURRAY Ordnung V. Caryophanales PESHKOFF Genus: VII. Serratia BIZIO emend. BREED und BUED . .. I" Familie I: Caryophanaceae PESHKOFF Genus: I. Caryophanon PESHKOFF.
Recommended publications
  • Brucellosis Tip Sheet June 2018
    BRUCELLOSIS Background Brucellosis is an infectious disease caused by Brucella species such as Brucella melitensis, Brucella abortus, and Brucella suis. People can get the disease when they are in contact with infected animals or animal products contaminated with the bacteria. From 1993 through 2010, the number of brucellosis cases reported in the US ranged from 79 to 139, with an average of 109 cases per year. In 2010, the highest number (56.5%) of brucellosis cases was reported by California, Texas, Arizona, and Florida. Michigan reported four cases that same year (range=0‐10 cases per year). Signs and Symptoms Acute Non‐specific: fever, sweats, malaise, anorexia, headache, pain in muscles, joint, and/or back pain, fatigue Sub‐clinical infections are common Lymphadenopathy (10–20%), splenomegaly (20–30%) Chronic Recurrent fever Arthritis and spondylitis Swelling of the testicle and scrotum area Swelling of the heart (endocarditis) Swelling of the liver and/or spleen Neurologic symptoms (in up to 5% of all cases) Possible focal organ involvement Chronic fatigue Depression Brucellosis in Pregnant Women Brucellosis during pregnancy carries the risk of causing spontaneous abortion, particularly during the first and second trimesters; therefore, women should receive prompt medical treatment with the proper antimicrobials. Incubation Period Highly variable (5 days–6 months) Average onset 2–4 weeks Transmission Ingestion: The most common way to be infected is by eating or drinking unpasteurized/raw dairy products. When sheep, goats, cows, or camels are infected, their milk becomes contaminated with the bacteria. If milk from infected animals is not pasteurized, the infection will be transmitted to people who consume the milk and/or cheese products.
    [Show full text]
  • Compendium of Veterinary Standard Precautions for Zoonotic Disease Prevention in Veterinary Personnel
    Compendium of Veterinary Standard Precautions for Zoonotic Disease Prevention in Veterinary Personnel National Association of State Public Health Veterinarians Veterinary Infection Control Committee 2010 Preface.............................................................................................................................................................. 1405 I. INTRODUCTION................................................................................................................................... 1405 A. OBJECTIVES...................................................................................................................................... 1405 B. BACKGROUND................................................................................................................................. 1405 C. CONSIDERATIONS.......................................................................................................................... 1405 II. ZOONOTIC DISEASE TRANSMISSION................................................................................................ 1406 A. SOURCE ............................................................................................................................................ 1406 B. HOST SUSCEPTIBILITY.................................................................................................................... 1406 C. ROUTES OF TRANSMISSION........................................................................................................... 1406 1. CONTACT TRANSMISSION.........................................................................................................
    [Show full text]
  • Recent Advances in Understanding Immunity Against Brucellosis: Application for Vaccine Development
    The Open Veterinary Science Journal, 2010, 4, 101-107 101 Open Access Recent Advances in Understanding Immunity Against Brucellosis: Application for Vaccine Development Sérgio Costa Oliveira*,1, Gilson Costa Macedo1, Leonardo Augusto de Almeida1, Fernanda Souza de Oliveira1, Angel Onãte2, Juliana Cassataro3 and 3 Guillermo Hernán Giambartolomei 1Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil 2Department of Microbiology, Faculty of Biological Sciences, Molecular Immunology Laboratory, Universidad de Concepción, Concepción, Chile 3Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina Abstract: Brucellosis is an important zoonotic disease of nearly worldwide distribution. This pathogen causes abortion in cattle and undulant fever, arthritis, endocarditis and meningitis in human. The immune response against B. abortus involves innate and adaptive immunity involving antigen-presenting cells, NK cells and CD4+ and CD8+ T cells. IFN- is a crucial immune component that results from Brucella recognition by host immune receptors such as Toll-like receptors (TLRs) that lead to IL-12 production. Although great efforts to elucidate immunity against Brucella have been employed, the subset of cells and factors involved in host immune response remains not completely understood. Our group and others have been working in an attempt to understand the mechanisms involved in innate responses to Brucella. Understanding the requirements for immune protection can help the design of alternative vaccines that would avoid the drawbacks of currently available vaccines to Brucella. This review discusses recent studies in host immunity to Brucella and new approaches for vaccine development.
