Hard Copy (HC) Microfiche

Total Page:16

File Type:pdf, Size:1020Kb

Hard Copy (HC) Microfiche GPO PRICE $ CFSTI PRICE(S) $ Hard copy (HC) Microfiche (MF) ff 653 ,July 85 Communications of the LUNAR AND PLANETARY LABORATORY Volume 3 Number 50 THE UNIVERSITY OF ARIZONA !965 at 4k Communications of the Lunar and Planetary Laboratory These Communications contain the shorter publications and reports by the staff of the Lunar and Planetary Laboratory. They may be either original contributions, reprints of articles published in professional journals, preliminary reports, or announcements. Tabular material too bulky or specialized for regular journals is included if future use of such material appears to warrant it. The Communications are issued as separate numbers, but they are paged and indexed by volumes. The Communications are mailed to observatories and to laboratories known to be engaged in planetary, interplanetary or geophysical research in exchange for their reports and publica- tions. The University of Arizona Press can supply at cost copies to other libraries and interested persons. The University of Arizona GE_RD P. KUIPER, Director Tucson, Arizona Lunar and Planetary Laboratory Published with the support of the National Aeronautics and Space Administration Library of Congress Catalog Number 62-63619 NO. 50 THE SYSTEM OF LUNAR CRATERS, QUADRANT III by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH H. PELLICORI, C. A. WOOD, AND T. WELLER February 25, 1965 ABSTRACT The designation, diameter, position, central peak information, and state of completeness are listed for each discernible crater with a diameter exceeding 3.5 km in the third lunar quadrant. The catalog contains about 5200 items and is illustrated by a map in I1 sections. his Communication is the third part of The Sys- on the averted lunar hemisphere, and therefore, these tem oJ Lunar Craters, which is a catalog in four are not listed in the catalog. parts of all craters recognizable with reasonable Th,_ ...... _,_t positions _nn diameters for certainty on photographs and having a diameter these craters are: greater than 3.5 km. It is thus a continuation of the Long. Lat. Diam. (.O01r) work in Comm. LPL Nos. 30 and 40, and the same Hausen -9175 -65?6 99.5 conventions and format are used. Boltzmann -96?0 -75?5 39.1 As in the earlier parts, it was found necessary Stefan -94?0 -72?0 78.0 to add names for large craters in the extreme limb regions. The new crater names for Quadrant III are: The above are mere additions to the Blagg and MOiler scheme. A more notable innovation, which Baade German-American astronomer has already been authorized by the International Boltzmann Austrian physicist Astronomical Union at its 1964 general meeting at Drygalski German geographer Hamburg, is the addition of the name Mare Cogni- Hartwig German selenodetist turn (the known sea) for the dark area between Krasnov Russian selenodetic observer Riphaeus and the crater Guerike. This name com- Lamarck French naturalist memorates the first successful close-up photography Shaler American selenologist of the lunar surface, achieved by the American Schliiter German selenodetic observer Ranger VII vehicle on 31 July 1964. The vehicle Stefan Austrian physicist impacted in a region for which the existing mare Wright American a_tropomer nomenc'latHre w_ nmhlaltnt_c _ineo tho nld_'r m_nc did not indicate whether two coalescent small maria The name Drygalski was not originated by us fell within the boundaries of Mare Nubium or but is due to Fauth, who used it in his lunar maps. Oceanus Procellarum. The addition of this new It has achieved fairly wide acceptance among ob- name is therefore fortunate for the cartography as servers and is therefore retained here. It appears it eliminates the ambiguity in this region. The new that the craters Hausen, Boltzmann, and Stefan lie name covers both these small maria. 