Investigating the Roles of P63 and P73 Isoforms to Therapeutically Treat P53-Altered Cancers

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Roles of P63 and P73 Isoforms to Therapeutically Treat P53-Altered Cancers The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2015 Investigating the roles of p63 and p73 isoforms to therapeutically treat p53-altered cancers Avinashnarayan Venkatanarayan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Cancer Biology Commons, Molecular Biology Commons, Molecular Genetics Commons, and the Translational Medical Research Commons Recommended Citation Venkatanarayan, Avinashnarayan, "Investigating the roles of p63 and p73 isoforms to therapeutically treat p53-altered cancers" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 576. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/576 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. INVESTIGATING THE ROLES OF P63 AND P73 ISOFORMS TO THERAPEUTICALLY TREAT P53-ALTERED CANCERS By Avinashnarayan Venkatanarayan, M.S. APPROVED: ______________________________ Elsa R. Flores, Ph.D. Advisory Professor ______________________________ Mong Hong Lee, Ph.D. ______________________________ Michael J. Galko, Ph.D. ______________________________ Kenneth Y. Tsai, M.D., Ph.D. ______________________________ Sendurai Mani, Ph.D. ______________________________ Preethi H. Gunaratne, Ph.D. APPROVED: ____________________________ Dean, The University of Texas Graduate School of Biomedical Sciences at Houston INVESTIGATING THE ROLES OF P63 AND P73 ISOFORMS TO THERAPEUTICALLY TREAT P53-ALTERED CANCERS A DISSERTATION Presented to the Faculty of The University of Texas Health Science Center at Houston and The University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Avinashnarayan Venkatanarayan, M.S. Houston, Texas May, 2015 Dedication To my grandmothers Janakavalli A & Shanthakumari P who have been a tremendous source of will power, dedication and humility iii Acknowledgements My training and success in the graduate school would have not been possible without the support, mentorship and blessings of many people. First and foremost, I would like to thank God, the Almighty for giving me the energy and health to complete this endeavor successfully. I would like to thank my mentor, Dr. Elsa Flores for accepting me as a graduate student in her laboratory; training me and importantly helping me achieve my goals. Dr. Flores has not only been a great mentor, but also a role model from whom I often draw inspiration, sometimes as my friend with whom I tend to chat and sometimes as my scientific mom for the care and affection she has provided me. I learnt to not only appreciate and perform science but more importantly the purpose we serve as scientists and the hope we give to the people by advancing cancer research. I am also fortunate to have the support and guidance of an excellent committee. Dr. Mong Hong Lee, Dr. Michael Galko, Dr. Sendurai Mani, Dr. Kenneth Tsai and Dr. Preethi Gunaratne have been excellent mentors and always provided me with constructive suggestions and helped me progress in my scientific career. I also wanted to to acknowledge three people, Dr. Elsa Flores, Dr. Michael Galko and Dr. Andreas Bergmann who offered me rotation positions in there labs and made my dream of pursuing a PhD program a reality. Also, I had the support and guidance of a small but highly talented group of people in the lab. I would like to thank all the present and former members of the Flores Lab. I would like to thank Dr. Min Soon Cho for helping me learn the basics iv when I was a rotation student. I had lot of help with the mouse work from Young Jin Gi, Lingzhi Liu and Payal Raulji. Dr. Xiaohua Su is an expert in our lab and she has always been my go to person. Dr. Marco Napoli has been a good friend and excellent person to bounce ideas from him. Marlese Pisegna has been our always- positive lab manager and my bench buddy. She has provided me with moral support and she was always there to share with me my failures and success. And finally, I would like to acknowledge my fellow graduate students Dr. Ramon Flores Gonzalez, Andrew Davis, Ngoc Bui and Sarah Wu. I think we started as lab mates and now we have become friends for life. Our repeated discussions on performing and improving experiments have made our lab a happening place. I would also like to thank and acknowledge the rotation and summer students who worked closely with me. Particularly, I would like to thank Pruthali Kulkarni and Eliot F. Sananikone for their motivation and enthusiasm while performing experiments in the lab. I would also like to thank my collaborators, Dr. William Norton (Veterinary