HD 209458 B Shows No Evidence of Tio That Could Potentially Cause an Inversion Layer

Total Page:16

File Type:pdf, Size:1020Kb

HD 209458 B Shows No Evidence of Tio That Could Potentially Cause an Inversion Layer Exoplanet Atmospheres at High Spectral Resolution Jayne Birkby Sagan Fellow, Harvard-Smithsonian Centre for Astrophysics [email protected] http://www.cfa.harvard.edu/~jbirkby @jaynebirkby Detecting molecules with transmission spectroscopy Starlight filtering through an atmosphere during transit is imprinted with the planet’s spectrum 2 Transit depth ~ (Rp/Rs) Relative flux Relative Time Credit: Deming (Nature) Transit depth Transit Wavelength Transmission spectra with HST/WFC3 reveal water in hot Jupiters Deming et al. 2013 Huitson et al. 2013 H2O Wakeford et al. 2013 Deming et al. 2013 McCullough et al. 2014 Kreidberg et al. 2015 Mandell et al. 2013 Kreidberg et al. 2014 Benneke 2015 Transmission spectra with HST/WFC3 reveal water and clouds in warm Neptunes Fraine et al. 2014 Water detected (5σ) in dust-free atmosphere HAT-P-11 b Transit depth (ppm) Transit Warm Neptune Flux variations -4 at 10 level Solar-metallicity, cloud-free Knutson et al. 2014 Hydrogen-poor solar model are important Solar-metallicity, thick clouds GJ 436 b Warm Neptune Flat featureless spectrum in cloudy/hazy atmosphere 60 orbits with HST/WFC3 revealed a featureless (cloudy) spectrum for super-Earth GJ 1214 b ) -6 Relative transit depth (x10 depth transit Relative Kreidberg et al. 2014 Even space telescopes suffer systematics >> planet signal Even space telescopes suffer systematics >> planet signal XO-1 b HST/NICMOS Hot Jupiter HST/WFC3 Deming et al. (2013) Even space telescopes suffer systematics >> planet signal XO-1 b HST/NICMOS Hot Jupiter HST/WFC3 Deming et al. (2013) Instruments must be stable Ground-based observations and well-characterized with require similarly bright repeatable results reference stars ! “The nearest transiting potentially habitable planet is ~11 pc away.” ! “The nearest [non-transiting] potentially habitable planet is ~2.5 pc away.” ! (Dressing & Charbonneau 2015) Detecting molecules with High Dispersion Spectroscopy (HDS) A CRIRES/VLT survey of hot Jupiter atmospheres • CRIRES: CRyogenic high-resolution InfraRed Echelle Spectrograph • R=100,000 spectrograph, 8.2 m mirror • 155hrs • 5 brightest host stars visible from Paranal, Chile (K ~ 4 – 6 mag): HD 209458 b, HD 189733 b, 51 Peg b, ! Boo b, HD 179499 b HDS detects the radial velocity shift of the planetary spectrum Dayside Nightside 5 Relativeline depth 10 x τ Boötis b ModelModel COCO lineslines R~100,000 HDS detects the radial velocity shift of the planetary spectrum 0.8 Toy model of CO lines Blue-shifted Dayside Planet 0.6 Nightside Red-shifted 0.4 Phase 5 0.2 0.0 Relativeline depth 10 x Telluric τ Boötis b ModelModel COCO lineslines R~100,000 -0.2 2.309 2.310 2.311 2.312 2.313 Wavelength / μm Telluric features eliminated by removing common modes in time SNR~200 per resolution element Phase Wavelength CRIRES pipeline output after alignment SYSREM - Treats pixel channels as light curves Mean-subtracted spectra as input to Sysrem (1024 light curves per detector) - PCA-like algorithm identifies trends as a function of time After first Sysrem iteration, airmass-like trend removed - Data are self-calibrating Standard deviation ~ 5x10-4 After optimal Sysrem iterations Combine signal from individual