61 ¢ 62 THE SYSTEM OF LUNA R CRATERS, QUADRANT III Early in the interpretation, another mare with Orientale. It should be noted that the designations strong concentric features was found immediately Mare Parvum and Mare Hiemis, also due to Franz, south of the crater Schiller (Hartmann and Kuiper, have already been deleted in the Photographic 1962). This object also deserves a name, but for the Lunar Atlas (Kuiper, et al., 1960) and in the Recti- present we have left it anonymous. fied Lunar Atlas (Whitaker, et al., 1963)• The crowded nature of much of Quadrant II! The nomenclature of The System of Lunar Crat- made it difficult to indicate designations unambigu- ers was submitted to Commission 16 of the Inter- ously on the map. However, by means of arrows and national Astronomical Union at its Twelfth General the other conventions listed in the text of Comm. Meeting in Hamburg, July, 1964. It is with pleasure LPL Nos. 30 and 40, we have done our best to make that we record that our proposals for a revision of the nomenclature clear• Strict attention should be Blagg and Miiller scheme were approved so that the given to these conventions when reading the map scheme of names and letters of The System o/Lunar if errors of identification are to be avoided• Craters is also the scheme authorized by the Union. It is now known (Hartmann and Kuiper, 1962) Acknowledgments• The work reported here was that Mare Orientale (named by Franz) has a supported by the National Aeronautics and Space strongly concentric structure, being bounded by Administration under Grant No. NsG 161-61. parallel scarps. This clarification of the topography has some implications for the nomenclature• Both REFERENCES the names Montes Rook and Montes Cordillera Arthur, D. W. G., Agnieray, A. P., Horvath, R. A., are to be retained as applying to separate but parallel Wood, C. A., and Chapman C. R. 1963, Comm. mountain ranges, which are often confused due to LPL, 2, no. 30. the effects of libration and foreshortening. They are, • 1964, Ibid., 3, no. 40. however, quite separate features with considerable Hartmann, W. K. and Kuiper, G. P. 1962, Comm. distance between them as measured along the lunar LPL, 1, no. 12, pp. 55-57 and 59. surface• -Kuiper, G. P., Arthur, D. W. G., and Whitaker, The same new knowledge leads to the deletion E. A. 1960, Photographic Lunar Atlas (Chi- of the Franz names Mare Aestatis, Mare Veris, and cago: University of Chicago Press)• Mare Autumni. These represent small patches of Whitaker, E. A., Kuiper, G. P., Hartmann, W. K., dark material not worthy of separate names, and and Spradley, H. L. 1963, Rectified Lunar Atlas two of them fall within the scarps bounding Mare (Tucson: University of Arizona Press). P THE CATALOG Ref• B&M Designation D K C B CE 30000 2951A Oppolzer A -. 006 -. 008 +i.000 -0.3 -0.5 i .95 3.39 I pM 0 30002 2951 Oppolzer •008 •027 i .000 0.5 i .5 24.66 42.86 4f aMC 0 30003 Oppolzer K •006 •030 1.000 0.3 1.7 1.74 3.02 I pM 0 30003A .006 •038 .999 0.3 2.2 2.55 4.43 3 C 0 30004 •009 .044 .999 0.5 2.5 2.78 4.83 2 C 0 30006 •008 •061 .998 0.5 3.5 6.79 11.80 5 C 0 30007 •003 .077 .997 0.2 4.4 2•15 3.74 2 C 0 30007A •007 .071 .997 0.4 4.1 3.24 5.63 4 C 0 30013 .015 •037 .999 0•9 2.1 2.25 3.91 3 C 0 30013A •018 •034 .999 1.0 1.9 2.84 4.94 4 aMC 0 30015 R_aumur X .011 .051 .999 0.6 2.9 2.76 4.80 I C 0 30015A .012 •057 .998 0.7 3.3 3.91 6.80 5 C 0 30016 .013 • 061 .998 0.7 3 •5 23.67 41.14 5 C 0 30019 2953 Herschel N .019 .091 .996 i.I 5.2 8.87 15.42 3 C 0 30022 .020 •026 .999 1 .I 1.5 2.15 3.74 3 C 0 30023 Flammarion Z •025 .039 .999 1.4 2.2 2.23 3.88 2 C 0 30024 .022 .046 .999 1.3 2.6 6.85 11.91 4f C 0 30025 Flammarion U •024 .053 .998 1.4 3.0 5.89 I0.24 4f C 0 30025A •027 .O58 .998 1.5 3.3 3.46 6.01 4 C 0 30028 .026 •083 .996 1.5 4.8 3.20 5.56 3 C 0 30035 2945A SpSrer A • 036 •060 .998 2 .i 3.4 2.62 4.55 i C 0 30035A Flammarion T • 036 .050 .998 2 .i 2.9 19.27 33.49 5f C 0 30036 •031 .060 .998 i .8 3.4 4.95 8.60 3f C 0 30036A •033 .068 .997 i .9 3.9 3.96 6.88 4 C 0 30037 2945 SpSrer .031 .075 .997 1.8 4.3 15.80 27.46 3f C 0 30037A .033 .077 •996 i .9 4.4 2.55 4.43 3 C 0 30039 2944 Herschel •036 • 099 • 994 2 .i 5.7 23.38 4O .64 1 C pp 30043 2950A Fla_aarion A .043 • 034 .998 2.5 1.9 2.18 3.79 1 pMC 0 30043A Flam_arion W .041 .037 .998 2.4 2.1 3.88 6.74 3 aMC p 30047 .042 .071 .997 2.4 4.1 9.79 17.02 4 C 0 30049 Herschel X .047 093 •995 2.7 5.3 1.47 2.56 i C 0 30051 MOsting L .059 012 .998 3.4 0.7 1.91 3.32 I pM 0 30054 Fla_rion X .052 050 .997 3.0 2.9 i .56 2.71 1 pMC 0 30056 Flan_narion Y •055 065 .996 3.2 3.7 1.66 2.89 1 pMC 0 30058 2947 Herschel C •055 087 .995 3.2 5.0 5.99 i0.41 1 C 0 30058A .053 080 .995 3.0 4.6 13.61 23.66 4 C 0 7.35 12.78 30062 .064 .029 .998 3.7 1.7 6.56 ii .40 5 C 0 30063 2950C Flammarion C .065 .035 .997 3.7 2.0 2.77 4.81 1 pMC 0 30064A .068 .041 .997 3.9 2.3 25.00 43.45 5f aMC 0 + 2 Ref.
