FTIR Spectroscopy of Hot Exoplanets: a First Step in Experimental Procedure and Analysis

Total Page:16

File Type:pdf, Size:1020Kb

FTIR Spectroscopy of Hot Exoplanets: a First Step in Experimental Procedure and Analysis BearWorks MSU Graduate Theses Spring 2017 FTIR Spectroscopy of Hot Exoplanets: A First Step in Experimental Procedure and Analysis Heath Emmanuel Gemar As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Materials Science and Engineering Commons Recommended Citation Gemar, Heath Emmanuel, "FTIR Spectroscopy of Hot Exoplanets: A First Step in Experimental Procedure and Analysis" (2017). MSU Graduate Theses. 3165. https://bearworks.missouristate.edu/theses/3165 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. FTIR SPECTROSCOPY OF HOT EXOPLANETS: A FIRST STEP IN EXPERIMENTAL PROCEDURE AND ANALYSIS A Master’s Thesis Presented to The Graduate College of Missouri State University TEMPLATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Materials Science By Heath Gemar May, 2017 Copyright 2017 by Heath Emmanuel Gemar ii FTIR SPECTROSCOPY OF HOT EXOPLANETS: A FIRST STEP IN EXPERIMENTAL PROCEDURE AND ANALYSIS Physics, Astronomy, and Materials Science Missouri State University, May 2017 Master of Science Heath Gemar ABSTRACT In this thesis, I demonstrate how I constructed a complete experimental package to view FTIR Spectroscopy of constituents that make up hot, rocky exoplanets. I examine in detail the engineering and construction of such a system. Also, I developed a full computational package to analyze spectra in association and relate the analysis to that of real world application. The new system produces reproducible IR spectra on exoplanet analogs and can be used to probe complex chemistry composition at high temperatures. KEYWORDS: FTIR spectroscopy, hot exoplanets, matlab analysis, spectral data, high temperature engineering. This abstract is approved as to form and content _______________________________ Dr. David Cornelison Chairperson, Advisory Committee Missouri State University iii FTIR SPECTROSCOPY OF HOT EXOPLANETS: A FIRST STEP IN EXPERIMENTAL PROCEDURE AND ANALYSIS By Heath Gemar A Master’s Thesis Submitted to the Graduate College Of Missouri State University In Partial Fulfillment of the Requirements For the Degree of Master of Science, Materials Science May 2017 Approved: _______________________________________ Dr. David Cornelison _______________________________________ Dr. Mike Reed _______________________________________ Dr. Robert Mayanovic _______________________________________ Dr. Julie Masterson: Dean, Graduate College iv ACKNOWLEDGEMENTS I would like to thank the following people for their support during the course of my graduate studies: Dr. David Cornelison Dr. Mike Reed Dr. Kartik Ghosh Dr. Bob Mayanovic Denny Bosch Michal Bulak Nolan Ingersol Trey Grimes Dr. Nathan Jacobson Brian Grindstaff Jonathan Keeth v TABLE OF CONTENTS Introduction ..........................................................................................................................1 Extra Solar Planets ...................................................................................................1 Atmospheres ............................................................................................................4 Lab Work .................................................................................................................8 Theory ................................................................................................................................10 Fourier Transform Infrared Spectroscopy .............................................................10 Knudsen Cells ........................................................................................................12 Matrix Isolation ......................................................................................................14 Engineering .......................................................................................................................16 Chamber Design.....................................................................................................16 E-Beam Evaporator ................................................................................................17 IR Optical Path .......................................................................................................19 Thickness Monitor .................................................................................................22 Gas Inlet .................................................................................................................23 Thermometry..........................................................................................................25 Experimental ......................................................................................................................26 Programming Results .........................................................................................................28 LabVIEW ...............................................................................................................28 Omnic .....................................................................................................................29 Matlab ....................................................................................................................29 Engineering Results ...........................................................................................................31 Gas Inlet .................................................................................................................31 Emissivity ..............................................................................................................31 Scientific Results ...............................................................................................................35 SiO .........................................................................................................................35 Si2O2 .......................................................................................................................39 Si3O3 .......................................................................................................................42 Discussion ..........................................................................................................................46 References ..........................................................................................................................47 Appendices ........................................................................................................................49 Appendix A: Analyzing Spectra Code ...................................................................49 Appendix B: Emissivity Correction Code .............................................................60 vi LIST OF FIGURES Figure 1. Credit N. Batalha, PNAS 2014. ........................................................................... 