P63 and P73, the Ancestors of P53

Total Page:16

File Type:pdf, Size:1020Kb

P63 and P73, the Ancestors of P53 Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press p63 and p73, the Ancestors of p53 V. Do¨ tsch1, F. Bernassola2, D. Coutandin1, E. Candi2, and G. Melino2,3 1Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany 2IDI-IRCCS Biochemistry Laboratory, Department of Experimental Medicine and Biochemical Sciences, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy 3Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, P.O. Box 138, Leicester LE1 9HN, United Kingdom Correspondence: [email protected] p73 and p63 are two homologs of the tumor suppressive transcription factor p53. Given the high degree of structural similarity shared by the p53 family members, p73 and p63 can bind and activate transcription from the majority of the p53-responsive promoters. Besides over- lapping functions shared with p53 (i.e., induction of apoptosis in response to cellular stress), the existence of extensive structural variability within the family determines unique roles for p63 and p73. Their crucial and specific functions in controlling development and differentiation are well exemplified by the p63 and p73 knockout mouse phenotypes. Here, we describe the contribution of p63 and p73 to human pathology with emphasis on their roles in tumorigenesis and development. 63 (Yang et al. 1998) and p73 (Jost et al. an alternative promoter located in the third in- p1997; Kaghad et al. 1997) are two structural tron, both p63 and p73 exist as multiple protein and functional homologs of the tumor sup- variants, displaying similar or antagonistic ac- pressing transcription factor p53. As a result tivities. The full-length isoforms (TAp63 and of sharing similar domain architecture and TAp73), containing a transactivation domain sequence identity with p53, p73 and p63 can (TAD), generally behave similarly to p53 in form oligomers, bind DNA, transactivate p53- terms of overlapping target promoters and responsive genes, and mediate cell cycle arrest, biological functions. Among the TA variants, cellular senescence, and apoptosis in response alternative splicing events generate proteins to DNA damage (Jost et al. 1997; Yang et al. displaying different transactivation capacity. 1998; De Laurenzi et al. 1998; Melino et al. The usage of the alternative promoter produces 2004; Keyes et al. 2005) (See Fig. 1). amino-terminally truncated DN isoforms, Because of splicing events occurring at the which are devoid of the TADand therefore tran- carboxy-terminal end, and to the presence of scriptionally inactive. As a consequence, these Editors: Arnold J. Levine and David P. Lane Additional Perspectives on The p53 Family available at www.cshperspectives.org Copyright # 2010 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a004887 Cite this article as Cold Spring Harb Perspect Biol 2010;00:a004887 1 Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press V. Do¨ tsch et al. ABCell-cycle arrest Apoptosis Development C TA PR DBD OD p53 +++ +++ – Cancer p53 N C minimal DNp53 ?? ++ 22% 60% 38% TA PR DBD OD PR SAM TAp63 ++ + +++ Epidermal p63 N C ΔNp63 – – + lethal 30% 63% 38% TAp73 ++ ++ +++ Neural TA PR DBD OD PR SAM p73 N C ΔNp73 – – ++ severe Figure 1. Schematic representation of the protein modular structure of the p53 family members. (A) The p53 family includes three genes that encode p53, p73, and p63. The overall domain structure of p53, p73, and p63 is conserved and consists of an amino-terminal transactivation domain (TAD), a central DNA binding domain (DBD) and a carboxy-terminal oligomerization domain (OD). The longest a isoform of p73 and p63 contains a sterile alpha motif (SAM), a putative protein–protein interaction domain found in many signaling proteins and transcription factors. Identity shared by p73 and p63 with p53 is indicated. (B) Simplified classification of the functions of the p53 family members. Members of this family are involved in similar as well as in unique cellular functions, with the most important role of p63 and p73 being regulation of differentiation and development. Their crucial and specific functions in controlling development and differentiation are well exemplified by the p63 and p73 knockout mouse developmental phenotypes (C). isoforms act as inhibitors of the active family STRUCTURAL FEATURES OF THE FAMILY members. Hence, the structural complexity MEMBERS that distinguishes these proteins, confers molec- ular flexibility, and determines a corresponding The p53 family members are modular proteins functional diversity within the family. with a similar basic structure, which is sche- As a consequence, although p63 and p73 matically depicted in Figure 1. There are three share many functional properties of p53, and major domains, which are highly conserved cooperate with p53 in the regulation of tum- between the family members. The TAD is the origenesis, in the absence of stress, the most least conserved with 22% identity