    [Show full text]
  • Herd Health Protocols for Dromedary Camels (Camelus Dromedarius) at Mpala Ranch and Research Centre, Laikipia County, Kenya
    Herd Health Protocols for Dromedary Camels (Camelus dromedarius) at Mpala Ranch and Research Centre, Laikipia County, Kenya September 23rd, 2012 Andrew Springer Browne, MVB Veterinary Public Health Program University of Missouri – Columbia, USA Sharon Deem, DVM, PhD, DACZM Institute for Conservation Medicine Saint Louis Zoo, St. Louis, MO, USA This guide was made to solidify husbandry and record protocols as well as give feasible advice for common health problems in camels at the Mpala Ranch and Research Centre. For thorough reviews of camel diseases and health, see “A Field Manual of Camel Diseases” by Kohler-­­Rollefson and “Medicine and Surgery of Camelids” by Fowler. Acknowledgments Many thanks to Margaret Kinnaird and Mike Littlewood for their patience and support during our visit. Thank you to Laura Budd and Sina Mahs for their incredible help and time dedicated to the project. Finally, a special thanks to S. Moso, Eputh, Abduraman, Adow, Abdulai, Ekomoel, and Ewoi for working and living with the camels every day. Asante sana. -­­ Springer and Sharon ii Table of Contents Page Key Management Goals 1 Record Keeping 2 Electronic and Paper Records 3 Entering Data into Excel Database 4 Excel Database Legend 5 Husbandry 6 Calf Care 7 Maternal Rejection 8 Dam Care 9 Branding and Identification 10 Weight Estimates/Body Condition Scoring 11 Milking Schedule and Boma Rotation 12 Veterinary Care 13 Preventive Veterinary Health Care 14 Diagnostics 15 Abortion 16 Skin Wounds 17 Abscess Treatment 18 Mastitis 19 Eye Problems 20 Diseases of Special
    [Show full text]
  • Genital Brucella Suis Biovar 2 Infection of Wild Boar (Sus Scrofa) Hunted in Tuscany (Italy)
    microorganisms Article Genital Brucella suis Biovar 2 Infection of Wild Boar (Sus scrofa) Hunted in Tuscany (Italy) Giovanni Cilia * , Filippo Fratini , Barbara Turchi, Marta Angelini, Domenico Cerri and Fabrizio Bertelloni Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; fi[email protected] (F.F.); [email protected] (B.T.); [email protected] (M.A.); [email protected] (D.C.); [email protected] (F.B.) * Correspondence: [email protected] Abstract: Brucellosis is a zoonosis caused by different Brucella species. Wild boar (Sus scrofa) could be infected by some species and represents an important reservoir, especially for B. suis biovar 2. This study aimed to investigate the prevalence of Brucella spp. by serological and molecular assays in wild boar hunted in Tuscany (Italy) during two hunting seasons. From 287 animals, sera, lymph nodes, livers, spleens, and reproductive system organs were collected. Within sera, 16 (5.74%) were positive to both rose bengal test (RBT) and complement fixation test (CFT), with titres ranging from 1:4 to 1:16 (corresponding to 20 and 80 ICFTU/mL, respectively). Brucella spp. DNA was detected in four lymph nodes (1.40%), five epididymides (1.74%), and one fetus pool (2.22%). All positive PCR samples belonged to Brucella suis biovar 2. The results of this investigation confirmed that wild boar represents a host for B. suis biovar. 2 and plays an important role in the epidemiology of brucellosis in central Italy. Additionally, epididymis localization confirms the possible venereal transmission. Citation: Cilia, G.; Fratini, F.; Turchi, B.; Angelini, M.; Cerri, D.; Bertelloni, Keywords: Brucella suis biovar 2; wild boar; surveillance; epidemiology; reproductive system F.