1 Figure 2. Artist's Depiction of Kepler 10b (NASA/Kepler Mission/Dana Berry) .............. 2 Figure 3. Showing HD 209458 off axis in comparison with Jupiter. (NASA, ESA, and A. Feild [STScl])...................................................................................................................... 3 Figure 4. Atmospheric gas composition for CoRoT-7b assuming 2500 K temperature and 10-2 bar pressure for two alternate compositions, calculated using MAGMA (Schaefer et al 2012). .............................................................................................................................. 5 Figure 5. Showing the variation of bringtness from both star and planet while in orbit of 55 Cancri e. (NASA/JPL - Caltech/University of Cambridge)........................................... 6 Figure 6. Spectrum of sunlight (black) and sunlight that has passed through Earth’s atmosphere (red) (ASTM 2012) .......................................................................................... 7 Figure 7. A Michelson Interferometer. (http://pe2bz.philpem.me.uk/) ............................ 11 Figure 8. Graphical depiction of a Fourier Transform from frequency space to time space. (UC, Davis/ Jing Zhao) ..................................................................................................... 12 Figure 9. Depiction of Knudsen Cell ................................................................................ 13 Figure 10. Spherical chamber in process of building set up. (Heath Gemar) ................... 16 Figure 11. Spherical CAD design. (John Lester) .............................................................. 17 Figure 12. E-Beam Evaporator post-run. Flakes are cooled SiO fallen from cooling shroud. (Heath Gemar)...................................................................................................... 18 Figure 13. Cooling shroud and shutter set up from underneath the chamber. (Heath Gemar) .............................................................................................................................
Recommended publications
  • Arxiv:2009.06280V1 [Astro-Ph.EP] 14 Sep 2020
    Astronomy & Astrophysics manuscript no. vis_hd20_hd18 c ESO 2020 September 15, 2020 Discriminating between hazy and clear hot-Jupiter atmospheres with CARMENES A. Sánchez-López1, M. López-Puertas2, I. A. G. Snellen1, E. Nagel3, F. F. Bauer2, E. Pallé4; 5, L. Tal-Or6; 9, P. J. Amado2, J. A. Caballero7, S. Czesla8, L. Nortmann9, A. Reiners9, I. Ribas10; 11, A. Quirrenbach12, J. Aceituno13, V. J. S. Béjar4; 5, N. Casasayas-Barris4; 5, Th. Henning14, K. Molaverdikhani14, D. Montes15, M. Stangret4; 5, M. R. Zapatero Osorio16, and M. Zechmeister9 1 Leiden Observatory, Leiden University, Postbus 9513, 2300 RA, Leiden, The Netherlands e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain 3 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany 4 Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidad de La Laguna, 38026 La Laguna, Tenerife, Spain 6 Department of Physics, Ariel University, Ariel 40700, Israel 7 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 8 Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany 9 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 10 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, 08193 Bellaterra, Barcelona, Spain 11 Institut d’Estudis Espacials
    [Show full text]
  • Evidence of Energy-, Recombination-, and Photon-Limited Escape Regimes in Giant Planet H/He Atmospheres M
    A&A 648, L7 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140423 & c ESO 2021 Astrophysics LETTER TO THE EDITOR Evidence of energy-, recombination-, and photon-limited escape regimes in giant planet H/He atmospheres M. Lampón1, M. López-Puertas1, S. Czesla2, A. Sánchez-López3, L. M. Lara1, M. Salz2, J. Sanz-Forcada4, K. Molaverdikhani5,6, A. Quirrenbach6, E. Pallé7,8, J. A. Caballero4, Th. Henning5, L. Nortmann9, P. J. Amado1, D. Montes10, A. Reiners9, and I. Ribas11,12 1 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain e-mail: [email protected] 2 Hamburger Sternwarte, Universität Hamburg,Gojenbergsweg 112, 21029 Hamburg, Germany 3 Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands 4 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692, Villanueva de la Cañada Madrid, Spain 5 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 6 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany 7 Instituto de Astrofísica de Canarias (IAC), Calle Vía Láctea s/n, 38200, La Laguna Tenerife, Spain 8 Departamento de Astrofísica, Universidad de La Laguna, 38026, La Laguna Tenerife, Spain 9 Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany 10 Departamento de Física de la Tierra y Astrofísica & IPARCOS-UCM (Instituto de Física de Partículas y del Cosmos de la UCM), Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain 11 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, c/ de Can Magrans s/n, 08193 Bellaterra, Barcelona, Spain 12 Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain Received 26 January 2021 / Accepted 19 March 2021 ABSTRACT Hydrodynamic escape is the most efficient atmospheric mechanism of planetary mass loss and has a large impact on planetary evolution.