Medicine) for his help with the mouse surgeries. Dr. James Bankson and members of the Small Animal Imaging Facility (SAIF) for their help with mouse imaging. Dr. Cristian Coarfa for his help with Bioinformatic analysis and Dr. Anil Sood, Dr. Mangala Selenere and Aguayo Cristian for their help with the liposomal siRNA particles. My success in graduate school is also greatly attributed to help and guidance from Dr. Abinav Jain and Dr. Srikanth Appikonda (Barton Lab), Dr. James Jackson and Dr. Vinod Pant (Lozano Lab) and Dr. Parameshwar Djardiane. We have become good friends over the last few years and I really cherish the time I spent with v all of them. I would also like to thank Elisabeth Lindheim, the Genes and Development program coordinator for her help and support for the last 6 years. Also, I would like to thank and acknowledge my family for their unconditional love and support during my training as a graduate student. My parents Mr. A. Venkatanarayan and Mrs. V. Ashalatha have always given me the freedom to pursue my interests and never doubted my actions. My brother Dr. Ajay Venkatanarayan, in many ways made sacrifices on my behalf so that I could complete my graduate school, by supporting my parents and being self-less. I also would like to thank my uncle Dr. A. Srinivasan who has always reminded me that hard work leads to success. Finally, I would like to thank my fiancée Ms. Amritha Sathish for her love, support and positive attitude. She has been highly understanding of my busy schedule and helped me stay focused. Finally, I would like to thank my friends who have been my pillars of strength throughout my graduate school. My friends have become like my family and I am excited to see what the future holds for each of us. I would like to thank Dr. Rajesha Rupaimoole my friend and roommate for the past 8 years. Rajesha and myself have a special understanding and we both have taken similar steps in our life at the same time. Also, I would like to thank Dr. Anantha and Anil Chukkapalli, Dr. Zeynep and Dr. Kadir Akdemir, Uphanya and Dr. Sridhar Eshwaran for their love, friendship and support. Also, a special thanks to Dr. Shankar Venugopalan and my buddies Bharat Chaganty and Dr. Kalyan Nallaparaju for always giving the best and positive advice. vi Investigating the roles of p63 & p73 isoforms to therapeutically treat p53-altered cancers Avinashnarayan Venkatanarayan, M.S. Supervisory Professor: Elsa R. Flores, Ph.D. The TP53 tumor suppressor is mutated in approximately 50% of human cancers rendering cancer therapies ineffective. p53 reactivation suppresses tumor formation in mice. However, this strategy has proven difficult to implement therapeutically. An alternate approach to overcome p53 loss is to manipulate the p53-family members, p63 and p73, which interact and share structural similarities to p53. p63 and p73, unlike p53 are less frequently mutated and have two major isoforms with distinct functions which makes them unique targets for therapeutic intervention. The full-length acidic transactivation (TA) isoforms of p63 and p73 function similar to p53. While the deltaN (ΔN) isoforms of p63 and p73, which lack the acidic transactivation domain, are overexpressed in cancers and function in a dominant negative manner against p53, TAp63 and TAp73. As result of the opposing isoform-specific function, the roles of p63 and p73 in tumorigenesis requires further characterization. In an attempt to identify novel therapeutic approaches to treat p53-altered cancers by utilizing the p53-family members, I aim to delineate the roles of ΔN isoforms of p63 and p73 in tumorigenesis. I have demonstrated that deletion of ΔNp63 or ΔNp73 in p53-deficient tumors mediates tumor regression through the upregulation of tumor suppressive isoforms, TAp63 and TAp73. Upon loss of ΔNp63 or ΔNp73, TAp63 and TAp73 activate IAPP vii a metabolic regulator, which induces metabolic reprogramming resulting in tumor regression in p53-deficient mice. I have shown that IAPP, which encodes amylin, a 37-amino acid peptide functions as a tumor suppressor in p53-deficient cancers. IAPP functions through the calcitonin and RAMP3 receptors to limit glucose uptake and reduce glycolysis in the cancer cells resulting in ROS accumulation and apoptosis. Additionally, I have also shown that use of Pramlintide, a synthetic analog of IAPP, mediates tumor regression in p53-deficient mice and apoptosis in multiple p53-mutant human cancer cell lines. Further, to therapeutically treat p53-deficient cancers in vivo, liposomal nanoparticle siRNA’s targeting ΔNp63 and ΔNp73 were administered into p53- deficient mouse thymic lymphomas, which resulted in tumor regression.