between p63 important role of these p53 family members is and p53 and 30% between p73 and p53. The regulation of differentiation and development. core DNA binding domain (DBD) of p63 and Indeed, both p63 and p73 exhibit distinct and p73 are 60% and 63% identical with p53 respec- unique biological functions. p63 plays a relevant tively. In addition, the residues of p53 that role in the development of squamous epithelia directly interact with DNA are identical in p63 and their derivatives, while p73 is indispensable and p73. Consequently, both p63 and p73 can for neuronal differentiation and the develop- bind to canonical p53 DNA-binding sites and ment of nervous and olfactory systems. Consis- activate transcription from p53-responsive pro- tently, p63 and p73 deficient mice manifest moters, thus inducing cell cycle arrest, apopto- severe limb truncations, absence of skin, hair, sis and cellular senescence (Jost et al. 1997; Yang teeth, mammary, lachrymal, and salivary glands et al. 1998; De Laurenzi et al. 1998, Melino et al. (Mills et al. 1999; Yang et al. 1999) and complex 2004; Keyes et al. 2005). The carboxy-terminal defects in neuronal development (Yang et al. oligomerization domain (OD) of p53 is 38% 2000; Pozniak et al. 2000), respectively. As identical with p63 and p73. a result, imbalance within the p53 protein p63 and p73 exist as multiple functionally family contributes to a significant proportion diverse proteins that originate from a combi- of congenital developmental abnormalities in nation of alternative promoter usage and alter- humans. native splicing (De Laurenzi et al. 1998; De 2 Cite this article as Cold Spring Harb Perspect Biol 2010;00:a004887 Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press p63 and p73, the Ancestors of p53 Laurenzi et al. 1999; Grob et al. 2001). The p63 thermodynamically most stable form, suggest- and p73 genes encode several distinct protein ing that such heterocomplexes might exist in isoforms generated by alternative splicing at cells as well. Interestingly, Rocco et al. showed the carboxy-terminal, giving rise to three p63 that the majority of TAp73b is physically bound variants (a2g) (Yang et al. 1998) and at least to DNp63a in JHU 029 cells, a cell line derived six different p73 terminal variants (a2z) (De from head and neck squamous cell carcinoma Laurenzi et al. 1998; De Laurenzi et al. 1999). (Rocco et al. 2006). These examples show that Interestingly, the p53 gene has recently been the structural complexity of the p53 family and found to also generate multiple protein variants the reciprocal regulatory networks cause a com- as a result of alternative splicing (Bourdon et al. plicated interplay between the family members 2005). The carboxy-terminal isoforms differ in and their isoforms. their ability to transactivate gene expres- Full-length and truncated isoforms of the sion (Zhu et al. 1998; De Laurenzi et al. 1999; p53 family generally exhibit reciprocal biologi- Lee and La Thangue 1999; Shimada et al. cal functions: truncated isoforms support pro- 1999). The full-length proteins (denoted as a- liferation while TA variants promote cell cycle isoforms) of p63 and p73 contain a carboxy-ter- arrest, cellular senescence and apoptosis. How- minal sterile a-motif (SAM) domain, involved ever, the activity of p63 and p73 proteins may in protein–protein interaction, and a transcrip- also depend on the intracellular context. As an tion inhibition domain (TID), that decreases example, even though ectopic expression of their transcriptional activity (Serber et al. TAp73b suppresses growth, this isoform can 2002; Straub et al. 2009) by enforcing a closed synergize with the proto-oncogene c-Jun to pro- conformation through the interaction with the mote cellular survival (Vikhanskaya et al. 2007). amino-terminal transactivation domain. Hence, the existence of p53 family proteins with Additionally, the p63 and p73 genes have two opposing activity implies that the balance of distinct promoters; the first promoter (P1) yields various isoforms may determine cell fate. a full-length protein possessing an amino- terminal TAD (TA isoforms), the second pro- EVOLUTION OF THE p53 FAMILY MEMBERS moter (P2), located within intron 3, gives rise to amino-terminally truncated proteins (DN Members of the p53 protein family are not only isoforms). The latter lack the amino-terminal found in vertebrates but also in many inverte- TAD and, as a result, they act as dominant brate species including mollusks, insects, and negative inhibitors of p53 and the full-length worms. Recent structure determinations of the TAvariants (Grob et al. 2001; Stiewe et al. 2002; DBD as well as of the OD of different members Nakagawa et al. 2002; Kartasheva et al. 2002). of this protein family have started to shed some In addition, several other amino-terminally light onto the evolutionary path of p53 and its truncated p73 isoforms initiating at different homologs. All members of the p53 protein ATGs have been described.