    [Show full text]
  • Arxiv:2008.02789V1 [Astro-Ph.EP] 6 Aug 2020 Common Planet Size; and Compact Multiple Planet Sys- Tems
    Draft version August 7, 2020 Typeset using LATEX twocolumn style in AASTeX63 LOW ALBEDO SURFACES OF LAVA WORLDS Zahra Essack ,1, 2 Sara Seager ,1, 3, 4 and Mihkel Pajusalu 1, 5 1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 4Department of Aeronautics and Astronautics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 5Tartu Observatory, University of Tartu, Observatooriumi 1, 61602 Toravere, Estonia (Accepted June 12, 2020) Submitted to ApJ ABSTRACT Hot super Earths are exoplanets with short orbital periods (< 10 days), heated by their host stars to temperatures high enough for their rocky surfaces to become molten. A few hot super Earths exhibit high geometric albedos (> 0.4) in the Kepler band (420-900 nm). We are motivated to determine whether reflection from molten lava and quenched glasses (a product of rapidly cooled lava) on the surfaces of hot super Earths contributes to the observationally inferred high geometric albedos. We experimentally measure reflection from rough and smooth textured quenched glasses of both basalt and feldspar melts. For lava reflectance values, we use specular reflectance values of molten silicates from non-crystalline solids literature. Integrating the empirical glass reflectance function and non-crystalline solids reflectance values over the dayside surface of the exoplanet at secondary eclipse yields an upper limit for the albedo of a lava-quenched glass planet surface of ∼0.1.
    [Show full text]
  • The Atmospheric Remote-Sensing Infrared Exoplanet Large-Survey
    ariel The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey Towards an H-R Diagram for Planets A Candidate for the ESA M4 Mission TABLE OF CONTENTS 1 Executive Summary ....................................................................................................... 1 2 Science Case ................................................................................................................ 3 2.1 The ARIEL Mission as Part of Cosmic Vision .................................................................... 3 2.1.1 Background: highlights & limits of current knowledge of planets ....................................... 3 2.1.2 The way forward: the chemical composition of a large sample of planets .............................. 4 2.1.3 Current observations of exo-atmospheres: strengths & pitfalls .......................................... 4 2.1.4 The way forward: ARIEL ....................................................................................... 5 2.2 Key Science Questions Addressed by Ariel ....................................................................... 6 2.3 Key Q&A about Ariel ................................................................................................. 6 2.4 Assumptions Needed to Achieve the Science Objectives ..................................................... 10 2.4.1 How do we observe exo-atmospheres? ..................................................................... 10 2.4.2 Targets available for ARIEL ..................................................................................