Recommended publications
  • Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements
    International Journal of Molecular Sciences Review Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements Ahmed Malki 1,*, Rasha Abu ElRuz 1, Ishita Gupta 2,3,4, Asma Allouch 1 , Semir Vranic 2,3 and Ala-Eddin Al Moustafa 2,3,4,* 1 Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar; [email protected] (R.A.E.); [email protected] (A.A.) 2 College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; [email protected] (I.G.); [email protected] (S.V.) 3 Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar 4 Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar * Correspondence: [email protected] (A.M.); [email protected] (A.-E.A.M.); Tel.: +974-4403-6557 (A.M.); +974-3097-7440 (A.-E.A.M.) Abstract: Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis.
    [Show full text]
  • The P16 (Cdkn2a/Ink4a) Tumor-Suppressor Gene in Head
    The p16 (CDKN2a/INK4a) Tumor-Suppressor Gene in Head and Neck Squamous Cell Carcinoma: A Promoter Methylation and Protein Expression Study in 100 Cases Lingbao Ai, M.D., Krystal K. Stephenson, Wenhua Ling, M.D., Chunlai Zuo, M.D., Perkins Mukunyadzi, M.D., James Y. Suen, M.D., Ehab Hanna, M.D., Chun-Yang Fan, M.D., Ph.D. Departments of Pathology (LA, KKS, CZ, PM, CYF) and Otolaryngology-Head and Neck Surgery (CYF, JYS, EH), University of Arkansas for Medical Sciences; and School of Public Health (LA, WL), Sun-Yat Sen University, Guangzhou, China apparent loss of p16 protein expression appears to The p16 (CDKN2a/INK4a) gene is an important be an independent prognostic factor, although loss tumor-suppressor gene, involved in the p16/cyclin- of p16 protein may be used to predict overall pa- dependent kinase/retinoblastoma gene pathway of tient survival in early-stage head and neck squa- cell cycle control. The p16 protein is considered to mous cell carcinoma. be a negative regulator of the pathway. The gene encodes an inhibitor of cyclin-dependent kinases 4 KEY WORDS: Gene inactivation, Head and and 6, which regulate the phosphorylation of reti- neck squamous cell carcinoma, p16, Promoter noblastoma gene and the G1 to S phase transition of hypermethylation. the cell cycle. In the present study, p16 gene pro- Mod Pathol 2003;16(9):944–950 moter hypermethylation patterns and p16 protein expression were analyzed in 100 consecutive un- The development of head and neck squamous cell treated cases of primary head and neck squamous carcinoma is believed to be a multistep process, in cell carcinoma by methylation-specific PCR and im- which genetic and epigenetic events accumulate as munohistochemical staining.
    [Show full text]
  • The P53/P73 - P21cip1 Tumor Suppressor Axis Guards Against Chromosomal Instability by Restraining CDK1 in Human Cancer Cells
    Oncogene (2021) 40:436–451 https://doi.org/10.1038/s41388-020-01524-4 ARTICLE The p53/p73 - p21CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells 1 1 2 1 2 Ann-Kathrin Schmidt ● Karoline Pudelko ● Jan-Eric Boekenkamp ● Katharina Berger ● Maik Kschischo ● Holger Bastians 1 Received: 2 July 2020 / Revised: 2 October 2020 / Accepted: 13 October 2020 / Published online: 9 November 2020 © The Author(s) 2020. This article is published with open access Abstract Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. fi Vice versa 1234567890();,: 1234567890();,: Consequently, induction of CDK1 is suf cient to induce abnormal microtubule assembly rates and W-CIN. , partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
    [Show full text]
  • CDKN2A and CDKN2B Methylation in Coronary Heart Disease Cases and Controls
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 14: 6093-6098, 2016 CDKN2A and CDKN2B methylation in coronary heart disease cases and controls JINYAN ZHONG1,2*, XIAOYING CHEN3*, HUADAN YE3, NAN WU1,3, XIAOMIN CHEN1 and SHIWEI DUAN3 1Cardiology Center, Ningbo First Hospital, Ningbo University; 2Department of Cardiology, Ningbo Second Hospital, Ningbo, Zhejiang 315010; 3Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China Received May 27, 2016; Accepted March 24, 2017 DOI: 10.3892/etm.2017.5310 Abstract. The aim of the present study was to investigate frequencies were significantly associated with age, and there the association between cyclin-dependent kinase inhibitor was a gender dimorphism in CDKN2B methylation. 2A (CDKN2A) and cyclin-dependent kinase inhibitor 2B (CDKN2B) methylation, and coronary heart disease (CHD), Introduction and to explore the interaction between methylation status and CHD clinical characteristics in Han Chinese patients. A total Coronary heart disease (CHD) is a complex chronic disease of 189 CHD (96 males, 93 females) and 190 well-matched that is caused by an imbalance between blood supply and non-CHD controls (96 males, 94 females) were recruited for demand in myocardium. Various environmental and genetic the study. Methylation-specific polymerase chain reaction factors are known to contribute to onset and development of technology was used to examine gene promoter methylation CHD (1). As of 2010, CHD was the leading cause of mortality status. Comparisons of methylation frequencies between CHD globally, resulting in over 7 million cases of mortality (2). and non-CHD patients were carried out using the Chi-square Therefore, association studies for CHD biomarkers have been test.
