Soybean - Pest Resistance

Total Page:16

File Type:pdf, Size:1020Kb

Soybean - Pest Resistance SOYBEAN - PEST RESISTANCE Edited by Hany A. El-Shemy Soybean - Pest Resistance http://dx.doi.org/10.5772/3384 Edited by Hany A. El-Shemy Contributors Vincent P. Klink, Yaghoub Fathipour, Amin Sedaratian, Mudasir Hafiz Khan, Tomislav Kos, Renata Bažok, Maja Čačija, Ana Gajger, Malgorzata Piotrowska, Katarzyna Śliżewska, Biernasiak Joanna, Andrew P. Michel, Raman Bansal, Tae- Hwan Jun, M. A. Rouf Mian, Alexandre Silva, Leandro Galon, Ignacio Aspiazú, D. Sc., Evander A. Ferreira, Edison Ulisses Ramos Junior, Paulo Roberto Ribeiro Rocha, Rafael Vivian, Andre Rodrigues dos Reis, Leandro Vargas, Pablo Kalnay, Ana Carolina Câmara Ferreira, Franciele Mariani, Steven Goheen, James Campbell, Pat Donald Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Ana Pantar Technical Editor InTech DTP team Cover InTech Design team First published February, 2013 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Soybean - Pest Resistance, Edited by Hany A. El-Shemy p. cm. ISBN 978-953-51-0978-5 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface VII Chapter 1 Nutritional Requirements of Soybean Cyst Nematodes 1 Steven C. Goheen, James A. Campbell and Patricia Donald Chapter 2 Developing Host-Plant Resistance for Hemipteran Soybean Pests: Lessons from Soybean Aphid and Stink Bugs 19 Raman Bansal, Tae-Hwan Jun, M. A. R. Mian and Andy P. Michel Chapter 3 Weed Management in Soybean — Issues and Practices 47 Rafael Vivian, André Reis, Pablo A. Kálnay, Leandro Vargas, Ana Carolina Camara Ferreira and Franciele Mariani Chapter 4 Weed Management in the Soybean Crop 85 Alexandre Ferreira da Silva, Leandro Galon, Ignacio Aspiazú, Evander Alves Ferreira, Germani Concenço, Edison Ulisses Ramos Júnior and Paulo Roberto Ribeiro Rocha Chapter 5 Arthropod Fauna Associated to Soybean in Croatia 113 Renata Bažok, Maja Čačija, Ana Gajger and Tomislav Kos Chapter 6 Engineered Soybean Cyst Nematode Resistance 139 Vincent P. Klink, Prachi D. Matsye, Katheryn S. Lawrence and Gary W. Lawrence Chapter 7 Screening of Soybean (Glycine Max (L.) Merrill) Genotypes for Resistance to Rust, Yellow Mosaic and Pod Shattering 173 M. H. Khan, S. D. Tyagi and Z. A. Dar Chapter 8 Mycotoxins in Cereal and Soybean-Based Food and Feed 185 Małgorzata Piotrowska, Katarzyna Śliżewska and Joanna Biernasiak VI Contents Chapter 9 Integrated Management of Helicoverpa armigera in Soybean Cropping Systems 231 Yaghoub Fathipour and Amin Sedaratian Preface This book provides an overview of the pest resistance soybeans. The authors contributed 9 chapters in which they attempt to review recent research on soybean resistance to Hemipter‐ an pests and, in the light of various challenges to manage Hemipteran pests, propose strat‐ egies for successful and sustainable use of host plant resistance (HPR) in soybean against these pests. The chapters also aim to present some focal issues related to weed management in soybean growing areas, which include weed potential to cause severe damage and yield losses by weeds, the evolution of resistant weeds in GR soybean monoculture, the soybean manage‐ ment characterization in the main producing countries and discussions about the benefits of IWM use as an accurate control measure. A set of information for researchers and experts on weed management service area is presented, reporting clearly and objectively the major im‐ pacts of the current management used, as well as the outlook for soybean farming. This book will be useful for soybean researchers and other academic staff and will provide its readers with valuable insight into the last developments in the field. Hany A. El-Shemy, Professor Cairo University, EGYPT Chapter 1 Nutritional Requirements of Soybean Cyst Nematodes Steven C. Goheen, James A. Campbell and Patricia Donald Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54247 1. Introduction Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean farmers confront. This obligate pathogen requires nutrients from the plant to complete its life cycle. To date, SCN nutritional requirements are not clearly defined. Growth media supporting SCN still contain soy products. Understanding the SCN nutritional requirements