lines via Birkby et al. 2013 10x nominal model injected cross-correlation HDS detects carbon monoxide RV trail in a transiting hot Jupiter atmosphere 0.8 Toy model of CO lines 0.6 Secondary eclipse 0.4 OrbitalPhase Phase 0.2 RV - Vsys (km/s) Snellen et al. 2010 0.0 Transit CO detected at 5.6σ at 2.3 µm in HD 209458 b during transit with 5 hrs on CRIRES/VLT -0.2 2.309 2.310 2.311 2.312 2.313 Wavelength / μm HDS detects carbon monoxide RV trail in a transiting hot Jupiter atmosphere 0.8 Toy model of CO lines Kp = 150 km/s 0.6 Secondary eclipse 0.4 OrbitalPhase Phase 0.2 RV - Vsys (km/s) Snellen et al. 2010 0.0 Transit CO detected at 5.6σ at 2.3 µm in HD 209458 b during transit with 5 hrs on CRIRES/VLT -0.2 2.309 2.310 2.311 2.312 2.313 Non-transiting planet = spectroscopic binary Wavelength / μm HDS detects carbon monoxide RV trail in a non-transiting hot Jupiter atmosphere 0.8 Toy model of CO lines Planet rest frame Observed (Kp=110 km/s) 0.6 0.4 Phase 0.2 Brogi et al. 2012 0.0 CO detected at 6σ at 2.3 µm in τ Boo b on the dayside hemisphere (non-transiting) -0.2 2.309 2.310 2.311 2.312 2.313 with CRIRES/VLT Wavelength / μm HDS provides unambiguous detections of CO in hot Jupiter atmospheres 51 Peg b τ Boo b HD 189733 b Non-transiting Non-transiting Transiting [email protected]µm [email protected]µm Brogi et al. 2013 Brogi et al. 2012 [email protected]µm de Kok et al. 2013 Other molecules are more complex and appear at different wavelengths Model CO lines Model H2O lines 5 Relativeline depth 10 x Model CO lines Model CO2 lines Model CH4 lines Other molecules are more complex and appear at different wavelengths Model CO lines Model H2O lines 5 Greater uncertainty Relativeline depth 10 x Model CO lines in line positions at high temperatures Model CO2! lines Model CH4 lines More telluric contamination Spectral time-series @ 2.3μm Time Wavelength Spectral time-series @ 3.2μm Time 2000K Wavelength HDS provides unambiguous detections of Boo b - CO complex51 Peg b - COmolecules + H O in hot Jupiter atmospheres 2 90 140 70 90 140 70 60 120 ) ) ° 60 ° 120 50 ) ) -1 -1 50 100 (km s 40 (km s P 100 P K K 40 Orbital inclination ( Orbital inclination ( 80 30 80 51 Peg b τ Boo b HD 189733 b Non-transiting Non-transiting 30 Transiting 60 [email protected]µm 20 60 [email protected]µm [email protected]µm -40 -20 0 20 40 -80 -60 -40 -20 0 20 Brogi et al. 2013 -1 -1Brogi et al. 2012 de Kok et al. 2013 Vsys (km s ) Vsys (km s ) Significance () Significance () -2.7 -1.6 -0.5 0.6 1.7 2.8 3.9 5.0 -3.8 -2.6 -1.4 -0.2 1.0 2.2 3.4 4.6 HD 189733b - CO HD 179949b - CO + H2O 180 160 160 90 90 70 ) ) 70 ° 140 ° 140 60 ) ) -1 60 -1 120 50 (km s 120 (km s P 50 P K K HD 189733 b 51 Peg b 100 Orbital inclination ( HD 179949 b 40 Orbital inclination ( 100 40 Transiting Non-transiting Non-transiting [email protected]µm [email protected]µm 80 80 [email protected]µm Birkby et al. 2013 30 30 Birkby et al. in prep Brogi et al. 2014 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 -1 -1 Vsys (km s ) Vsys (km s ) Significance () Significance () -4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 See also Rodler et al. 2012; 2013 (CO in τ Boo b & HD 189733 b); Lockwood et al. 2014 (H2O in τ Boo b) Exoplanet atmospheres as fossil records? C/O ratio could reveal where and how a planet formed in its protoplanetary disk Oberg et al. (2011) Helling et al. (2014) C/O ratio could reveal where and how a