    [Show full text]
  • Epigenetic Silencing of CDKN1A and CDKN2B by SNHG1 Promotes The
    Li et al. Cell Death and Disease (2020) 11:823 https://doi.org/10.1038/s41419-020-03031-6 Cell Death & Disease ARTICLE Open Access Epigenetic silencing of CDKN1A and CDKN2B by SNHG1 promotes the cell cycle, migration and epithelial-mesenchymal transition progression of hepatocellular carcinoma Bei Li1,AngLi2, Zhen You 1,JingchangXu1 and Sha Zhu3 Abstract Enhanced SNHG1 (small nucleolar RNA host gene 1) expression has been found to play a critical role in the initiation and progression of hepatocellular carcinoma (HCC) with its detailed mechanism largely unknown. In this study, we show that SNHG1 promotes the HCC progression through epigenetically silencing CDKN1A and CDKN2B in the nucleus, and competing with CDK4 mRNA for binding miR-140-5p in the cytoplasm. Using bioinformatics analyses, we found hepatocarcinogenesis is particularly associated with dysregulated expression of SNHG1 and activation of the cell cycle pathway. SNHG1 was upregulated in HCC tissues and cells, and its knockdown significantly inhibited HCC cell cycle, growth, metastasis, and epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Chromatin immunoprecipitation and RNA immunoprecipitation assays demonstrate that SNHG1 inhibit the transcription of CDKN1A and CDKN2B through enhancing EZH2 mediated-H3K27me3 in the promoter of CDKN1A and CDKN2B, thus resulting in the de-repression of the cell cycle. Dual-luciferase assay and RNA pulldown revealed that SNHG1 promotes 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; the expression of CDK4 by competitively binding to miR-140-5p. In conclusion, we propose that SNHG1 formed a regulatory network to confer an oncogenic function in HCC and SNHG1 may serve as a potential target for HCC diagnosis and treatment.
    [Show full text]
  • P14ARF Inhibits Human Glioblastoma–Induced Angiogenesis by Upregulating the Expression of TIMP3
    P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi, … , Daniel J. Brat, Erwin G. Van Meir J Clin Invest. 2012;122(4):1283-1295. https://doi.org/10.1172/JCI38596. Research Article Oncology Malignant gliomas are the most common and the most lethal primary brain tumors in adults. Among malignant gliomas, 60%–80% show loss of P14ARF tumor suppressor activity due to somatic alterations of the INK4A/ARF genetic locus. The tumor suppressor activity of P14ARF is in part a result of its ability to prevent the degradation of P53 by binding to and sequestering HDM2. However, the subsequent finding of P14ARF loss in conjunction with TP53 gene loss in some tumors suggests the protein may have other P53-independent tumor suppressor functions. Here, we report what we believe to be a novel tumor suppressor function for P14ARF as an inhibitor of tumor-induced angiogenesis. We found that P14ARF mediates antiangiogenic effects by upregulating expression of tissue inhibitor of metalloproteinase–3 (TIMP3) in a P53-independent fashion. Mechanistically, this regulation occurred at the gene transcription level and was controlled by HDM2-SP1 interplay, where P14ARF relieved a dominant negative interaction of HDM2 with SP1. P14ARF-induced expression of TIMP3 inhibited endothelial cell migration and vessel formation in response to angiogenic stimuli produced by cancer cells. The discovery of this angiogenesis regulatory pathway may provide new insights into P53-independent P14ARF tumor-suppressive mechanisms that have implications for the development of novel therapies directed at tumors and other diseases characterized by vascular pathology. Find the latest version: https://jci.me/38596/pdf Research article P14ARF inhibits human glioblastoma–induced angiogenesis by upregulating the expression of TIMP3 Abdessamad Zerrouqi,1 Beata Pyrzynska,1,2 Maria Febbraio,3 Daniel J.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Deciphering the Nature of Trp73 Isoforms in Mouse