Recommended publications
  • Geoscience and a Lunar Base
    " t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history.
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Feature of the Month – January 2016 Galilaei
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2016 GALILAEI Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA October 26, 2015 03:32-03:58 UT, 15 cm refl, 170x, seeing 8-9/10 I sketched this crater and vicinity on the evening of Oct. 25/26, 2015 after the moon hid ZC 109. This was about 32 hours before full. Galilaei is a modest but very crisp crater in far western Oceanus Procellarum. It appears very symmetrical, but there is a faint strip of shadow protruding from its southern end. Galilaei A is the very similar but smaller crater north of Galilaei. The bright spot to the south is labeled Galilaei D on the Lunar Quadrant map. A tiny bit of shadow was glimpsed in this spot indicating a craterlet. Two more moderately bright spots are east of Galilaei. The western one of this pair showed a bit of shadow, much like Galilaei D, but the other one did not. Galilaei B is the shadow-filled crater to the west. This shadowing gave this crater a ring shape. This ring was thicker on its west side. Galilaei H is the small pit just west of B. A wide, low ridge extends to the southwest from Galilaei B, and a crisper peak is south of H. Galilaei B must be more recent than its attendant ridge since the crater's exterior shadow falls upon the ridge.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • B. Apollo 16 Regional Geologic Setting
    B. APOLLO 16REGIONAL GEOLOGIC SETTING By CARROLL ANN HODGES CONTENTS Page Geography 6 Geologic description of Cayley plains and Descartes mountains 6 Relation in time and space to basins and craters 8 ILLUSTRATIONS Page FIGURE 1. Composite photograph of the lunar near side showing geographic features and multiring basins 7 2. Photographic mosaic of Apollo 16 landing site and vicinity 8 GEOGRAPHY Soderblom and Boyce,1972). The type area of the Cayley Formation is east of the crater Cayley, north of Apollo 16 landed at approximately 15”30’ E., 9” S. on the landing site (Morris and Wilhelms, 1967); the the relatively level Cayley plains, adjacent to the rug- name was extended to the apparently similar plains ged Descartes mountains (Milton, 1972; Hodges, material at the Apollo 16 site (Milton, 1972; Hodges, 1972a). Approximately 70 km east is the west-facing 1972a). These materials were presumed to be represen- escarpment of the Kant plateau, part of the uplifted tative of the widespread photogeologic unit, Imbrian third ring of the Nectaris basin and topographically light plains, which covers about 5 percent of the lunar the highest area on the lunar near side. With respect to highlands surface (Wilhelms and McCauley, 1971; the centers of the three best-developed multiringed Howard and others, 1974). Characteristics include rel- basins, the site is about 600 km west of Nectaris, 1,600 atively level surfaces, intermediate albedo, and nearly km southeast of Imbrium, and 3,500 km east-northeast identical crater size-frequency distributions. of Orientale. The nearest mare materials are in The plains were first interpreted as smooth facies of Tranquillitatis, about 300 km north (fig.1).