planet formed in its protoplanetary disk Oberg et al. (2011) Helling et al. (2014) Marois et al. (2010) For HR 8799 planets: i) Super-stellar C/O: core accretion at location ii) Stellar C/O: gas collapse at location Barman et al. 2015, Teske et al. 2014 HR 8799 bcde Simulations identify 3.5µm as spectral ‘sweet spot’ for measuring C/O ratio Simulation of CRIRES sensitivity de Kok, Birkby et al. (2014) RelativeCorrelation Wavelength / μm Simulations identify 3.5µm as spectral ‘sweet spot’ for measuring C/O ratio Simulation of CRIRES sensitivity de Kok, Birkby et al. (2014) H2O! HD 209458 b CH4! τ Boo b CO2 (Birkby et al. in prep.) CO! HD 179949 b C/O<1 (Brogi et al. 2014) H2O! CH4 RelativeCorrelation H2O! CO2! CH4 H2O! CO2 Wavelength / μm Accurate line lists are essential for HDS HD 209458 b shows no evidence of TiO that could could that TiO evidence HD of 209458 no shows b potentially cause an inversion layercause inversion an potentially Hoeijmakers Observed , de Kok, Snellen, Brogi, Birkby, Schwarz, 2014 deSnellen, Kok, , Brogi, Birkby, Injected -11 -10 -9 -8 -7 VMRTiO=10 VMRTiO=10 VMRTiO=10 VMRTiO=10 VMRTiO=10 HD 209458 b shows no evidence of TiO that could could that TiO evidence HD of 209458 no shows b potentially cause an inversion layercause inversion an potentially Hoeijmakers Observed , de Kok, Snellen, Brogi, Birkby, Schwarz, 2014 deSnellen, Kok, , Brogi, Birkby, Injected -11 -10 -9 -8 -7 VMRTiO=10 VMRTiO=10 VMRTiO=10 VMRTiO=10 VMRTiO=10 Stellarmodel atmospheres observations M-dwarf HD 209458 b shows no evidence of TiO that could could that TiO evidence HD of 209458 no shows b potentially cause an inversion layercause inversion an potentially Hoeijmakers Observed , de Kok, Snellen, Brogi, Birkby, Schwarz, 2014 deSnellen, Kok, , Brogi, Birkby, Injected -11 -10 -9 -8 -7 VMRTiO=10 VMRTiO=10 VMRTiO=10 VMRTiO=10 VMRTiO=10 for the high resolution technique resolution high the for Data cross-correlated with Barnard’s star (M-dwarf) Datacross-correlated Barnard’s with Accurate Stellarmodel atmospheres line lists arelists crucial line observations M-dwarf Monitoring atmospheric dynamics with HDS Nightside features are deeper and Dayside potentially easier to detect Night side Reveals heat circulation de Kok, Birkby et al.
Recommended publications
  • Astronomy DOI: 10.1051/0004-6361/201423537 & C ESO 2014 Astrophysics
    A&A 565, A124 (2014) Astronomy DOI: 10.1051/0004-6361/201423537 & c ESO 2014 Astrophysics Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b? M. Brogi1, R. J. de Kok1;2, J. L. Birkby1, H. Schwarz1, and I. A. G. Snellen1 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands Received 29 January 2014 / Accepted 5 April 2014 ABSTRACT Context. In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmo- spheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. The system is bright enough to be an ideal target for near-infrared, high-resolution spectroscopy. Aims. Here we present the analysis of spectra of the system at 2.3 µm, obtained at a resolution of R ∼ 100 000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet’s thermal spectrum and the radial component of its orbital velocity. Methods. Unlike the telluric signal, the planet signal is subject to a changing Doppler shift during the observations. This is due to the changing radial component of the planet orbital velocity, which is on the order of 100–150 km s−1 for these hot Jupiters.
