Behavioural Impacts of Anthropogenic Noise on the European Hermit Crab Pagurus Bernhardus from Individual to Group Level
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Taxonomic Study of the Pagurus Forbesii "Complex" (Crustacea
Taxonomic study of the Pagurus forbesii "complex" (Crustacea: Decapoda: Paguridae). Description of Pagurus pseudosculptimanus sp. nov. from Alborán Sea (Southern Spain, Western Mediterranean Sea). GARCÍA MUÑOZ J.E.1, CUESTA J.A.2 & GARCÍA RASO J.E.1* 1 Dept. Biología Animal, Fac. Ciencias, Univ. Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain. 2 Inst. Ciencias Marinas de Andalucía (CSIC), Av. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. * Corresponding author - e-mail address: [email protected] ABSTRACT The study of hermit crabs from Alboran Sea has allowed recognition of two different morphological forms under what had been understood as Pagurus forbesii. Based on morphological observations with various species of Pagurus, and molecular studies, a new species is defined and described as P. pseudosculptimanus. An overview on species of Pagurus from the eastern Atlantic and Mediterranean Sea is provided. Key words: Pagurus, new species, Mediterranean, eastern Atlantic. 1 Introduction More than 170 species from around the world are currently assigned to the genus Pagurus Fabricius, 1775 (Lemaitre and Cruz Castaño 2004; Mantelatto et al. 2009; McLaughlin 2003, McLaughlin et al. 2010). This genus is complex because of there is high morphological variability and similarity among some species, and has been divided in groups (e.g. Lemaitre and Cruz Castaño 2004 for eastern Pacific species; Ingle, 1985, for European species) with difficulty (Ayón-Parente and Hendrickx 2012). This difficulty has lead to taxonomic problems, although molecular techniques have been recently used to elucidate some species (Mantelatto et al. 2009; Da Silva et al. 2011). Thirteen species are present in eastern Atlantic (European and the adjacent African waters) (Ingle 1993; Udekem d'Acoz 1999; Froglia, 2010, MarBEL Data System - Türkay 2012, García Raso et al., in press) but only nine of these (the first ones mentioned below) have been cited in the Mediterranean Sea, all of them are present in the study area (Alboran Sea, southern Spain). -
On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions Title (Decapoda : Anomura) (With 33 Text-Figures and 7 Tables)
On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions Title (Decapoda : Anomura) (With 33 Text-figures and 7 Tables) Author(s) QUINTANA, Rodolfo; IWATA, Fumio Citation 北海道大學理學部紀要, 25(1), 25-85 Issue Date 1987-10 Doc URL http://hdl.handle.net/2115/27702 Type bulletin (article) File Information 25(1)_P25-85.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP On the Larval Development of Some Hermit Crabs from Hokkaido, Japan, Reared Under Laboratory Conditions (Decapoda: Anomura) By Rodolfo Quintana and Fumio Iwata Zoological Institute, Faculty of Science, Hokkaido University, Sapporo 060, Japan. (With 33 Text-figures and 7 Tables) Introduction Descriptive accounts of larvae of a number of Diogenidae and Paguridae species from different geographic regions have been given -among others-, by MacDonald, Pike and Williamson, (1957); Pike and Williamson (1960); Proven zano (1963; 1968a ); Makarov (1967); Roberts (1970; 1973); Biffar and Proven zano (1972); Nyblade and McLaughlin (1975); Hong (1981), but our knowledge of larvae of species of both families from Japan is still deficient. The list of anomuran crabs inhabiting the coasts of Hokkaido, northern Japan includes approximately 15 species of hermit crabs (Igarashi, 1970; Miyake, 1982), for which only some reports have been published on their larval stages, so that the larvae of several of these species (especially those of the genus Paguristes and approximately the 50% of the Pagurus species) remain so far unknown. Kurata (1964) described the larvae of several Pagurus species from the coasts of Hokkaido. In his carefully constructed plankton study, using mainly character- 1) Contribution No.1 from the Oshoro Marine Biological Station, Faculty of Science, Hokkaido University. -
Mild Osmotic Stress in Intertidal Gastropods Littorina Saxatilis and Littorina Obtusata (Mollusca: Caenogastropoda): a Proteomic Analysis