    [Show full text]
  • Microbiological Study in Petrol-Spiked Soil
    molecules Article Microbiological Study in Petrol-Spiked Soil Agata Borowik , Jadwiga Wyszkowska * and Jan Kucharski Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; [email protected] (A.B.); [email protected] (J.K.) * Correspondence: [email protected] Abstract: The pollution of arable lands and water with petroleum-derived products is still a valid problem, mainly due the extensive works aimed to improve their production technology to reduce fuel consumption and protect engines. An example of the upgraded fuels is the BP 98 unleaded petrol with Active technology. A pot experiment was carried out in which Eutric Cambisol soil was polluted with petrol to determine its effect on the microbiological and biochemical properties of this soil. Analyses were carried out to determine soil microbiome composition—with the incubation and metagenomic methods, the activity of seven enzymes, and cocksfoot effect on hydrocarbon degradation. The following indices were determined: colony development index (CD); ecophysiological diversity index (EP); index of cocksfoot effect on soil microorganisms and enzymes (IFG); index of petrol effect on soil microorganisms and enzymes (IFP); index of the resistance of microorganisms, enzymes, and cocksfoot to soil pollution with petrol (RS); Shannon–Weaver’s index of bacterial taxa diversity (H); and Shannon–Weaver’s index of hydrocarbon degradation (IDH). The soil pollution with petrol was found to increase population numbers of bacteria and fungi, and Protebacteria phylum abundance as well as to decrease the abundance of Actinobacteria and Acidobacteria phyla. The cultivation of cocksfoot on the petrol-polluted soil had an especially beneficial effect mainly on the Citation: Borowik, A.; Wyszkowska, bacteria belonging to the Ramlibacter, Pseudoxanthomonas, Mycoplana, and Sphingobium genera.
    [Show full text]
  • The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
    FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.
    [Show full text]
  • Evaluation of the Relatedness of Brucella Spp. and Ochrobactrum Anthropi and Description of Ochrobactrum Intermedium Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Dadun, University of Navarra International Journal of Systematic Bacteriology (1 998), 48, 759-768 Printed in Great Britain Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella SPP. Julian Velasco,’ Conchi Romero,’ lgnacio Lopez-Got%,’ Jose Leiva,2 Ramon Diaz1f2and lgnacio Moriydn’ Author for correspondence : Ignacio Moriyon. Tel : + 34 48 425600. Fax : + 34 48 425649. e-mail : [email protected] Departamento de The relatedness of Brucella spp. and Ochrobactrum anthropi was studied by M icrob io I og ia, Un ive rs id ad protein profiling, Western blot, immunoelectrophoresis and 16s rRNA analysis. de Navarra, Aptdo 1771 and Servicio de Microbiologia, Whole-cell and soluble proteins of brucellae and 0. anthropi showed Clinica Universitaria de serological cross-reactivities quantitatively and qualitatively more intense Navarraz, Pamplona, Spain than those existing with similar extracts of Agrobacterium spp. Numerical analysis of Western blot profiles of whole-cell extracts showed that 0. anthropi LMG 3301 was closer to Brucella spp. than to 0. anthropi LMG 3331T, a result not obtained by protein profiling. These differences were not observed by Western blot with soluble fractions, and immunoelectrophoretic analyses suggested that this was due to destruction of conformational epitopes in Western blot procedures with the subsequent simplification of antigenic profile. Analysis of the 165 rRNA sequences of strains previously used in the species definition confirmed that strain LMG 3301, and also LMG 3306, were closer to the brucellae, and that LMG 3331Twas in a separate cluster.
    [Show full text]
  • Brucellosis in the Kakheti Region of The
    DISSERTATION A SYSTEMIC REVIEW OF BRUCELLOSIS IN THE KAKHETI REGION OF THE COUNTRY OF GEORGIA: AN EVALUATION OF THE DISEASE ECOLOGY, RISK FACTORS AND SUGGESTIONS FOR DISEASE CONTROL Submitted by Karyn Alicia Havas Department of Clinical Sciences In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2011 Doctoral Committee: Advisor: Mo D. Salman Ashley E. Hill Robert J. Callan Shana C. Gillette Ann L. Magennis Copyright by Karyn A. Havas 2011 All rights reserved ABSTRACT A SYSTEMIC REVIEW OF BRUCELLOSIS IN THE KAKHETI REGION OF THE COUNTRY OF GEORGIA: AN EVALUATION OF THE DISEASE ECOLOGY, RISK FACTORS AND SUGGESTIONS FOR DISEASE CONTROL Human brucellosis is a neglected disease of poverty often found in highly agrarian, livestock dependent societies (World Health Organization, 2006). It is a purely zoonotic disease in that animals infect humans but there is not human-to-human transmission (Corbel, 2006). The highest human incidence of brucellosis in the country of Georgia is in the eastern region of Kakheti (Navdarashvili et al., 2005), which is also home to the majority of the country’s sheep and a significant portion of the country’s cattle population (Kvinikadze et al., 2009). In humans, brucellosis is acquired from animals either through direct contact with infected and shedding animals or their afterbirth or via consumption of contaminated dairy products made from the raw milk of a shedding animal. In Georgia, B. melitensis is the predominant species cultured from ill humans and has been cultured from sheep as well (Malania et al., 2009; Onashvili et al., 2009).