and how host plants meet those requirements should lead to the control of SCN infestations. The nutritional requirements of SCN are reviewed in this chapter and those requirements are compared to those of other nematodes. Carbohydrates, vitamins, amino acids, lipids, and other nutritional requirements are discussed. The survival of parasitic nematodes requires adequate nutrition. These essential nutrients are at least partially supplied by the host. But, availability of nutrients may not alone be sufficient for survival and reproduction. The parasite must also be able to establish a feeding site. Both the establishment of the feeding site and the presence of adequate nutrients for the soybean cyst nematode [SCN] are discussed below. 1.1. Feeding site establishment Nematodes have differing mouth part structures which are adapted to their food source [1]. In the case of plant-parasitic nematodes, a stylet [analogous to a hypodermic needle], is used to puncture plant cells and a pump mechanism located in the nematode esophagus allows for exchange of fluids between the nematode and plant [1]. Most studies of the economically important root-knot and cyst-forming plant-parasitic nematodes have focused on what fluids are secreted by the nematode and how this facilitates establishment of a feeding site [2-4]. © 2013 Goheen et al.; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 2 Soybean - Pest Resistance Specific information on the essential nutrients provided by the plant is lacking. In this chapter we focus on what is known about nutrient requirements for soybean cyst nematode, SCN. The SCN is an obligate parasite requiring a host plant to complete its life cycle (see Figure 1). The cysts are found in the soil and contain eggs and first stage juveniles. The second stage juvenile hatches from the egg and penetrates plant roots. If the roots are a plant that is a host for SCN, the third and fourth stage juveniles molt into an enlarged shape called a sausage once a feeding site is successfully established where the primary goal is removing nutrients from the plant for use by the nematode. After enough nutrients have been obtained by the nemat‐ odes, those destined to become males molt into a worm-shape again and migrate out of the roots in search of a female. As the females mature, their size increases breaking root epidermal cells and the nematode is exposed to the soil where she emits pheromones to attract the males already in the soil. Once fertilization of the eggs has occurred, the female dies and her hardened body becomes the cyst which protects the eggs from environmental extremes and organisms which can kill the eggs. Some eggs are extruded into the soil in a gelatinous matrix and these eggs are thought to hatch once conditions favor hatch. The eggs within the cyst go through diapause and can survive within the cyst for more than a dozen years under the right condi‐ tions. Juveniles which enter nonhost plant roots may molt into a third stage juvenile but a successful feeding site will not be established and the plant will recognize the nematode as an invader and form necrotic cells surrounding the nematode effectively killing the nematode. Alternatively, some plants are slower to recognize the nematode as an invader and a molt to the third stage may occur but no further development of the nematode will occur. Once the nematode reaches the sausage stage, it lacks the muscles to leave the root and it dies. As an important crop in the United States [5], there are over 120 soybean lines which have some level of resistance to SCN [6]. Commercial soybean varieties primarily contain one or more different sources of resistance but 95% of all resistance is found from one source, PI 88788. Peking [PI 548402] and Hartwig [PI 437654] are also found in a few commercial varieties. Genetics of resistance is complex with multiple genes involved and interaction of minor genes or nongenetic sources complicates understanding of the process. In a resistant reaction, cytological changes occur and these have been documented [7-19]. Initial reaction to the nematode during the formation of the syncytium in both susceptible and certain resistant lines is identical for the first 4 days after infection [7.