    cancers Article Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific Deficient Cell Lines Using the CRISPR/Cas9 Gene Editing System Lorena López-Ferreras 1,2,†, Nicole Martínez-García 1,3,†, Laura Maeso-Alonso 1,2,‡, Marta Martín-López 1,4,‡, Ángela Díez-Matilla 1,‡ , Javier Villoch-Fernandez 1,2, Hugo Alonso-Olivares 1,2, Margarita M. Marques 3,5,* and Maria C. Marin 1,2,* 1 Instituto de Biomedicina (IBIOMED), Universidad de León, 24071 León, Spain; [email protected] (L.L.-F.); [email protected] (N.M.-G.); [email protected] (L.M.-A.); [email protected] (M.M.-L.); [email protected] (Á.D.-M.); [email protected] (J.V.-F.); [email protected] (H.A.-O.) 2 Departamento de Biología Molecular, Universidad de León, 24071 León, Spain 3 Departamento de Producción Animal, Universidad de León, 24071 León, Spain 4 Biomar Microbial Technologies, Parque Tecnológico de León, Armunia, 24009 León, Spain 5 Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain * Correspondence: [email protected] (M.M.M.); [email protected] (M.C.M.); Tel.: +34-987-291757 Citation: López-Ferreras, L.; (M.M.M.); +34-987-291490 (M.C.M.) Martínez-García, N.; Maeso-Alonso, † Equal contribution. ‡ Equal contribution. L.; Martín-López, M.; Díez-Matilla, Á.; Villoch-Fernandez, J.; Simple Summary: The Trp73 gene is involved in the regulation of multiple biological processes Alonso-Olivares, H.; Marques, M.M.; Marin, M.C. Deciphering the Nature such as response to stress, differentiation and tissue architecture.
    [Show full text]
  • Involvement of the Cyclin-Dependent Kinase Inhibitor P16 (Ink4a) in Replicative Senescence of Normal Human Fibroblasts
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13742–13747, November 1996 Biochemistry Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts DAVID A. ALCORTA*†,YUE XIONG‡,DAWN PHELPS‡,GREG HANNON§,DAVID BEACH§, AND J. CARL BARRETT* *Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; ‡Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599; and §Howard Hughes Medical Institute, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724 Communicated by Raymond L. Erickson, Harvard University, Cambridge, MA, September 19, 1996 (received for review on May 15, 1996) ABSTRACT Human diploid fibroblasts (HDFs) can be viewed in ref. 5). In senescent fibroblasts, CDK2 is catalytically grown in culture for a finite number of population doublings inactive and the protein down-regulated (7). CDK4 is also before they cease proliferation and enter a growth-arrest state reported to be down-regulated in senescent cells (8), while the termed replicative senescence. The retinoblastoma gene prod- status of CDK6 has not been previously addressed. The uct, Rb, expressed in these cells is hypophosphorylated. To activating cyclins for these CDKs, cyclins D1 and E, are present determine a possible mechanism by which senescent human in senescent cells at similar or elevated levels relative to early fibroblasts maintain a hypophosphorylated Rb, we examined passage cells (8). A role of the CDK inhibitors in senescence the expression levels and interaction of the Rb kinases, CDK4 was revealed by the isolation of a cDNA of a highly expressed and CDK6, and the cyclin-dependent kinase inhibitors p21 message in senescent cells that encoded the CDK inhibitor, p21 and p16 in senescent HDFs.
    [Show full text]
  • Infrequent Methylation of CDKN2A(Mts1p16) and Rare Mutation of Both CDKN2A and CDKN2B(Mts2ip15) in Primary Astrocytic Tumours
    British Joumal of Cancer (1997) 75(1), 2-8 © 1997 Cancer Research Campaign Infrequent methylation of CDKN2A(MTS1p16) and rare mutation of both CDKN2A and CDKN2B(MTS2Ip15) in primary astrocytic tumours EE Schmidt, K Ichimura, KR Messerle, HM Goike and VP Collins Institute for Oncology and Pathology, Division of Tumour Pathology, and Ludwig Institute for Cancer Research, Stockholm Branch, Karolinska Hospital, S-171 76 Stockholm, Sweden Summary In a series of 46 glioblastomas, 16 anaplastic astrocytomas and eight astrocytomas, all tumours retaining one or both alleles of CDKN2A (48 tumours) and CDKN2B (49 tumours) were subjected to sequence analysis (entire coding region and splice acceptor and donor sites). One glioblastoma with hemizygous deletion of CDKN2A showed a missense mutation in exon 2 (codon 83) that would result in the substitution of tyrosine for histidine in the protein. None of the tumours retaining alleles of CDKN2B showed mutations of this gene. Glioblastomas with retention of both alleles of CDKN2A (14 tumours) and CDKN2B (16 tumours) expressed transcripts for these genes. In contrast, 7/13 glioblastomas with hemizygous deletions of CDKN2A and 8/11 glioblastomas with hemizygous deletions of CDKN2B showed no or weak expression. Anaplastic astrocytomas and astrocytomas showed a considerable variation in the expression of both genes, regardless of whether they retained one or two copies of the genes. The methylation status of the 5' CpG island of the CDKN2A gene was studied in all 15 tumours retaining only one allele of CDKN2A as well as in the six tumours showing no significant expression of transcript despite their retaining both CDKN2A alleles.