Recommended publications
  • The P53/P73 - P21cip1 Tumor Suppressor Axis Guards Against Chromosomal Instability by Restraining CDK1 in Human Cancer Cells
    Oncogene (2021) 40:436–451 https://doi.org/10.1038/s41388-020-01524-4 ARTICLE The p53/p73 - p21CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells 1 1 2 1 2 Ann-Kathrin Schmidt ● Karoline Pudelko ● Jan-Eric Boekenkamp ● Katharina Berger ● Maik Kschischo ● Holger Bastians 1 Received: 2 July 2020 / Revised: 2 October 2020 / Accepted: 13 October 2020 / Published online: 9 November 2020 © The Author(s) 2020. This article is published with open access Abstract Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. fi Vice versa 1234567890();,: 1234567890();,: Consequently, induction of CDK1 is suf cient to induce abnormal microtubule assembly rates and W-CIN. , partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
    [Show full text]
  • P14ARF Inhibits Human Glioblastoma–Induced Angiogenesis by Upregulating the Expression of TIMP3
    P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi, … , Daniel J. Brat, Erwin G. Van Meir J Clin Invest. 2012;122(4):1283-1295. https://doi.org/10.1172/JCI38596. Research Article Oncology Malignant gliomas are the most common and the most lethal primary brain tumors in adults. Among malignant gliomas, 60%–80% show loss of P14ARF tumor suppressor activity due to somatic alterations of the INK4A/ARF genetic locus. The tumor suppressor activity of P14ARF is in part a result of its ability to prevent the degradation of P53 by binding to and sequestering HDM2. However, the subsequent finding of P14ARF loss in conjunction with TP53 gene loss in some tumors suggests the protein may have other P53-independent tumor suppressor functions. Here, we report what we believe to be a novel tumor suppressor function for P14ARF as an inhibitor of tumor-induced angiogenesis. We found that P14ARF mediates antiangiogenic effects by upregulating expression of tissue inhibitor of metalloproteinase–3 (TIMP3) in a P53-independent fashion. Mechanistically, this regulation occurred at the gene transcription level and was controlled by HDM2-SP1 interplay, where P14ARF relieved a dominant negative interaction of HDM2 with SP1. P14ARF-induced expression of TIMP3 inhibited endothelial cell migration and vessel formation in response to angiogenic stimuli produced by cancer cells. The discovery of this angiogenesis regulatory pathway may provide new insights into P53-independent P14ARF tumor-suppressive mechanisms that have implications for the development of novel therapies directed at tumors and other diseases characterized by vascular pathology. Find the latest version: https://jci.me/38596/pdf Research article P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi,1 Beata Pyrzynska,1,2 Maria Febbraio,3 Daniel J.