CORE Metadata, citation and similar papers at core.ac.uk Provided by Saint PetersburgFULL State University COMMUNICATION PHYSIOLOGY Mild osmotic stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: Caenogastropoda): a proteomic analysis Olga Muraeva1, Arina Maltseva1, Marina Varfolomeeva1, Natalia Mikhailova1,2, and Andrey Granovitch1 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg, 199034, Russian Federation; 2 Center of Cell Technologies, Institute of Cytology RAS, Tikhoretsky prospect, 4, St. Petersburg, 194064, Russian Federation Address correspondence and requests for materials to Arina Maltseva, [email protected] Abstract Salinity is a crucial abiotic environmental factor for marine animals, affecting their physiology and geographic ranges. Deviation of environmental salin- ity from the organismal optimum range results in an osmotic stress in osmo- conformers, which keep their fluids isotonic to the environment. The ability to overcome such stress is critical for animals inhabiting areas with considerable salinity variation, such as intertidal areas. In this study, we compared the reac- tion to mild water freshening (from 24 to 14 ‰) in two related species of inter- tidal snails, Littorina saxatilis and L. obtusata, with respect to several aspects: survival, behavior and proteomic changes. Among these species, L. saxatilis is Citation: Muraeva, O., Maltseva, A., Varfolomeeva, M., Mikhailova, N., more tolerant to low salinity and survives in estuaries. We found out that the Granovitch, A. 2017. Mild osmotic response of these species was much milder (with no mortality or isolation re- stress in intertidal gastropods Littorina saxatilis and Littorina obtusata (Mollusca: action observed) and involved weaker proteomic changes than during acute Caenogastropoda): a proteomic analysis. -
The American Slipper Limpet Crepidula Fornicata (L.) in the Northern Wadden Sea 70 Years After Its Introduction
Helgol Mar Res (2003) 57:27–33 DOI 10.1007/s10152-002-0119-x ORIGINAL ARTICLE D. W. Thieltges · M. Strasser · K. Reise The American slipper limpet Crepidula fornicata (L.) in the northern Wadden Sea 70 years after its introduction Received: 14 December 2001 / Accepted: 15 August 2001 / Published online: 25 September 2002 © Springer-Verlag and AWI 2002 Abstract In 1934 the American slipper limpet 1997). In the centre of its European distributional range Crepidula fornicata (L.) was first recorded in the north- a population explosion has been observed on the Atlantic ern Wadden Sea in the Sylt-Rømø basin, presumably im- coast of France, southern England and the southern ported with Dutch oysters in the preceding years. The Netherlands. This is well documented (reviewed by present account is the first investigation of the Crepidula Blanchard 1997) and sparked a variety of studies on the population since its early spread on the former oyster ecological and economic impacts of Crepidula. The eco- beds was studied in 1948. A field survey in 2000 re- logical impacts of Crepidula are manifold, and include vealed the greatest abundance of Crepidula in the inter- the following: tidal/subtidal transition zone on mussel (Mytilus edulis) (1) Accumulation of pseudofaeces and of fine sediment beds. Here, average abundance and biomass was 141 m–2 through the filtration activity of Crepidula and indi- and 30 g organic dry weight per square metre, respec- viduals protruding in stacks into the water column. tively. On tidal flats with regular and extended periods of This was reported to cause changes in sediments and emersion as well as in the subtidal with swift currents in near-bottom currents (Ehrhold et al. -
Complex Male Mate Choice in Marine Snails Littorina
Complex Male Mate Choice in Marine Snails Littorina Sara Hintz Saltin Licentiate thesis Department of Marine Ecology University of Gothenburg Till Mamma, Pappa och Hanna Abstract The ability to recognise potential mates and choose the best possible mating-partner is of fundamental importance for most animal species. This thesis presents studies of male mate choice within the genus Littorina. Males of this genus are sometimes observed to initiate mating with other males or with females of other species. How such suboptimal mating patterns can evolve is the theme of this thesis. In one study we investigated pre-copulatory- and copulation behaviour in L. fabalis and between this species and its sister-species L. obtusata. We found that males preferred to mount and mate with large and more fecund females rather than small females. Males also preferred to track the largest females mucus trails even though these were trails from another species (L. obtusata) although cross-matings were interrupted before completion. In a second study we found that males of three species (L. littorea, L. fabalis and L. obtusata) preferentially followed female trails. This suggests that females add a “gender cue” in the mucus. In the forth species, L. saxatilis, males followed male and female trails at random. Along with experimental evidence for high mating costs and abilities for male L. saxatilis to detect females of a related species, this suggests a sexual conflict over mating frequency. To reduce number of matings females avoid advertising their sex by disguise their mucus. The reason for the different species strategies is that L. -
Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Spiral wrack (Fucus spiralis) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2008-05-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1337]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2008. Fucus spiralis Spiral wrack. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1337.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-05-29 Spiral wrack (Fucus spiralis) - Marine Life Information Network See online review for distribution map Detail of Fucus spiralis fronds. Distribution data supplied by the Ocean Photographer: Keith Hiscock Biogeographic Information System (OBIS). -
Pagurus Bernhardus)
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Hermit crab (Pagurus bernhardus) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Emily Wilson 2007-07-03 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1169]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Wilson, E. 2007. Pagurus bernhardus Hermit crab. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1169.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-07-03 Hermit crab (Pagurus bernhardus) - Marine Life Information Network See online review for distribution map Pagurus bernhardus on shell gravel. Distribution data supplied by the Ocean Photographer: Paul Naylor Biogeographic Information System (OBIS). -
Discovery of Sabellaria Spinulosa Reefs in an Intensively fished Area of the Dutch Continental Shelf, North Sea T ⁎ Karin J
Journal of Sea Research 144 (2019) 85–94 Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Discovery of Sabellaria spinulosa reefs in an intensively fished area of the Dutch Continental Shelf, North Sea T ⁎ Karin J. van der Reijdena, , Leo Koopb, Sarah O'Flynnc, Silvia Garciad, Oscar Bose, Christiaan van Sluisf, David J. Maaholmd, Peter M.J. Hermang,h, Dick G. Simonsb, Han Olffa, Tom Ysebaertc,e, Mirjam Snellenb, Laura L. Goversa,i, Adriaan D. Rijnsdorpe,j, Ricardo Aguilard a Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, the Netherlands b Acoustics Group, Delft University of Technology, 2629 HS Delft, the Netherlands c NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine & Delta Systems, Utrecht University, P.O. Box 140, 4400 AC Yerseke, the Netherlands d OCEANA Europe, Gran Via 59, 28013 Madrid, Spain e Wageningen Marine Research, P.O. Box 68, 1970 AB IJmuiden, the Netherlands f The North Sea Foundation, P.O. Box 1578, 3500 BN Utrecht, the Netherlands g DELTARES, P.O. Box 177, 2600 MH Delft, the Netherlands h Delft University of Technology, Hydraulic Engineering, 2629 HS Delft, the Netherlands i NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, the Netherlands j Aquaculture and Fisheries Group, Wageningen University, P.O. Box 338, 6700 AH Wageningen, the Netherlands ARTICLE INFO ABSTRACT Keywords: The tube-building polychaete Sabellaria spinulosa (Ross worm) can form conspicuous biogenic reefs that stabilize Biogenic Reef the seabed and increase biodiversity by providing a habitat for a multitude of other species. -
Humane Slaughter of Edible Decapod Crustaceans
animals Review Humane Slaughter of Edible Decapod Crustaceans Francesca Conte 1 , Eva Voslarova 2,* , Vladimir Vecerek 2, Robert William Elwood 3 , Paolo Coluccio 4, Michela Pugliese 1 and Annamaria Passantino 1 1 Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 981 68 Messina, Italy; [email protected] (F.C.); [email protected] (M.P.); [email protected] (A.P.) 2 Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic; [email protected] 3 School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; [email protected] 4 Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence-Viale Pieraccini, 6-50139 Firenze, Italy; paolo.coluccio@unifi.it * Correspondence: [email protected] Simple Summary: Decapods respond to noxious stimuli in ways that are consistent with the experi- ence of pain; thus, we accept the need to provide a legal framework for their protection when they are used for human food. We review the main methods used to slaughter the major decapod crustaceans, highlighting problems posed by each method for animal welfare. The aim is to identify methods that are the least likely to cause suffering. These methods can then be recommended, whereas other methods that are more likely to cause suffering may be banned. We thus request changes in the legal status of this group of animals, to protect them from slaughter techniques that are not viewed as being acceptable. Abstract: Vast numbers of crustaceans are produced by aquaculture and caught in fisheries to Citation: Conte, F.; Voslarova, E.; meet the increasing demand for seafood and freshwater crustaceans. -