    [Show full text]
  • Integrated Mrna-Seq and Mirna-Seq Analysis of Goat fibroblasts Response to Brucella Melitensis Strain M5-90
    Integrated mRNA-seq and miRNA-seq analysis of goat fibroblasts response to Brucella Melitensis strain M5-90 Baobao Li*, Si Chen*, Chengqiang Wang, Qiaoling Chen, Churiga Man, Qi An, Zhenxing Zhang, Zhiyong Liu, Li Du and Fengyang Wang Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction, Haikou, Hainan, China * These authors contributed equally to this work. ABSTRACT Brucellosis is a globally zoonotic bacterial disease of humans and various animals including goats, sheep, and cattle. Brucella melitensis M5-90, a live attenuated vaccine strain, has been widely used to prevent brucellosis in goats and sheep. However, the molecular mechanisms governing protective immunity response in non-professional phagocytes infected with B. melitensis M5-90 have not been fully investigated, especially in goats. In our research, goat fibroblasts were used as in vitro models to determine these mechanisms by transcriptome analysis. After incubating with B. melitensis M5-90 3 h, the infected goat fibroblasts were collected at 0 h, 4 h, 24 h, 48 h and 72 h for RNA-seq. The results indicated that there were totally 11,819 differentially expressed genes (DEGs) and 777 differentially expressed (DE) miRNAs found in experiment groups compared with the control groups (|log2 (Foldchange)|≥1, FDR<0.05). GO and KEGG enrichment analyses revealed that down-regulated genes were involved in the riboflavin metabolism and positive regulation of IL-8 secretion pathway. The up-regulated genes were mainly involved in adaptive immunity, including TNF signaling pathway, MAPK signaling pathway and JAK/STAT pathway.
    [Show full text]
  • Acute Brucella Melitensis M16 Infection Model in Mice Treated with Tumor Necrosis Factor-Alpha Inhibitors
    Original Article Acute Brucella melitensis M16 infection model in mice treated with tumor necrosis factor-alpha inhibitors Murat Kutlu1, Çağrı Ergin2, Nilay Şen-Türk3, Selda Sayin-Kutlu1, Orçun Zorbozan2, Şerife Akalın1, Barboros Şahin4, Veli Çobankara5, Neşe Demirkan3 1 Department of Infectious Diseases and Clinical Microbiology, Pamukkale University, Faculty of Medicine, Denizli, Turkey 2 Department of Medical Microbiology, Pamukkale University, Faculty of Medicine, Denizli, Turkey 3 Department of Pathology, Pamukkale University, Faculty of Medicine, Denizli, Turkey 4 Animal Research Laboratory, Pamukkale University, Denizli, Turkey 5 Department of Internal Medicine, Section of Rheumatology, Pamukkale University, Faculty of Medicine, Denizli, Turkey Abstract Introduction: There is limited data in the literature about brucellosis related to an intracellular pathogen and anti-tumor necrosis factor alpha (anti-TNFα) medication. The aim of this study was to evaluate acute Brucella infections in mice receiving anti-TNFα drug treatment. Methodology: Anti-TNFα drugs were injected in mice on the first and fifth days of the study, after which the mice were infected with B. melitensis M16 strain. Mice were sacrificed on the fourteenth day after infection. Bacterial loads in the liver and spleen were defined, and histopathological changes were evaluated. Results: Neither the liver nor the spleen showed an increased bacterial load in all anti-TNFα drug groups when compared to a non-treated, infected group. The most significant histopathological findings were neutrophil infiltrations in the red pulp of the spleen and apoptotic cells with hepatocellular pleomorphism in the liver. There was no significant difference among the groups in terms of previously reported histopathological findings, such as extramedullary hematopoiesis and granuloma formation.
    [Show full text]
  • Iron Transport Strategies of the Genus Burkholderia
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Iron transport strategies of the genus Burkholderia Mathew, Anugraha Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-113412 Dissertation Published Version Originally published at: Mathew, Anugraha. Iron transport strategies of the genus Burkholderia. 2015, University of Zurich, Faculty of Science. Iron transport strategies of the genus Burkholderia Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anugraha Mathew aus Indien Promotionskomitee Prof. Dr. Leo Eberl (Vorsitz) Prof. Dr. Jakob Pernthaler Dr. Aurelien carlier Zürich, 2015 2 Table of Contents Summary .............................................................................................................. 7 Zusammenfassung ................................................................................................ 9 Abbreviations ..................................................................................................... 11 Chapter 1: Introduction ....................................................................................... 14 1.1.Role and properties of iron in bacteria ...................................................................... 14 1.2.Iron transport mechanisms in bacteria .....................................................................
    [Show full text]