    [Show full text]
  • A Variant at 9P21.3 Functionally Implicates CDKN2B in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia Aetiology
    UCSF UC San Francisco Previously Published Works Title A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology. Permalink https://escholarship.org/uc/item/3bz9m1pp Journal Nature communications, 7(1) ISSN 2041-1723 Authors Hungate, Eric A Vora, Sapana R Gamazon, Eric R et al. Publication Date 2016-02-12 DOI 10.1038/ncomms10635 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 23 Apr 2015 | Accepted 7 Jan 2016 | Published 12 Feb 2016 DOI: 10.1038/ncomms10635 OPEN A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology Eric A. Hungate1,*, Sapana R. Vora2,*, Eric R. Gamazon3,4, Takaya Moriyama5, Timothy Best2, Imge Hulur6, Younghee Lee3, Tiffany-Jane Evans7, Eva Ellinghaus8, Martin Stanulla9,Je´remie Rudant10,11, Laurent Orsi10,11, Jacqueline Clavel10,11,12, Elizabeth Milne13, Rodney J. Scott7,14, Ching-Hon Pui15, Nancy J. Cox3, Mignon L. Loh16, Jun J. Yang5, Andrew D. Skol1 & Kenan Onel1 Paediatric B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) is the most common cancer of childhood, yet little is known about BCP-ALL predisposition. In this study, in 2,187 cases of European ancestry and 5,543 controls, we discover and replicate a locus indexed by À 15 rs77728904 at 9p21.3 associated with BCP-ALL susceptibility (Pcombined ¼ 3.32 Â 10 , OR ¼ 1.72) and independent from rs3731217, the previously reported ALL-associated variant in this region. Of correlated SNPs tagged by this locus, only rs662463 is significant in African Americans, suggesting it is a plausible causative variant.
    [Show full text]
  • TP63 Is Significantly Upregulated in Diabetic Kidney
    International Journal of Molecular Sciences Article TP63 Is Significantly Upregulated in Diabetic Kidney Sitai Liang 1, Bijaya K. Nayak 1, Kristine S. Vogel 1 and Samy L. Habib 1,2,* 1 Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA; [email protected] (S.L.); [email protected] (B.K.N.); [email protected] (K.S.V.) 2 South Texas, Veterans Healthcare System, San Antonio, TX 78229, USA * Correspondence: [email protected]; Tel.: +1-21-0567-3816; Fax: +1-21-0567-3802 Abstract: The role of tumor protein 63 (TP63) in regulating insulin receptor substrate 1 (IRS-1) and other downstream signal proteins in diabetes has not been characterized. RNAs extracted from kidneys of diabetic mice (db/db) were sequenced to identify genes that are involved in kidney complications. RNA sequence analysis showed more than 4- to 6-fold increases in TP63 expression in the diabetic mice’s kidneys, compared to wild-type mice at age 10 and 12 months old. In addition, the kidneys from diabetic mice showed significant increases in TP63 mRNA and protein expression compared to WT mice. Mouse proximal tubular cells exposed to high glucose (HG) for 48 h showed significant decreases in IRS-1 expression and increases in TP63, compared to cells grown in normal glucose (NG). When TP63 was downregulated by siRNA, significant increases in IRS-1 and activation of AMP-activated protein kinase (AMPK (p-AMPK-Th172)) occurred under NG and HG conditions. Moreover, activation of AMPK by pretreating the cells with AICAR resulted in significant down- regulation of TP63 and increased IRS-1 expression.
    [Show full text]