Hermit Crab Is a Small Hermit Crabs in the Families Paguridae and Diogenidae Are All Crustacean Found in Ocean Aquatic Marine Crabs
4 These crabs inhabit the local shoreline Pagurus bernhardus year Pagurus prideaux round. Class: Malacotraca Order: Decapoda Family: Paguridae Genus: Pagurus Pagurus bernhardus Distribution The hermit crab is a small Hermit crabs in the families Paguridae and Diogenidae are all crustacean found in ocean aquatic marine crabs. The family Paguridae on its own contains waters worldwide. Many several hundred different species. This species P. bernhardus is species are known from known to occur from Spitsbergen, Iceland and the Murman Sea only one or a few localities, throughout the boreal North American and European coasts and many are known world and in the Mediterranean Sea. It is common in Nova Scotian wide. New species are coastal waters. This is one of two known species occurring occurring. locally at Burntcoat Head. The other species is P. prideaux. It is similar in appearance and has somewhat the same distribution. Habitat They live along coasts in Although hermit crabs do venture into deeper waters, they are most types of sea beds, more commonly found in coastal waters where there is more including rocky and shell food and places to hide. Smaller individuals live in shallower bottoms, in sea grass beds, waters than larger individuals. A few species are land based. and sandy or silty Female terrestrial hermit crabs must return to the sea to breed. sediments, but excluding Larvae live mainly in pools and may be found under objects muddy bottoms. such as rocks and seaweed. Food It consumes microscopic bivalves, scraps of dead animals, The hermit crab is an microbes, and detritus. They are also able to filter organic omnivorous scavenger, particles from the water and will even graze on periphyton (a feeding on a wide variety of type of algae). -
Invertebrate ID Guide
11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................ -
NAFO Scientific Council Number 34: 7-17
NAPO Sci. Coun. Studies, 34: 7-17 On Biology of Two Sympatric Species of Hermit Crab (Crustacea, Decapoda, Paguridae) at St. Chads, Newfoundland H. J. Squires 14 Solomons Drung, Portugal Cove-St. Philips Newfoundland, Canada AIM 2C5 and G. P. EDDis and G. Dawe Science Branch, Dept. of Fisheries and Oceans, P.O. Box 5667 St. John's, Newfoundland, Canada AIC 5XI Abstract Two sympatrk species of Hermit Crab, Pagurus aeadianus and P. arcuatus, from the sublittoral near St. Chads, Newfoundland, have many similarities in their life history. These are expressed in their feeding, maturities of females (both species hatching eggs in early spring. extruding eggs in late autumn and carrying eggs through the winter), finding shells plentiful at small sizes but scarce at large sizes, and availability at a sublittoral station throughout the year. Differences seen were low rate of parasitization with Peltogaster paguri in P aeadianus: only one in almost five hundred specimens, while there were about 18% in P arcuatus; and in the former slightly higher fecundity, longer period of male maturity, somewhat larger size, and, as shown earlier, lower frequency in plankton from the area. Percent of ectocommensal protozoans on gills was low in P aeadianus but high in P areuatus, while those on setae of maxillule were high in both species. Key words: Crustacea. ectocommensal protozoa, fecundity, feeding, hermit crabs, maturity, Newfoundland, Pagurus aeadianus, P arcuatus. Peltogaster parasite Introduction Squires, 1964, anomuran decapods of the Family Paguridae (McLaughlin, 1974). They are both found While hermit crabs are not likely to be of only in the Northwest Atlantic and not much farther commercial importance like snow crabs, lobsters and north than the Straits of Belle Isle in our records, shrimps in Newfoundland waters, they belong to the although the northerly range of P arcuatus is said to same group of crustaceans, and they contribute be Greenland (Williams, 1984).