    [Show full text]
  • Atmospheric Mass Loss of Extrasolar Planets Orbiting Magnetically Active
    MNRAS 000, 1–?? (2017) Preprint 8 August 2018 Compiled using MNRAS LATEX style file v3.0 Atmospheric mass loss of extrasolar planets orbiting magnetically active host stars Lalitha Sairam,1⋆ J. H. M. M. Schmitt,2 and Spandan Dash3 1Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560 034, India 2Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg 3Indian Institute of Science, C.V Raman Avenue, Yeshwantpur, Bangalore 560 012, India Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets’ upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically ac- tive planet-bearing host stars Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well stud- ied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass loss in these hot Jupiters. Key words: stars: activity – stars: coronae – stars: low-mass, late-type, planetary systems – stars: individual: Kepler-63, Kepler-210, WASP-19, HAT-P-11 1 INTRODUCTION through Jeans escape, the observations of atmospheric mass loss in HD 209458 b (Vidal-Madjar et al.
    [Show full text]
  • Part 1: the 1.7 and 3.9 Earth Radii Rule
    Hi this is Steve Nerlich from Cheap Astronomy www.cheapastro.com and this is What are exoplanets made of? Part 1: The 1.7 and 3.9 earth Radii rule. As of August 2016, the current count of confirmed exoplanets is up around 3,400 in 2,617 systems – with 590 of those systems confirmed to be multiplanet systems. And the latest thinking is that if you want to understand what exoplanets are made of you need to appreciate the physical limits of planet-hood, which are defined by the boundaries of 1.7 and 3.9 Earth radii . Consider that the make-up of an exoplanet is largely determined by the elemental make up of its protoplanetary disk. While most material in the Universe is hydrogen and helium – these are both tenuous gases. In order to generate enough gravity to hang on to them, you need a lot of mass to start with. So, if you’re Earth, or anything up to 1.7 times the radius of Earth – you’ve got no hope of hanging onto more than a few traces of elemental hydrogen and helium. Indeed, any exoplanet that’s less than 1.7 Earth radii has to be primarily composed of non-volatiles – that is, things that don’t evaporate or blow away easily – to have any chance of gravitationally holding together. A non-volatile exoplanet might be made of rock – which for our Solar System is a primarily silicon/oxygen based mineral matrix, but as we’ll hear, small sub-1.7 Earth radii exoplanets could be made of a whole range of other non-volatile materials.
    [Show full text]
  • Abstract Ems
    abstracts.md A table containing the talk and poster abstracts is posted below, in alphabetical order of last name. The posters themselves can be viewed on ZENODO (click for link), as well as during the gather.town live viewing sessions. Poster identifiers are in a topic.idnumber schema. Categories are as follows: 1. Atmospheres and Interiors . Detection: Transits, RVs, Microlensing, Astrometry, Imaging . Planet Formation (+ Disk) + Evolution . Know Your Star . Population Statistics & Occurrence . Dynamics 3. Instrumentation / Future 4. Habitability & Astrobiology 5. Machine Learning / Techniques / Methods Name (Affiliation). Title. Abstract Where. We present the optical transmission spectrum of the highly inflated Saturn-mass exoplanet WASP- 21b, using three transits obtained with the ACAM instrument on the William Herschel Telescope through the LRG-BEASTS survey (Low Resolution Ground-Based Exoplanet Atmosphere Survey Lili Alderson (University of using Transmission Spectroscopy). Our transmission spectrum covers a wavelength range of 4635- Bristol). LRG-BEASTS: 9000Å, achieving an average transit depth precision of 197ppm compared to one atmospheric scale Ground-bAsed Detection height at 246ppm. Whilst we detect sodium absorption in a bin width of 30Å, at >4 sigma of Sodium And A Steep confidence, we see no evidence of absorption from potassium. Atmospheric retrieval analysis of the OpticAl Slope in the scattering slope indicates that it is too steep for Rayleigh scattering from H2, but is very similar to Atmosphere of the Highly that of HD189733b. The features observed in our transmission spectrum cannot be caused by stellar InflAted Hot-SAturn activity alone, with photometric monitoring and Ca H&K analysis of WASP-21 showing it to be an WASP-21b.