Recommended publications
  • Bulletin No. 206-Treehopper Injury in Utah Orchards
    Utah State University DigitalCommons@USU UAES Bulletins Agricultural Experiment Station 6-1928 Bulletin No. 206 - Treehopper Injury in Utah Orchards Charles J. Sorenson Follow this and additional works at: https://digitalcommons.usu.edu/uaes_bulletins Part of the Agricultural Science Commons Recommended Citation Sorenson, Charles J., "Bulletin No. 206 - Treehopper Injury in Utah Orchards" (1928). UAES Bulletins. Paper 178. https://digitalcommons.usu.edu/uaes_bulletins/178 This Full Issue is brought to you for free and open access by the Agricultural Experiment Station at DigitalCommons@USU. It has been accepted for inclusion in UAES Bulletins by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Bulletin 2 06 June, 1928 Treehopper Injury in Utah Orchards By CHARLES J. SORENSON 3 Dorsal and side views of the following species of treehoppers: 1. Ceresa bubalus (Fabr.) ( Buffalo treehopper) 2. Stictocephala inermis (Fabr.) 3. Stictocephala gillettei Godg. (x 10 ) UTAH AGRICULTURAL EXPERIMENT STATION LOGAN. UTAH UTAH AGRICULTURAL EXPERIMENT STATION , BOARD OF TRUSTEES . ANTHONY W. IVINS, President __ _____ ____________________ __ ___________________ Salt Lake City C. G. ADNEY, Vice-President ____ ___ ________________________________ ________________________ Corinne ROY B ULLEN ________ __________________________ _______ _____ _____ ________ ___ ____ ______ ____ Salt Lake City LORENZO N . STOHL ______ ___ ____ ___ ______________________ __ ___ ______ _____ __________ Salt Lake City MRS. LEE CHARLES MILLER ___ ______ ___ _________ ___ _____ ______ ___ ____ ________ Salt Lake City WE S TON V ERN ON, Sr. ________________________ ___ ____ ____ _____ ___ ____ ______ __ __ _______ ________ Loga n FRANK B. STEPHENS _____ ___ __ ____ ____________ ____ ______________ __ ___________ __.___ Salt Lake City MRS.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Providing a Base for Conservation of True Bugs (Insecta, Heteroptera) and Their Saline Habitats in Vojvodina (Northern Serbia)
    Short Note Hyla VOL. 2016., No.1, pp. 19- 23 ISSN: 1848-2007 Šeat et al. Providing a base for conservation of true bugs (Insecta, Heteroptera) and their saline habitats in Vojvodina (northern Serbia) 1 1,2 1 1,2 JELENA ŠEAT , BOJANA NADAŽDIN , MARIJA CVETKOVIĆ , ALEKSANDRA JOVANOV , 1,2 & IVAN TOT 1 HabiProt, Bulevar Oslobođenja 106/34, 11040 Belgrade, Serbia; e-mail: [email protected] 2 SRSBES “Josif Pančić”, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia Abstract Saline habitats of the Pannonian region are recognised as conservation priorities by EU legislation, and represent rare semi-natural habitats in mostly agricultural lowland of northern Serbia. Saline habitats have a key role in conservation of numerous plant and animal species in Vojvodina, as well as characteristic communities of true bugs. These insects belong to one of the most diverse insect groups in saline habitats. Species Henestaris halophilus (BURMEISTER, 1835), Conostethus hungaricus WAGNER, 1941 and Solenoxyphus fuscovenosus (FIEBER, 1864) are saline specialists and can be found only in these habitat types. True bugs have great qualities for future biomonitoring projects concerning habitats such as saline grasslands and wetlands. During the study, species Hydrometra gracilenta HORVÁTH, 1899 and Solenoxyphus fuscovenosus (FIEBER, 1864) are recorded for the first time in Serbia. Key words: Hemiptera, salt steppes, salt marshes, alkaline lakes, Pannonian plain Saline or halophitic habitats in Serbia are floods in spring (BOROS, 2003; TÖRÖK ET AL., 2011), are mostly situated in the northern part of the country, in apparently not favourable for many groups of insects, Vojvodina Province, and these habitats are listed among but the true bugs are among the most abundant and the the priority habitats by the Annex I of the EU Habitat most diverse insects in them.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Newsletter of the Biological Survey of Canada