    [Show full text]
  • Deciphering the Nature of Trp73 Isoforms in Mouse
    cancers Article Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific Deficient Cell Lines Using the CRISPR/Cas9 Gene Editing System Lorena López-Ferreras 1,2,†, Nicole Martínez-García 1,3,†, Laura Maeso-Alonso 1,2,‡, Marta Martín-López 1,4,‡, Ángela Díez-Matilla 1,‡ , Javier Villoch-Fernandez 1,2, Hugo Alonso-Olivares 1,2, Margarita M. Marques 3,5,* and Maria C. Marin 1,2,* 1 Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; [email protected] (L.L.-F.); [email protected] (N.M.-G.); [email protected] (L.M.-A.); [email protected] (M.M.-L.); [email protected] (Á.D.-M.); [email protected] (J.V.-F.); [email protected] (H.A.-O.) 2 Departamento de Biología Molecular, Universidad de León, 24071 León, Spain 3 Departamento de Producción Animal, Universidad de León, 24071 León, Spain 4 Biomar Microbial Technologies, Parque Tecnológico de León, Armunia, 24009 León, Spain 5 Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain * Correspondence: [email protected] (M.M.M.); [email protected] (M.C.M.); Tel.: +34-987-291757 Citation: López-Ferreras, L.; (M.M.M.); +34-987-291490 (M.C.M.) Martínez-García, N.; Maeso-Alonso, † Equal contribution. ‡ Equal contribution. L.; Martín-López, M.; Díez-Matilla, Á.; Villoch-Fernandez, J.; Simple Summary: The Trp73 gene is involved in the regulation of multiple biological processes Alonso-Olivares, H.; Marques, M.M.; Marin, M.C. Deciphering the Nature such as response to stress, differentiation and tissue architecture.
    [Show full text]
  • TP63 Is Significantly Upregulated in Diabetic Kidney
    International Journal of Molecular Sciences Article TP63 Is Significantly Upregulated in Diabetic Kidney Sitai Liang 1, Bijaya K. Nayak 1, Kristine S. Vogel 1 and Samy L. Habib 1,2,* 1 Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA; [email protected] (S.L.); [email protected] (B.K.N.); [email protected] (K.S.V.) 2 South Texas, Veterans Healthcare System, San Antonio, TX 78229, USA * Correspondence: [email protected]; Tel.: +1-21-0567-3816; Fax: +1-21-0567-3802 Abstract: The role of tumor protein 63 (TP63) in regulating insulin receptor substrate 1 (IRS-1) and other downstream signal proteins in diabetes has not been characterized. RNAs extracted from kidneys of diabetic mice (db/db) were sequenced to identify genes that are involved in kidney complications. RNA sequence analysis showed more than 4- to 6-fold increases in TP63 expression in the diabetic mice’s kidneys, compared to wild-type mice at age 10 and 12 months old. In addition, the kidneys from diabetic mice showed significant increases in TP63 mRNA and protein expression compared to WT mice. Mouse proximal tubular cells exposed to high glucose (HG) for 48 h showed significant decreases in IRS-1 expression and increases in TP63, compared to cells grown in normal glucose (NG). When TP63 was downregulated by siRNA, significant increases in IRS-1 and activation of AMP-activated protein kinase (AMPK (p-AMPK-Th172)) occurred under NG and HG conditions. Moreover, activation of AMPK by pretreating the cells with AICAR resulted in significant down- regulation of TP63 and increased IRS-1 expression.
    [Show full text]
  • Are Interactions with P63 and P73 Involved in Mutant P53 Gain of Oncogenic Function?
    Oncogene (2007) 26, 2220–2225 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Y Li and C Prives Department of Biological Sciences, Columbia University, New York, NY, USA Although still controversial, the presence of mutant p53 in deletion or frameshift mutations resulting in their lack cancer cells mayresult in more aggressive tumors and of expression, however, many tumor-derived p53 muta- correspondinglyworse outcomes. The means bywhich tions are of the missense variety. These mutations are mutant p53 exerts such pro-oncogenic activityare usually located within the central conserved region of currentlyunder extensive investigation and different p53 that binds to DNA in a sequence-specific manner models have been proposed. We focus here on a proposed and result in either direct loss of DNA contact or gross mechanism bywhich a subset of tumor-derived p53 mut- change of the conformation that no longer permits p53 ants physically interact with p53 family members, p63 and to recognize its wild-type DNA targets (reviewed by p73, and negativelyregulate their proapoptotic function. Vousden and Lu, 2002). Approximately 30% of these Both cell-based assays and knock-in mice expressing tumor-derived p53 mutations affect only six ‘hot-spot’ mutant forms of p53 support this model. As more than half residues (175, 245, 248, 249, 273 and 282). In many cases of human tumors harbor mutant forms of p53 protein, tumor-derived p53 mutants are expressed at far higher approaches aimed at disrupting the pathological interac- levels than wild-type p53 protein due in part to their tions among p53 familymembers might be of clinical failure to be degraded by Mdm2.