    [Show full text]
  • Arxiv:2009.06280V1 [Astro-Ph.EP] 14 Sep 2020
    Astronomy & Astrophysics manuscript no. vis_hd20_hd18 c ESO 2020 September 15, 2020 Discriminating between hazy and clear hot-Jupiter atmospheres with CARMENES A. Sánchez-López1, M. López-Puertas2, I. A. G. Snellen1, E. Nagel3, F. F. Bauer2, E. Pallé4; 5, L. Tal-Or6; 9, P. J. Amado2, J. A. Caballero7, S. Czesla8, L. Nortmann9, A. Reiners9, I. Ribas10; 11, A. Quirrenbach12, J. Aceituno13, V. J. S. Béjar4; 5, N. Casasayas-Barris4; 5, Th. Henning14, K. Molaverdikhani14, D. Montes15, M. Stangret4; 5, M. R. Zapatero Osorio16, and M. Zechmeister9 1 Leiden Observatory, Leiden University, Postbus 9513, 2300 RA, Leiden, The Netherlands e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain 3 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany 4 Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidad de La Laguna, 38026 La Laguna, Tenerife, Spain 6 Department of Physics, Ariel University, Ariel 40700, Israel 7 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 8 Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany 9 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 10 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, 08193 Bellaterra, Barcelona, Spain 11 Institut d’Estudis Espacials
    [Show full text]
  • Introduction
    Introduction ”They say the sky is the limit, but to me, it is only the beginning. I look to the stars, and I count them, imagining every one of them as the centre of a solar system, even more wondrous than our own. We now know they are out there. Planets. Millions of them - just waiting to be discovered. What are they like, these distant spinning worlds? How did they come to be? And finally - before I close my eyes and go to sleep, one question lingers. Like the echo of a whisper : Is anyone out there...” The study of exoplanets is a quest to understand our place in the universe. How unique is the solar system? How extraordinary is the Earth? Is life on Earth an unfathomable coincidence, or is the galaxy teeming with life? Only 25 years ago the first extrasolar planets were discovered, two of them, orbiting the millisecond pulsar PSR1257+12 (Wolszczan and Frail, 1992), and this was followed three years later by the discovery of the first exoplanet orbiting a solar-type star (51 Pegasi, Mayor and Queloz, 1995). In the subsequent years, multiple techniques were developed to find and study these new worlds. Each detection method has its own advantages, limitations and biases, and they have complimented each other to form the picture of exoplanets that we have today: The galaxy is brimming with planetary systems, and the exoplanets are more diverse, than we could ever have imagined. The diversity of planets presents a challenge to the theories of formation designed to match the solar system, and any modern theories must strive to explain the full observed range of architectures of planetary systems.
    [Show full text]
  • Evidence of Energy-, Recombination-, and Photon-Limited Escape Regimes in Giant Planet H/He Atmospheres M
    A&A 648, L7 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140423 & c ESO 2021 Astrophysics LETTER TO THE EDITOR Evidence of energy-, recombination-, and photon-limited escape regimes in giant planet H/He atmospheres M. Lampón1, M. López-Puertas1, S. Czesla2, A. Sánchez-López3, L. M. Lara1, M. Salz2, J. Sanz-Forcada4, K. Molaverdikhani5,6, A. Quirrenbach6, E. Pallé7,8, J. A. Caballero4, Th. Henning5, L. Nortmann9, P. J. Amado1, D. Montes10, A. Reiners9, and I. Ribas11,12 1 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain e-mail: [email protected] 2 Hamburger Sternwarte, Universität Hamburg,Gojenbergsweg 112, 21029 Hamburg, Germany 3 Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands 4 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692, Villanueva de la Cañada Madrid, Spain 5 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 6 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 7 Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, 38200, La Laguna Tenerife, Spain 8 Departamento de Astrofísica, Universidad de La Laguna, 38026, La Laguna Tenerife, Spain 9 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 10 Departamento de Física de la Tierra y Astrofísica & IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain 11 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, 08193 Bellaterra, Barcelona, Spain 12 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain Received 26 January 2021 / Accepted 19 March 2021 ABSTRACT Hydrodynamic escape is the most efficient atmospheric mechanism of planetary mass loss and has a large impact on planetary evolution.