    Newsletter of the Biological Survey of Canada Vol. 40(1) Summer 2021 The Newsletter of the BSC is published twice a year by the In this issue Biological Survey of Canada, an incorporated not-for-profit From the editor’s desk............2 group devoted to promoting biodiversity science in Canada. Membership..........................3 President’s report...................4 BSC Facebook & Twitter...........5 Reminder: 2021 AGM Contributing to the BSC The Annual General Meeting will be held on June 23, 2021 Newsletter............................5 Reminder: 2021 AGM..............6 Request for specimens: ........6 Feature Articles: Student Corner 1. City Nature Challenge Bioblitz Shawn Abraham: New Student 2021-The view from 53.5 °N, Liaison for the BSC..........................7 by Greg Pohl......................14 Mayflies (mainlyHexagenia sp., Ephemeroptera: Ephemeridae): an 2. Arthropod Survey at Fort Ellice, MB important food source for adult by Robert E. Wrigley & colleagues walleye in NW Ontario lakes, by A. ................................................18 Ricker-Held & D.Beresford................8 Project Updates New book on Staphylinids published Student Corner by J. Klimaszewski & colleagues......11 New Student Liaison: Assessment of Chironomidae (Dip- Shawn Abraham .............................7 tera) of Far Northern Ontario by A. Namayandeh & D. Beresford.......11 Mayflies (mainlyHexagenia sp., Ephemerop- New Project tera: Ephemeridae): an important food source Help GloWorm document the distribu- for adult walleye in NW Ontario lakes, tion & status of native earthworms in by A. Ricker-Held & D.Beresford................8 Canada, by H.Proctor & colleagues...12 Feature Articles 1. City Nature Challenge Bioblitz Tales from the Field: Take me to the River, by Todd Lawton ............................26 2021-The view from 53.5 °N, by Greg Pohl..............................14 2.
    [Show full text]
  • Planthopper and Leafhopper Fauna (Hemiptera: Fulgoromorpha Et Cicadomorpha) at Selected Post-Mining Dumping Grounds in Southern Poland
    Title: Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post-mining dumping grounds in Southern Poland Author: Marcin Walczak, Mariola Chruściel, Joanna Trela, Klaudia Sojka, Aleksander Herczek Citation style: Walczak Marcin, Chruściel Mariola, Trela Joanna, Sojka Klaudia, Herczek Aleksander. (2019). Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post-mining dumping grounds in Southern Poland. “Annals of the Upper Silesian Museum in Bytom, Entomology” Vol. 28 (2019), s. 1-28, doi 10.5281/zenodo.3564181 ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 28 (online 006): 1–28 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 05.12.2019 MARCIN WALCZAK1 , Mariola ChruśCiel2 , Joanna Trela3 , KLAUDIA SOJKA4 , aleksander herCzek5 Planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) at selected post- mining dumping grounds in Southern Poland http://doi.org/10.5281/zenodo.3564181 Faculty of Natural Sciences, University of Silesia, Bankowa Str. 9, 40-007 Katowice, Poland 1 e-mail: [email protected]; 2 [email protected]; 3 [email protected] (corresponding author); 4 [email protected]; 5 [email protected] Abstract: The paper presents the results of the study on species diversity and characteristics of planthopper and leafhopper fauna (Hemiptera: Fulgoromorpha et Cicadomorpha) inhabiting selected post-mining dumping grounds in Mysłowice in Southern Poland. The research was conducted in 2014 on several sites located on waste heaps with various levels of insolation and humidity. During the study 79 species were collected. The paper presents the results of ecological analyses complemented by a qualitative analysis performed based on the indices of species diversity.