    [Show full text]
  • Alterations of P14arf, P53, and P73 Genes Involved in the E2F-1-Mediated Apoptotic Pathways in Non-Small Cell Lung Carcinoma
    [CANCER RESEARCH 61, 5636–5643, July 15, 2001] Alterations of p14ARF, p53, and p73 Genes Involved in the E2F-1-mediated Apoptotic Pathways in Non-Small Cell Lung Carcinoma Siobhan A. Nicholson,1 Nader T. Okby,1 Mohammed A. Khan, Judith A. Welsh, Mary G. McMenamin, William D. Travis, James R. Jett, Henry D. Tazelaar, Victor Trastek, Peter C. Pairolero, Paul G. Corn, James G. Herman, Lance A. Liotta, Neil E. Caporaso, and Curtis C. Harris2 Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland 20892 [S. A. N., M. A. K., J. A. W., M. G. M., L. A. L., N. E. C., C. C. H.]; Orange Pathology Associates, Middleton, New York 10940 [N. T. O.]; Armed Forces Institute of Pathology, Washington, DC 20306 [S. A. N., W. D. T.]; Mayo Clinic, Rochester, Minnesota 55905 [J. R. J., H. D. T., V. T., P. C. P.]; and The Johns Hopkins Oncology Center, Baltimore, Maryland 21231 [P. G. C., J. G. H.] ABSTRACT encoded by a separate exon 1␤ that lies ϳ20 kb upstream of exon 1␣ and shares exons 2 and 3 as read in an ARF, giving rise to a protein ARF Overexpression of E2F-1 induces apoptosis by both a p14 -p53- and INK4a ARF completely unrelated to p16 (14). Despite its unrelated structure, a p73-mediated pathway. p14 is the alternate tumor suppressor prod- ARF p14 also is capable of causing cell cycle arrest in G1 and G2. uct of the INK4a/ARF locus that is inactivated frequently in lung carci- ARF nogenesis. Because p14ARF stabilizes p53, it has been proposed that the loss p14 binds to and antagonizes the actions of MDM2, a negative of p14ARF is functionally equivalent to a p53 mutation.
    [Show full text]
  • Regulation of P27kip1 and P57kip2 Functions by Natural Polyphenols
    biomolecules Review Regulation of p27Kip1 and p57Kip2 Functions by Natural Polyphenols Gian Luigi Russo 1,* , Emanuela Stampone 2 , Carmen Cervellera 1 and Adriana Borriello 2,* 1 National Research Council, Institute of Food Sciences, 83100 Avellino, Italy; [email protected] 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81031 Napoli, Italy; [email protected] * Correspondence: [email protected] (G.L.R.); [email protected] (A.B.); Tel.: +39-0825-299-331 (G.L.R.) Received: 31 July 2020; Accepted: 9 September 2020; Published: 13 September 2020 Abstract: In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth.
    [Show full text]
  • Beyond Traditional Morphological Characterization of Lung
    Cancers 2020 S1 of S15 Beyond Traditional Morphological Characterization of Lung Neuroendocrine Neoplasms: In Silico Study of Next-Generation Sequencing Mutations Analysis across the Four World Health Organization Defined Groups Giovanni Centonze, Davide Biganzoli, Natalie Prinzi, Sara Pusceddu, Alessandro Mangogna, Elena Tamborini, Federica Perrone, Adele Busico, Vincenzo Lagano, Laura Cattaneo, Gabriella Sozzi, Luca Roz, Elia Biganzoli and Massimo Milione Table S1. Genes Frequently mutated in Typical Carcinoids (TCs). Mutation Original Entrez Gene Gene Rate % eukaryotic translation initiation factor 1A X-linked [Source: HGNC 4.84 EIF1AX 1964 EIF1AX Symbol; Acc: HGNC: 3250] AT-rich interaction domain 1A [Source: HGNC Symbol;Acc: HGNC: 4.71 ARID1A 8289 ARID1A 11110] LDL receptor related protein 1B [Source: HGNC Symbol; Acc: 4.35 LRP1B 53353 LRP1B HGNC: 6693] 3.53 NF1 4763 NF1 neurofibromin 1 [Source: HGNC Symbol;Acc: HGNC: 7765] DS cell adhesion molecule like 1 [Source: HGNC Symbol; Acc: 2.90 DSCAML1 57453 DSCAML1 HGNC: 14656] 2.90 DST 667 DST dystonin [Source: HGNC Symbol;Acc: HGNC: 1090] FA complementation group D2 [Source: HGNC Symbol; Acc: 2.90 FANCD2 2177 FANCD2 HGNC: 3585] piccolo presynaptic cytomatrix protein [Source: HGNC Symbol; Acc: 2.90 PCLO 27445 PCLO HGNC: 13406] erb-b2 receptor tyrosine kinase 2 [Source: HGNC Symbol; Acc: 2.44 ERBB2 2064 ERBB2 HGNC: 3430] BRCA1 associated protein 1 [Source: HGNC Symbol; Acc: HGNC: 2.35 BAP1 8314 BAP1 950] capicua transcriptional repressor [Source: HGNC Symbol; Acc: 2.35 CIC 23152 CIC HGNC:
    [Show full text]
  • P63 and P73 Isoform Expression in Non-Small Cell Lung Cancer and Corresponding Morphological Normal Lung Tissue
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ORIGINAL ARTICLE p63 and p73 Isoform Expression in Non-small Cell Lung Cancer and Corresponding Morphological Normal Lung Tissue Marco Lo Iacono, PhD, Valentina Monica, MS, Silvia Saviozzi, PhD, Paolo Ceppi, MS, Enrico Bracco, PhD, Mauro Papotti, MD, and Giorgio V. Scagliotti, MD he tumor suppressor p53 is a key transcription factor Background: The TP73 and TP63 genes are members of the p53 regulating the expression of genes influencing cell senes- tumor suppressor family and are expressed in different N-terminal T cence, proliferation, apoptosis, and differentiation. The TP73 isoforms either with proapoptotic (transactivation domain, TA) and and TP63 genes are members of the p53 tumor suppressor antiapoptotic (N-terminally truncated, ⌬N) function. Unlike p53, the family, based on substantial structural and functional homol- role of p73 and p63 in tumor is controversial. It has been recently ogies. Unlike p53, that is a tumor suppressor, the role of p73 hypothesized that altered ⌬N:TA expression ratio, rather than single and p63 in tumor is controversial because of their genomic isoform overexpression, plays a role in the pathogenesis of many locus complexity. Through either alternative exon splicing, or diseases, including lung cancer. a second promoter, TP73 and TP63 genes generate several N- Methods: Isoform-specific, real-time polymerase chain reaction and and C-terminal isoforms. The N-terminal isoforms can be immunohistochemistry analysis on matched cancer and correspond- clustered into two groups: the transactivation competent TA ing normal tissues from surgically resected non-small cell lung proteins (TAp63 and TAp73) and the transactivation-defec- cancers (NSCLCs) have been performed aiming to explore the tive, N-terminally truncated ⌬N proteins (⌬Np63, ⌬NЈp73, expression levels of each p63 and p73 N-terminal isoforms and their ⌬2p73, ⌬2/3p73, and ⌬Np73).1 TAp63 and TAp73, and p53, ⌬N:TA expression ratio.
    [Show full text]
  • Induction of P57 Expression by P73ß
    Induction of p57KIP2 expression by p73␤ Eva´ Ba´ lint*†, Andrew C. Phillips*, Serguei Kozlov‡, Colin L. Stewart‡, and Karen H. Vousden*§ *Regulation of Cell Growth Laboratory, ‡Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201 Edited by George F. Vande Woude, Van Andel Research Institute, Grand Rapids, MI, and approved January 24, 2002 (received for review September 18, 2001) The p53-related protein p73 has many functions similar to that of expressing p53 and several isoforms of p73 and identified the p53 including the ability to induce cell-cycle arrest and apoptosis. cyclin-dependent kinase inhibitor p57KIP2 (27, 28) as a transcrip- Both p53 and p73 function as transcription factors, and p73 tional target of p73␤ but not p53. activates expression of many genes that also are regulated by p53. Despite their similarities, it is evident that p53 and p73 are not Materials and Methods interchangeable functionally, with p73 playing a role in normal Plasmids. Plasmids expressing N-terminal hemagglutinin (HA)- growth and development that is not shared by p53. In this paper tagged human p73␣, ␤,or␥ (29) and dominant negative p73 we describe the ability of p73␤ but not p53 to activate expression (DDp73␣; ref. 14), murine p57KIP2 (28), and human p57KIP2 (30) of the cyclin-dependent kinase inhibitor p57KIP and KvLQT1, two have been described. genes that are coregulated in an imprinted region of the genome. Our results suggest that p73 may regulate expression of genes Cell Lines and Transfections. U2OS, Saos-2, H1299, and Saos-2 through mechanisms that are not shared by p53, potentially cells inducibly expressing p53, p73␣, p73␤, p73␥, and E2F1 under explaining the different contributions of p53 and p73 to normal the control of a tetracycline-inducible promoter have been development.