    [Show full text]
  • Laporan Tahunan Persatuan Astronomi Negara Brunei Darussalam
    ﻻڤورن تاهونن Laporan Tahunan 2019 - 2020 Persatuan Astronomi Negara Brunei Darussalam Disediakan oleh Setiausaha Agung PABD 1 Kandungan • Pengenalan • Pindaan Pertama Perlembagaan PABD • Penaung & Penasihat PABD 2019/2020 • AJK Eksekutif PABD 2019/2020 • Pindaan Pertama Perlembagaan • Keahlian PABD • Kegiatan PABD www.bruneiastronomy.org • Jaringan Rakan Strategik PABD Fb.com/bruneiastronomy • Fenomena Astronomi 2021 www.bruneiastronomy.org/whatsapp • Laporan Khas: NameExoWorlds Brunei @bruneiastronomy • Laporan Khas: Telescope For All 2020 t.me/bruneiastronomy 2 Pengenalan PABD Agensi bukan Kerajaan yang unggul dalam bidang Astronomi di Negara Brunei Darussalam Persatuan Astronomi Negara Brunei Darussalam (PABD) merupakan persatuan bebas dan persatuan bukan Kerajaan yang didedikasi kepada masyarakat dan bidang sains astronomi. Ia adalah satu-satunya agensi bukan Kerajaan yang berkaitan dengan bidang astronomi di Negara Brunei Darussalam. PABD telah didaftarkan secara rasmi kepada Pendaftar Pertubuhan, Polis Di Raja Brunei, pada 06 Januari 2003 bersamaan dengan 03 Zulkaedah 1423 H. Peraturan-peraturan dan keterangan PABD telah termaktub di dalam Perlembagaan Persatuan Astronomi Negara Brunei Darussalam oleh ahli-ahli sementara PABD pada tahun 2002. Persatuan ini mempunyai Penaung, iaitu Ketua Hakim Syarie, Jabatan Kehakiman Negara, dan tiga orang ahli Penasihat yang terdiri daripada Hakim Mahkamah Tinggi Syariah Negara Brunei Darussalam, Juruukur Agung dan Naib Canselor Universiti Brunei Darussalam (UBD). Penambahan seorang penasihat,
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Atmospheric Mass Loss of Extrasolar Planets Orbiting Magnetically Active
    MNRAS 000, 1–?? (2017) Preprint 8 August 2018 Compiled using MNRAS LATEX style file v3.0 Atmospheric mass loss of extrasolar planets orbiting magnetically active host stars Lalitha Sairam,1⋆ J. H. M. M. Schmitt,2 and Spandan Dash3 1Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034, India 2Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg 3Indian Institute of Science, C.V Raman Avenue, Yeshwantpur, Bangalore 560 012, India Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets’ upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically ac- tive planet-bearing host stars Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well stud- ied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass loss in these hot Jupiters. Key words: stars: activity – stars: coronae – stars: low-mass, late-type, planetary systems – stars: individual: Kepler-63, Kepler-210, WASP-19, HAT-P-11 1 INTRODUCTION through Jeans escape, the observations of atmospheric mass loss in HD 209458 b (Vidal-Madjar et al.