    [Show full text]
  • A New Helicoverpa Armigera Nucleopolyhedrovirus Isolate from Heliothis Peltigera (Denis & Schiffermuller) (Lepidoptera: Noctuidae) in Turkey
    Turkish Journal of Biology Turk J Biol (2019) 43: 340-348 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1902-64 A new Helicoverpa armigera Nucleopolyhedrovirus isolate from Heliothis peltigera (Denis & Schiffermuller) (Lepidoptera: Noctuidae) in Turkey Gözde Büşra EROĞLU, Remziye NALÇACIOĞLU, Zihni DEMİRBAĞ* Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey Received: 20.02.2019 Accepted/Published Online: 17.09.2019 Final Version: 14.10.2019 Abstract: This study reports a new Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Heliothis peltigera (Denis & Schiffermuller), collected in the vicinity of Adana, Turkey. Infection was confirmed by tissue polymerase chain reaction and sequence analysis. Results showed that dead H. peltigera larvae contain Helicoverpa armigera nucleopolyhedrovirus. Thus, the isolate was named as HearNPV-TR. Microscopy studies indicated that occlusion bodies were 0.73 to 1.66 μm in diameter. The nucleocapsids are approximately 184 × 41 nm in size. The genome of HearNPV-TR was digested with KpnI and XhoI enzymes and calculated as 130.5 kb. Phylogenetic analysis showed that HearNPV-TR has close relation with the H. armigera SNPV-1073 China isolate. The Kimura analysis confirmed that the isolate is a variant of H. armigera NPV. Bioassays were performed using six different concentrations (1 × 310 to 1 × 8 10 occlusion bodies (OBs)/mL)on 2nd instar larvae of H. peltigera, H. armigera, Heliothis viriplaca, Heliothis nubigera. LC50 values were calculated to be 9.5 × 103, 1.9 × 104, 8.6 × 104 and 9.2 × 104 OBs/mL within 14 days, respectively. Results showed that it is a promising biocontrol agent against Heliothinae species.
    [Show full text]
  • Bilimsel Araştırma Projesi (8.011Mb)
    1 T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu Sonuç Raporu Proje No: 2008/26 Projenin Başlığı AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Proje Yöneticisi Prof.Dr. Kenan KARA Bitki Koruma Anabilim Dalı Araştırmacı Turgut ATAY Bitki Koruma Anabilim Dalı (Kasım / 2011) 2 T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu Sonuç Raporu Proje No: 2008/26 Projenin Başlığı AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Proje Yöneticisi Prof.Dr. Kenan KARA Bitki Koruma Anabilim Dalı Araştırmacı Turgut ATAY Bitki Koruma Anabilim Dalı (Kasım / 2011) ÖZET* 3 AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Yapılan bu çalışma ile Amasya, Sivas ve Tokat illerinin Kelkit havzasına ait kısımlarında bulunan ve farklı böcek takımlarında parazitoit olarak yaşayan Tachinidae (Diptera) türleri, bunların tanımları ve yayılışlarının ortaya konulması amaçlanmıştır. Bunun için farklı böcek takımlarına ait türler laboratuvarda kültüre alınarak parazitoit olarak yaşayan Tachinidae türleri elde edilmiştir. Kültüre alınan Lepidoptera takımına ait türler içerisinden, Euproctis chrysorrhoea (L.), Lymantria dispar (L.), Malacosoma neustrium (L.), Smyra dentinosa Freyer, Thaumetopoea solitaria Freyer, Thaumetopoea sp. ve Vanessa sp.,'den parazitoit elde edilmiş,
    [Show full text]
  • Heteroptera, Reduviidae, Harpactorinae) *
    Redescription of theS. Grozeva Neotropical & genusN. Simov Aristathlus (Eds) (Heteroptera, 2008 Reduviidae, Harpactorinae) 85 ADVANCES IN HETEROPTERA RESEARCH Festschrift in Honour of 80th Anniversary of Michail Josifov, pp. 85-103. © Pensoft Publishers Sofi a–Moscow Redescription of the Neotropical genus Aristathlus (Heteroptera, Reduviidae, Harpactorinae) * D. Forero1, H.R. Gil-Santana2 & P.H. van Doesburg3 1 Division of Invertebrate Zoology (Entomology), American Museum of Natural History, New York, New York 10024–5192; and Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853–2601, USA. E-mail: [email protected] 2 Departamento de Entomologia, Instituto Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, Brazil. E-mail: [email protected] 3 Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, Th e Netherlands. E-mail: [email protected] ABSTRACT Th e Neotropical genus Aristathlus Bergroth 1913, is redescribed. Digital dorsal habitus photographs for A. imperatorius Bergroth and A. regalis Bergroth, the two included species, are provided. Selected morphological structures are documented with scanning electron micrographs. Male genitalia are documented for the fi rst time with digital photomicrographs and line drawings. New distributional records in South America are given for species of Aristathlus. Keywords: Harpactorini, Hemiptera, male genitalia, Neotropical region, taxonomy. INTRODUCTION Reduviidae is the second largest family of Heteroptera with more than 6000 species described (Maldonado 1990). Despite not having an agreement about the suprageneric classifi cation of Reduviidae (e.g., Putshkov & Putshkov 1985; Maldonado 1990), * Th is paper is dedicated to Michail Josifov on the occasion of his 80th birthday. 86 D. Forero, H.R. Gil-Santana & P.H.
