FTIR Spectroscopy of Hot Exoplanets: a First Step in Experimental Procedure and Analysis
Total Page:16
File Type:pdf, Size:1020Kb
BearWorks MSU Graduate Theses Spring 2017 FTIR Spectroscopy of Hot Exoplanets: A First Step in Experimental Procedure and Analysis Heath Emmanuel Gemar As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Materials Science and Engineering Commons Recommended Citation Gemar, Heath Emmanuel, "FTIR Spectroscopy of Hot Exoplanets: A First Step in Experimental Procedure and Analysis" (2017). MSU Graduate Theses. 3165. https://bearworks.missouristate.edu/theses/3165 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. FTIR SPECTROSCOPY OF HOT EXOPLANETS: A FIRST STEP IN EXPERIMENTAL PROCEDURE AND ANALYSIS A Master’s Thesis Presented to The Graduate College of Missouri State University TEMPLATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Materials Science By Heath Gemar May, 2017 Copyright 2017 by Heath Emmanuel Gemar ii FTIR SPECTROSCOPY OF HOT EXOPLANETS: A FIRST STEP IN EXPERIMENTAL PROCEDURE AND ANALYSIS Physics, Astronomy, and Materials Science Missouri State University, May 2017 Master of Science Heath Gemar ABSTRACT In this thesis, I demonstrate how I constructed a complete experimental package to view FTIR Spectroscopy of constituents that make up hot, rocky exoplanets. I examine in detail the engineering and construction of such a system. Also, I developed a full computational package to analyze spectra in association and relate the analysis to that of real world application. The new system produces reproducible IR spectra on exoplanet analogs and can be used to probe complex chemistry composition at high temperatures. KEYWORDS: FTIR spectroscopy, hot exoplanets, matlab analysis, spectral data, high temperature engineering. This abstract is approved as to form and content _______________________________ Dr. David Cornelison Chairperson, Advisory Committee Missouri State University iii FTIR SPECTROSCOPY OF HOT EXOPLANETS: A FIRST STEP IN EXPERIMENTAL PROCEDURE AND ANALYSIS By Heath Gemar A Master’s Thesis Submitted to the Graduate College Of Missouri State University In Partial Fulfillment of the Requirements For the Degree of Master of Science, Materials Science May 2017 Approved: _______________________________________ Dr. David Cornelison _______________________________________ Dr. Mike Reed _______________________________________ Dr. Robert Mayanovic _______________________________________ Dr. Julie Masterson: Dean, Graduate College iv ACKNOWLEDGEMENTS I would like to thank the following people for their support during the course of my graduate studies: Dr. David Cornelison Dr. Mike Reed Dr. Kartik Ghosh Dr. Bob Mayanovic Denny Bosch Michal Bulak Nolan Ingersol Trey Grimes Dr. Nathan Jacobson Brian Grindstaff Jonathan Keeth v TABLE OF CONTENTS Introduction ..........................................................................................................................1 Extra Solar Planets ...................................................................................................1 Atmospheres ............................................................................................................4 Lab Work .................................................................................................................8 Theory ................................................................................................................................10 Fourier Transform Infrared Spectroscopy .............................................................10 Knudsen Cells ........................................................................................................12 Matrix Isolation ......................................................................................................14 Engineering .......................................................................................................................16 Chamber Design.....................................................................................................16 E-Beam Evaporator ................................................................................................17 IR Optical Path .......................................................................................................19 Thickness Monitor .................................................................................................22 Gas Inlet .................................................................................................................23 Thermometry..........................................................................................................25 Experimental ......................................................................................................................26 Programming Results .........................................................................................................28 LabVIEW ...............................................................................................................28 Omnic .....................................................................................................................29 Matlab ....................................................................................................................29 Engineering Results ...........................................................................................................31 Gas Inlet .................................................................................................................31 Emissivity ..............................................................................................................31 Scientific Results ...............................................................................................................35 SiO .........................................................................................................................35 Si2O2 .......................................................................................................................39 Si3O3 .......................................................................................................................42 Discussion ..........................................................................................................................46 References ..........................................................................................................................47 Appendices ........................................................................................................................49 Appendix A: Analyzing Spectra Code ...................................................................49 Appendix B: Emissivity Correction Code .............................................................60 vi LIST OF FIGURES Figure 1. Credit N. Batalha, PNAS 2014. ........................................................................... 1 Figure 2. Artist's Depiction of Kepler 10b (NASA/Kepler Mission/Dana Berry) .............. 2 Figure 3. Showing HD 209458 off axis in comparison with Jupiter. (NASA, ESA, and A. Feild [STScl])...................................................................................................................... 3 Figure 4. Atmospheric gas composition for CoRoT-7b assuming 2500 K temperature and 10-2 bar pressure for two alternate compositions, calculated using MAGMA (Schaefer et al 2012). .............................................................................................................................. 5 Figure 5. Showing the variation of bringtness from both star and planet while in orbit of 55 Cancri e. (NASA/JPL - Caltech/University of Cambridge)........................................... 6 Figure 6. Spectrum of sunlight (black) and sunlight that has passed through Earth’s atmosphere (red) (ASTM 2012) .......................................................................................... 7 Figure 7. A Michelson Interferometer. (http://pe2bz.philpem.me.uk/) ............................ 11 Figure 8. Graphical depiction of a Fourier Transform from frequency space to time space. (UC, Davis/ Jing Zhao) ..................................................................................................... 12 Figure 9. Depiction of Knudsen Cell ................................................................................ 13 Figure 10. Spherical chamber in process of building set up. (Heath Gemar) ................... 16 Figure 11. Spherical CAD design. (John Lester) .............................................................. 17 Figure 12. E-Beam Evaporator post-run. Flakes are cooled SiO fallen from cooling shroud. (Heath Gemar)...................................................................................................... 18 Figure 13. Cooling shroud and shutter set up from underneath the chamber. (Heath Gemar) .............................................................................................................................