    [Show full text]
  • Introduction
    Introduction Onething is certain about this book: by thetimeyou readit, parts of it will be out of date. Thestudy of exoplanets,planets orbitingaround starsother than theSun, is anew andfast-moving field.Important newdiscoveries areannounced on a weekly basis. This is arguablythe most exciting andfastest-growing field in astrophysics.Teamsofastronomersare competing to be thefirsttofind habitable planets likeour ownEarth, andare constantly discovering ahostofunexpected andamazingly detailed characteristics of thenew worlds. Since1995, when the first exoplanet wasdiscoveredorbitingaSun-like star,over 400 of them have been identified.Acomprehensive review of thefield of exoplanets is beyond thescope of this book, so we have chosen to focus on thesubset of exoplanets that are observedtotransittheir hoststar (Figure 1). Figure1 An artist’simpression of thetransitofHD209458 bacrossits star. Thesetransitingplanets areofparamount importancetoour understanding of the formation andevolutionofplanets.During atransit, theapparent brightness of the hoststar drops by afraction that is proportionaltothe area of theplanet: thus we can measure thesizes of transitingplanets,eventhough we cannot seethe planets themselves.Indeed,the transitingexoplanets arethe onlyplanets outside our own Solar System with known sizes.Knowing aplanet’ssize allows its density to be deduced andits bulk compositiontobeinferred.Furthermore, by performing precisespectroscopicmeasurements during andout of transit, theatmospheric compositionofthe planet can be detected.Spectroscopicmeasurements
    [Show full text]
  • Dr. Avi Mandell (NASA) “Somewhere, Something Incredible Is Waiting to Be Known.” - Carl Sagan
    The Age of Exoplanets: From First Discoveries to the Search for Living Worlds Dr. Avi Mandell (NASA) “Somewhere, something incredible is waiting to be known.” - Carl Sagan How will the discovery of a distant planet teeming with life change our perspective on our own planet – and on ourselves? Planets 101: Our Solar SysteM Planets 101: Our Solar SysteM First Planet Around a Sun-Like Star Discovered in 1995 Notable Facts About 1995: • Bill Clinton is in his 3rd year of the Presidency • Ebay opens for business •DVDs are first introduced •Big event for the coffee-drinking world… Invention of the Frappucino! The First Planets were Discovered by Measuring The Motions of Stars 51 Peg b • Uses the change in star’s light due to the Doppler effect Mayor & Queloz, Movie: eso1035g.mov November 1995 Dr. Michel Mayor & Dr. Didier Queloz Geneva Observatory Spectrum of Starlight from Dr. Geoff Marcy & Parent Star Dr. R. Paul Butler San Francisco State Univ. Timeline of Exoplanet Discoveries Known Exoplanets, 1995: 0 Planet Mass Jup. Neptune Earth Mercury Earth Jupiter Distance to the Star Timeline of Exoplanet Discoveries Known Exoplanets, 1996: 6 Planet Mass Jup. First Confirmed RV Planet: 51 Peg b Neptune Earth Mercury Earth Jupiter Distance to the Star Timeline of Exoplanet Discoveries Known Exoplanets, 1996: 6 2000: 38 Planet Mass First Transiting Planet: Jup. HD 209458 b First Confirmed RV Planet: 51 Peg b Neptune Earth Mercury Earth Jupiter Distance to the Star The Most Planets have been Discovered by Measuring The Shadows on Stars Movie: OccultationGraphH264FullSize.mov Timeline of Exoplanet Discoveries Known Exoplanets, 2000: 38 2005: 155 2008: 260 2012: 579 Planet Mass Jup.
    [Show full text]
  • A Spit.Ze@ Infrared Radius for the Transiting Extrasolar Planet HD 209458 B
    * Source of Acquisition PAGoddard Space night Center Accepted to Astrophysical Journal A Spit.ze@ Infrared Radius for the Transiting Extrasolar Planet HD 209458 b L. Jeremy Richardson Exoplanets and Stellar Astrophysics Laboratory, NASA's Goddard Space Flight Center, Mail Code 667, Greenbelt, MD 20771 [email protected] Joseph Harrington Center for Radiophysics and Space Research, Cornell Universtiy, 326 Space Sciences Bldg., Ithaca, N Y 14 853- 6801 [email protected] Sara Seager Department of Terrestrial Magnetism, Carnegie Institution of Washington, 524 1 Broad Branch Rd NW, Washington, DC 20015 [email protected] Drake Deming Planetary Systems Laboratory, NASA 's Goddard Space Flight Center, Mail Code 693, Greenbelt, MD 20771 [email protected] ABSTRACT We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 pm array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local -2- zodiacal light as a short-term flux reference. At this long wavelength, the tran- sit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 pm. We derive a stellar radius of R, = 1.06 f 0.07 b,a planetary radius of Rp = 1.26 f 0.08 RJ, and a stellar mass of 1.17 M,.