    [Show full text]
  • SPG2: Biodiversity Conservation (July 2006) 1 1.0 an OVERVIEW
    Kent and Medway Structure Plan 2006 mapping out the future Supplementary Planning Guidance SPG2 Biodiversity Conservation July 2006 Strategy and Planning Division/ Environment and Waste Division Environment and Regeneration Directorate Kent County Council Tel: 01622 221609 Email: [email protected] Kent and Medway Structure Plan 2006 Supplementary Planning Guidance (SPG2): Biodiversity Conservation Preface i. The purpose of Supplementary Planning Guidance (SPG) is to supplement the policies and proposals of development plans. It elaborates policies so that they can be better understood and effectively applied. SPG should be clearly cross-referenced to the relevant plan policy or policies which it supplements and should be the subject of consultation during its preparation. In these circumstances SPG may be taken into account as a material consideration in planning decisions. ii. A number of elements of SPG have been produced to supplement certain policies in the Kent and Medway Structure Plan. This SPG supplements the following policies: • Policy EN6: International and National Wildlife Designations • Policy EN7: County and Local Wildlife Designations • Policy EN8: Protecting, Conserving and Enhancing Biodiversity • Policy EN9: Trees, Woodland and Hedgerows iii. This SPG has been prepared by Kent County Council working in partnership with a range of stakeholders drawn from Kent local authorities and other relevant agencies. iv. A draft of this SPG was subject to public consultation alongside public consultation on the deposit draft of the Kent and Medway Structure Plan in late 2003. It has been subsequently revised and updated prior to its adoption. A separate report provides a statement of the consultation undertaken, the representations received and the response to these representations.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Zootaxa,Sycanus Aurantiacus (Hemiptera: Heteroptera: Reduviidae)
    Zootaxa 1615: 21–27 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Sycanus aurantiacus (Hemiptera: Heteroptera: Reduviidae), a new harpactorine species from Bali, Indonesia, with brief notes on its biology TADASHI ISHIKAWA1*, WATARU TORIUMI2, WAYAN SUSILA3 & SHÛJI OKAJIMA1 1Laboratory of Entomology, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan [e-mail: kr- [email protected]] 2Laboratory of Tropical Plant Protection, Department of International Agricultural Development, Tokyo University of Agriculture, Setagaya, Tokyo, Japan [e-mail: [email protected]] 3 Department of Plant Protection, Faculty of Agriculture, Udayana University, Denpasar, Bali, Indonesia [e-mail: [email protected]] *Corresponding author Abstract A new species, Sycanus aurantiacus, of the assassin bug subfamily Harpactorinae is described on the basis of specimens collected from Bali, Indonesia. This species is distinguished from the other species of Sycanus by its antennal segment I having two orange annulations; the posterior pronotal lobe being weakly tumid in the middle near the posterior margin; the scutellar spine being erect, short, and rounded at the apex; each femur having two incomplete orange annulations; the hemelytral corium being blackish with the veins yellow to yellowish brown; and the abdominal laterotergites being weakly extended dorsad. This species is notable because it feeds on some serious lepidopteran pests of cabbage. Key words: Reduviidae, Harpactorinae, Sycanus, new species, Bali, Indonesia Introduction Sycanus Amyot et Serville, 1843 is a large genus of the reduviid subfamily Harpactorinae, comprising 74 spe- cies from the Oriental Region, with the single exception of S. harpactoides Signoret, 1960 from Madagascar (cf.
    [Show full text]