    [Show full text]
  • Kepler 78B Exoplanet Is Earth-Like in Mass and Size 30/10/2013 18:20
    Kepler 78b exoplanet is Earth-like in mass and size 30/10/2013 18:20 Kepler 78b exoplanet is Earth-like in mass and size October 30th, 2013 in Space & Earth / Astronomy Enlarge Kepler-78b is a planet that shouldn't exist. This scorching lava world, shown here in an artist's conception, circles its star every eight and a half hours at a distance of less than one million miles. According to current theories of planet formation, it couldn't have formed so close to its star, nor could it have moved there. Credit: David A. Aguilar (CfA) Kepler-78b is a planet that shouldn't exist. This scorching lava world, shown here in an artist's conception, circles its star every eight and a half hours at a distance of less than one million miles. According to current theories of planet formation, it couldn't have formed so close to its star, nor could it have moved there. Credit: David A. Aguilar (CfA) In August, MIT researchers identified an exoplanet with an extremely brief orbital period: The team found that Kepler 78b, a small, intensely hot planet 700 light-years from Earth, circles its star in just 8.5 hours—lightning-quick, compared with our own planet's leisurely 365-day orbit. From starlight data gathered by the Kepler Space Telescope, the scientists also determined that the exoplanet is about 1.2 times Earth's size—making Kepler 78b one of the smallest exoplanets ever measured. Now this same team has found that Kepler 78b shares another characteristic with Earth: its mass.
    [Show full text]
  • LAVA PLANET Ou Open the Door of Your Spacecraft and Step out at the Edge of an Ocean
    BY STEPHANIE WARREN LAVA PLANET ou open the door of your spacecraft and step out at the edge of an ocean. It’s not a normal seashore. The ocean at your feet is made of lava. You’re on Ya planet 489 light-years (the distance light travels in one year) from Earth, far outside your solar system. To explore this lava planet, named CoRoT-7b, you wear a heatproof spacesuit. It’s 3,990°F here—hot enough to vaporize a human. Like Earth, CoRoT-7b is made largely of rock. But the lava planet is much closer to its sun than Earth is, making the planet hot enough to melt rock. This liquid rock forms a red-orange lava ocean that covers almost half the planet. The intense heat vaporizes the liquid rock, turning it into rock gas. The rock gas rises above the ocean and forms clouds, just as water does on Earth. As you stare into the sky, squinting against the bright sunlight, you see clouds gathering and moving toward you. Suddenly you hear the plop of a pebble falling from the cloudy sky into the lava ocean at your feet. Then pebbles fall all around you—the gas rock condensed and now it’s raining rocks! You jump inside your spacecraft. Rocks crash into your windshield. You speed away from this extreme planet—clearly it’s no place for a vacation! Destination The planet CoRoT-7b Location The constellation Monoceros Distance 489 light-years from Earth Scientists have discovered Time to reach three other 13.3 million years lava planets like Weather CoRoT-7b.