    [Show full text]
  • Relative Ages
    CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • Arxiv:2003.06799V2 [Astro-Ph.EP] 6 Feb 2021
    Thomas Ruedas1,2 Doris Breuer2 Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies final version 18 September 2020 published: Icarus 358, 114176 (2021) 1Museum für Naturkunde Berlin, Germany 2Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany arXiv:2003.06799v2 [astro-ph.EP] 6 Feb 2021 The version of record is available at http://dx.doi.org/10.1016/j.icarus.2020.114176. This author pre-print version is shared under the Creative Commons Attribution Non-Commercial No Derivatives License (CC BY-NC-ND 4.0). Electrical and seismological structure of the martian mantle and the detectability of impact-generated anomalies Thomas Ruedas∗ Museum für Naturkunde Berlin, Germany Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Doris Breuer Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany Highlights • Geophysical subsurface impact signatures are detectable under favorable conditions. • A combination of several methods will be necessary for basin identification. • Electromagnetic methods are most promising for investigating water concentrations. • Signatures hold information about impact melt dynamics. Mars, interior; Impact processes Abstract We derive synthetic electrical conductivity, seismic velocity, and density distributions from the results of martian mantle convection models affected by basin-forming meteorite impacts. The electrical conductivity features an intermediate minimum in the strongly depleted topmost mantle, sandwiched between higher conductivities in the lower crust and a smooth increase toward almost constant high values at depths greater than 400 km. The bulk sound speed increases mostly smoothly throughout the mantle, with only one marked change at the appearance of β-olivine near 1100 km depth.
    [Show full text]
  • PDF Program Book
    46th Meeting of the Division for Planetary Sciences with Historical Astronomy Division (HAD) 9-14 November 2014 | Tucson, AZ OFFICERS AND MEMBERS ........ 2 SPONSORS ............................... 2 EXHIBITORS .............................. 3 FLOOR PLANS ........................... 5 ATTENDEE SERVICES ................. 8 Session Numbering Key SCHEDULE AT-A-GLANCE ........ 10 100s Monday 200s Tuesday SUNDAY ................................. 20 300s Wednesday 400s Thursday MONDAY ................................ 23 500s Friday TUESDAY ................................ 44 Sessions are numbered in the program book by day and time. WEDNESDAY .......................... 75 All posters will be on display Monday - Friday THURSDAY.............................. 85 FRIDAY ................................. 119 Changes after 1 October are included only in the online program materials. AUTHORS INDEX .................. 137 1 DPS OFFICERS AND MEMBERS Current DPS Officers Heidi Hammel Chair Bonnie Buratti Vice-Chair Athena Coustenis Secretary Andrew Rivkin Treasurer Nick Schneider Education and Public Outreach Officer Vishnu Reddy Press Officer Current DPS Committee Members Rosaly Lopes Term Expires November 2014 Robert Pappalardo Term Expires November 2014 Ralph McNutt Term Expires November 2014 Ross Beyer Term Expires November 2015 Paul Withers Term Expires November 2015 Julie Castillo-Rogez Term Expires October 2016 Jani Radebaugh Term Expires October 2016 SPONSORS 2 EXHIBITORS Platinum Exhibitor Silver Exhibitors 3 EXHIBIT BOOTH ASSIGNMENTS 206 Applied
    [Show full text]
  • List of Targets for the Lunar II Observing Program (PDF File)
    Task or Task Description or Target Name Wood's Rükl Target LUNAR # 100 Atlas Catalog (chart) Create a sketch/map of the visible lunar surface: 1 Observe a Full Moon and sketch a large-scale (prominent features) L-1 map depicting the nearside; disk of visible surface should be drawn 2 at L-1 3 least 5-inches in diameter. Sketch itself should be created only by L-1 observing the Moon, but maps or guidebooks may be used when labeling sketched features. Label all maria, prominent craters, and major rays by the crater name they originated from. (Counts as 3 observations (OBSV): #1, #2 & #3) Observe these targets; provide brief descriptions: 4 Alpetragius 55 5 Arago 35 6 Arago Alpha & Arago Beta L-32 35 7 Aristarchus Plateau L-18 18 8 Baco L-55 74 9 Bailly L-37 71 10 Beer, Beer Catena & Feuillée 21 11 Bullialdus, Bullialdus A & Bullialdus B 53 12 Cassini, Cassini A & Cassini B 12 13 Cauchy, Cauchy Omega & Cauchy Tau L-48 36 14 Censorinus 47 15 Crüger 50 16 Dorsae Lister & Smirnov (A.K.A. Serpentine Ridge) L-33 24 17 Grimaldi Basin outer and inner rings L-36 39, etc. 18 Hainzel, Hainzel A & Hainzel C 63 19 Hercules, Hercules G, Hercules E 14 20 Hesiodus A L-81 54, 64 21 Hortensius dome field L-65 30 22 Julius Caesar 34 23 Kies 53 24 Kies Pi L-60 53 25 Lacus Mortis 14 26 Linne 23 27 Lamont L-53 35 28 Mairan 9 29 Mare Australe L-56 76 30 Mare Cognitum 42, etc.
    [Show full text]