    [Show full text]
  • Atmospheres of Hot Alien Worlds
    Atmospheres of hot alien Worlds Atmospheres of hot alien Worlds Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op donderdag 5 juni 2014 klokke 10.00 uur door Matteo Brogi geboren te Grosseto, Italië in 1983 Promotiecommissie Promotors: Prof. dr. I. A. G. Snellen Prof. dr. C. U. Keller Overige leden: Prof. dr. C. Dominik University of Amsterdam Prof. dr. K. Heng University of Bern Prof. dr. E. F. van Dishoeck Dr. M. A. Kenworthy Prof. dr. H. J. A. Röttgering Ai miei genitori, per aver creduto in me, permettendomi di realizzare un sogno Contents 1 Introduction 1 1.1 Planet properties from transits and radial velocities . 2 1.2 Atmospheric characterization of exoplanets . 4 1.2.1 Atmospheres of transiting planets . 4 1.2.2 Challenges of space- and ground-based observations . 7 1.2.3 Ground-based, high resolution spectroscopy . 8 1.2.4 A novel data analysis . 10 1.3 Close-in planets and their environment . 10 1.3.1 From atmospheric escape to catastrophic evaporation . 12 1.4 This thesis . 12 2 The orbital trail of the giant planet t Boötis b 17 2.1 The CRIRES observations . 18 2.2 Data reduction and analysis . 19 2.2.1 Initial data reduction . 19 2.2.2 Removal of telluric line contamination . 19 2.2.3 Cross correlation and signal extraction . 21 2.3 The CO detection and the planet velocity trail .
    [Show full text]
  • Extrasolar Planets
    Extrasolar Planets Dieter Schmitt Lecture Max Planck Institute for Introduction to Solar System Research Solar System Physics KatlenburgLindau Uni Göttingen, 8 June 2009 Outline • Historical Overview • Detection Methods • Planet Statistics • Formation of Planets • Physical Properties • Habitability Historical overview • 1989: planet / brown dwarf orbiting HD 114762 (Latham et al.) • 1992: two planets orbiting pulsar PSR B1257+12 (Wolszczan & Frail) • 1995: first planet around a solarlike star 51 Peg b (Mayor & Queloz) • 1999: first multiple planetary system with three planets Ups And (Edgar et al.) • 2000: first planet by transit method HD 209458 b (Charbonneau et al.) • 2001: atmosphere of HD 209458 b (Charbonneau et al.) • 2002: astrometry applied to Gliese 876 (Benedict et al.) • 2005: first planet by direct imaging GQ Lupi b (Neuhäuser et al.) • 2006: Earthlike planet by gravitational microlensing (Beaulieu et al.) • 2007: Gliese 581d, small exoplanet near habitability zone (Selsis et al.) • 2009: Gliese 581e, smallest exoplanet with 1.9 Earth masses (Mayor et al.) • As of 7 June 2009: 349 exoplanets in 296 systems (25 systems with 2 planets, 9 with 3, 2 with 4 and 1 with 5) www.exoplanet.eu Our Solar System 1047 MJ 0.39 AU 0.00314 MJ 1 MJ 0.30 MJ 0.046 MJ 0.054 MJ 1 AU 5.2 AU 9.6 AU 19 AU 30 AU 1 yr 11.9 yr 29.5 yr 84 yr 165 yr Definition Planet IAU 2006: • in orbit around the Sun / star • nearly spherical shape / sufficient mass for hydrostatic equilib. • cleared neighbourhood around its orbit Pluto: dwarf planet, as Ceres Brown
    [Show full text]