    [Show full text]
  • Introduction
    Introduction Onething is certain about this book: by thetimeyou readit, parts of it will be out of date. Thestudy of exoplanets,planets orbitingaround starsother than theSun, is anew andfast-moving field.Important newdiscoveries areannounced on a weekly basis. This is arguablythe most exciting andfastest-growing field in astrophysics.Teamsofastronomersare competing to be thefirsttofind habitable planets likeour ownEarth, andare constantly discovering ahostofunexpected andamazingly detailed characteristics of thenew worlds. Since1995, when the first exoplanet wasdiscoveredorbitingaSun-like star,over 400 of them have been identified.Acomprehensive review of thefield of exoplanets is beyond thescope of this book, so we have chosen to focus on thesubset of exoplanets that are observedtotransittheir hoststar (Figure 1). Figure1 An artist’simpression of thetransitofHD209458 bacrossits star. Thesetransitingplanets areofparamount importancetoour understanding of the formation andevolutionofplanets.During atransit, theapparent brightness of the hoststar drops by afraction that is proportionaltothe area of theplanet: thus we can measure thesizes of transitingplanets,eventhough we cannot seethe planets themselves.Indeed,the transitingexoplanets arethe onlyplanets outside our own Solar System with known sizes.Knowing aplanet’ssize allows its density to be deduced andits bulk compositiontobeinferred.Furthermore, by performing precisespectroscopicmeasurements during andout of transit, theatmospheric compositionofthe planet can be detected.Spectroscopicmeasurements
    [Show full text]
  • Dr. Avi Mandell (NASA) “Somewhere, Something Incredible Is Waiting to Be Known.” - Carl Sagan
    The Age of Exoplanets: From First Discoveries to the Search for Living Worlds Dr. Avi Mandell (NASA) “Somewhere, something incredible is waiting to be known.” - Carl Sagan How will the discovery of a distant planet teeming with life change our perspective on our own planet – and on ourselves? Planets 101: Our Solar SysteM Planets 101: Our Solar SysteM First Planet Around a Sun-Like Star Discovered in 1995 Notable Facts About 1995: • Bill Clinton is in his 3rd year of the Presidency • Ebay opens for business •DVDs are first introduced •Big event for the coffee-drinking world… Invention of the Frappucino! The First Planets were Discovered by Measuring The Motions of Stars 51 Peg b • Uses the change in star’s light due to the Doppler effect Mayor & Queloz, Movie: eso1035g.mov November 1995 Dr. Michel Mayor & Dr. Didier Queloz Geneva Observatory Spectrum of Starlight from Dr. Geoff Marcy & Parent Star Dr. R. Paul Butler San Francisco State Univ. Timeline of Exoplanet Discoveries Known Exoplanets, 1995: 0 Planet Mass Jup. Neptune Earth Mercury Earth Jupiter Distance to the Star Timeline of Exoplanet Discoveries Known Exoplanets, 1996: 6 Planet Mass Jup. First Confirmed RV Planet: 51 Peg b Neptune Earth Mercury Earth Jupiter Distance to the Star Timeline of Exoplanet Discoveries Known Exoplanets, 1996: 6 2000: 38 Planet Mass First Transiting Planet: Jup. HD 209458 b First Confirmed RV Planet: 51 Peg b Neptune Earth Mercury Earth Jupiter Distance to the Star The Most Planets have been Discovered by Measuring The Shadows on Stars Movie: OccultationGraphH264FullSize.mov Timeline of Exoplanet Discoveries Known Exoplanets, 2000: 38 2005: 155 2008: 260 2012: 579 Planet Mass Jup.
    [Show full text]
  • Thursday 11/05/20 This Material Is Distributed by Ghebi LLC on Behalf
    Received by NSD/FARA Registration Unit 11/11/2020 3:40:04 PM Thursday 11/05/20 This material is distributed by Ghebi LLC on behalf of Federal State Unitary Enterprise Rossiya Segodnya International Information Agency, and additional information is on file with the Department of Justice, Washington, District of Columbia. Scientists Determine Lava Planet May Have Supersonic Winds, Atmosphere of Vaporized Rock A group of astronomers recently provided new insight into the atmosphere and weather cycle of a distant, Earth-sized lava planet that may have an atmosphere riddled with vaporized rock that rains down on the fiery world. Published Tuesday in the Monthly Notices of the Royal Astronomical Society, scientists from McGill University, York University and the Indian Institute of Science Education indicated they used a variety of computer simulations to determine the living conditions on K2-141b. The distant lava planet, which was originally discovered in 2017, is largely believed to be made up entirely of rock, and as it completes several cycles around its host star in one Earth day, officials found that the temperatures reached on the planet are extreme enough to vaporize rock. Analysis of the simulations determined that K2-141b’s proximity to its host star keeps roughly two-thirds of the exoplanet permanently facing daylight and reaching temperatures of some 3,000 degrees Celsius. Stuck in perpetual darkness, officials estimated the opposing side of the planet sees temperatures of negative 200 degrees Celsius. “Remarkably, the rock vapor atmosphere created by the extreme heat undergoes precipitation,” a release issued by McGill University explains.
    [Show full text]