    [Show full text]
  • The Potential Tumor Suppressor P73 Differentially Regulates Cellular P53 Target Genes1
    [CANCER RESEARCH 58, 5061-5065. November 15. 1998] Advances in Brief The Potential Tumor Suppressor p73 Differentially Regulates Cellular p53 Target Genes1 Jianhui Zhu,2 Jieyuan Jiang,2 Wenjing Zhou, and Xinbin Chen3 Institute of Molecular Medicine and Genetics, Medical College of Georgia. Augusta, Georgia 30912 Abstract activation and DNA binding domains between p53 and p73, the p53 and p73 signaling pathways leading to tumor suppression are both p73, a potential tumor suppressor, is a p53 homologue. Transient over similar and different. expression of p73 in cells can induce apoptosis and p21, a cellular p53 target gene primarily responsible for p53-dependent cell cycle arrest. To further characterize the role of p73 in tumor suppression, we established Materials and Methods several groups of cell lines that inducibly express p73 under a tetracycline- regulated promoter. By using these cell lines, we found that p73 can Plasmids. cDNAs for p73a. p73ß.and p73«292 (Ref. 3; kindly provided by W. Kaelin) were cloned separately into a tetraeycline-regulated expression induce both cell cycle arrest and apoptosis. We also found that p73 can vector. 10-3, at its Eco RI and Xba I siles, and the resulting plasmids were used activate some but not all of the previously identified p53 cellular target genes. Furthermore, we found that the transcriptional activities of p53, to generate cell lines that inducibly express p73. p73 proteins were tagged at p73a, and p73/3 to induce their common cellular target genes differ among their N-termini with influenza hemagglutinin peptide. one another. These results suggest that p73 is both similar to and different Generation of H1299 Cell Lines that Inducibly Express p73.
    [Show full text]
  • P73 Overexpression Is Associated with Resistance to Treatment With
    [CANCER RESEARCH 61, 935–938, February 1, 2001] Advances in Brief p73␣ Overexpression Is Associated with Resistance to Treatment with DNA-damaging Agents in a Human Ovarian Cancer Cell Line1 Faina Vikhanskaya,2 Sergio Marchini,2 Mirko Marabese, Emanuela Galliera, and Massimo Broggini3 Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche “Mario Negri,” 20157 Milan, Italy Abstract changes in gene expression and the response of these clones to different chemical and physical DNA-damaging agents. We examined the consequences of p73␣ overexpression on gene expres- sion and cellular response to anticancer agents in clones from the human Materials and Methods ovarian cancer cell line A2780. Using microarray filters, the expression of ␣ 588 genes in two clones overexpressing p73 (A2780/p73.4 and A2780/ Cell Culture and Treatment. Clones derived from the human ovarian p73.5) in comparison with empty vector-transfected cells was evaluated. carcinoma cell lines A2780, A2780/pCDNA3, A2780/p73.4, and A2780/p73.5 There were clear differences in gene expression profiles. Both of the clones were obtained and grown as reported previously (12). DDP4 was obtained from showed a marked increase in the expression of genes involved in DNA Bristol Myers Squibb (Syracuse, NY). Topotecan was obtained from Smith, repair, including genes participating in nucleotide excision repair and Kline & Beecham (Brentford, United Kingdom) and MNNG was purchased mismatch repair. This was confirmed by reverse transcription-PCR and from Sigma (Milan, Italy). For clonogenic assay, cells were plated at 250 Northern blot analysis and was associated with an increase in the ability cells/well.
    [Show full text]