Ximelagatran Sets the Stage for Noacs Basis for the Approval of Ximelagatran in Europe

Total Page:16

File Type:pdf, Size:1020Kb

Ximelagatran Sets the Stage for Noacs Basis for the Approval of Ximelagatran in Europe MILESTONES compounds. Using this model, they identified ximelagatran, a derivative of melagatran that could efficiently cross the intestinal barrier and be converted to melagatran after absorption. Ximelagatran was investigated in numerous clinical trials for indica- tions including the prevention of VTE after orthopaedic surgery, treatment of symptomatic VTE, stroke preven- tion in patients with atrial fibrillation, and secondary prevention of major cardiovascular events after myocar- dial infarction. In many of these trials, ximelagatran was efficacious. For example, in the double-blind, multi- centre THRIVE III trial, ximelagatran was superior to placebo for the extended prevention of VTE. In the randomized, double-blind EXULT A Brian Jackson / Alamy Stock Photo trial, ximelagatran was superior to warfarin for the prevention of VTE MILESTONE 9 in patients undergoing total knee replacement. These results formed the Ximelagatran sets the stage for NOACs basis for the approval of ximelagatran in Europe. For >50 years, vitamin K antagonists Although injected inogatran had Despite these improvements in (MILESTONE 2) were the mainstay anticoagulant activity and favourable primary end points, ~6% of patients of oral anticoagulant therapy. In pharmacokinetic properties in The develop- in most of the trials developed 2003, ximelagatran, an oral direct humans, oral bioavailability was <5%. ment of transient, asymptomatic elevations in thrombin inhibitor (DTI), was At this time, computer model- ximelagatran levels of liver transaminases through approved in Europe for short-term ling was an emerging technology. unknown mechanisms. Owing to venous thromboembolism (VTE) Using thrombin structures from ... laid the this observation, ximelagatran was prophylaxis following orthopaedic nuclear magnetic resonance studies, groundwork withdrawn from the market, and did surgery. The drug was subsequently along with energy calculations for for other oral not receive approval in the USA. In withdrawn, and its application to interactions between thrombin and a case–control study, these hepatic the FDA was rejected, because of potential inhibitors, they ultimately anticoagulants events were associated with particu- elevated levels of liver enzymes produced melagatran. This molecule lar alleles of the major histocompati- observed in treated patients. was not only more potent than inoga- bility complex, suggesting they were However, the development of xime- tran, but was also <500 Da, which the part of an allergic response. lagatran provided the proof of prin- team thought crucial to oral bioavail- The development of ximelagatran, ciple that a specific oral thrombin ability (later confirmed by Lipinski’s however, laid the groundwork for the inhibitor could be effective in treat- famous ‘rule of five’). Unfortunately, development of the non-vitamin K ing thrombotic disorders without although the oral bioavailability of antagonist oral anticoagulants the need for coagulation monitoring, melagatran was >50% in dogs, it was (NOACs) (MILESTONE 10). The tools and elucidated important character- only about 3–7% in humans. used to generate ximelagatran — istics of oral anticoagulants. Melagatran has three charged most notably computer modelling Thrombin is the final mediator of groups, and so this compound would and the intestinal absorption model fibrin formation. Thrombin cleaves be unlikely to cross the mucosal — were important advances in drug fibrinogen to fibrin: crosslinking of barrier in the intestine. The research- development. fibrin establishes the framework for a ers, therefore, sought to generate a Megan Cully, Senior Editor, thrombus. Thrombin is, therefore, a lipophilic prodrug that would be Nature Reviews Drug Discovery logical candidate target for anticoag- converted to melagatran after absorp- ulant therapies. tion. To do so, they introduced a new ORIGINAL ARTICLES Eriksson, H. et al. A randomized, controlled, dose-guiding study of the oral direct thrombin inhibitor ximelagatran compared with standard therapy for In the mid-1980s, a team at model for gastrointestinal permeabil- the treatment of acute deep vein thrombosis: THRIVE I. J. Thromb. Haemost. 1, 41–47 AstraZeneca initiated a project to ity — the flux of the compound across (2003) | Francis, C. W. et al. Comparison of ximelagatran with warfarin for the identify oral DTIs. Starting with small a monolayer of colon cancer cell line prevention of venous thromboembolism after total knee replacement. N. Engl. J. Med. 349, 1703–1712 (2003) | Schulman, S. et al. Secondary prevention of venous peptides of 2–5 amino acids based cultured on plates with polycarbonate thromboembolism with the oral direct thrombin inhibitor ximelagatran. N. Engl. J. Med. on known competitive inhibitors filters — that, unlike the rat intestinal 349, 1713–1721 (2003) of thrombin, they developed their membranes that had been used pre- FURTHER READING Gustafsson, D. et al. A new oral anticoagulant: the 50-year challenge. Nat. Rev. Drug Discov. 3, 649–659 (2004) first clinical candidate, inogatran. viously, did not metabolize the tested NATURE MILESTONES | ANTICOAGULANTS www.nature.com/collections/anticoagulants ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. .
Recommended publications
  • The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of the American College of Cardiology providedVol. by 41, Elsevier No. 4 - SupplPublisher S Connector © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Science Inc. PII S0735-1097(02)02687-6 The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary Syndromes John Eikelboom, MBBS, MSC, FRACP, FRCPA,* Harvey White, MB, CHB, DSC, FRACP, FACC,† Salim Yusuf, MBBS, DPHIL, FRCP (UK), FRCPC, FACC‡ Perth, Australia; Auckland, New Zealand; and Hamilton, Ontario, Canada The central role of thrombin in the initiation and propagation of intravascular thrombus provides a strong rationale for direct thrombin inhibitors in acute coronary syndromes (ACS). Direct thrombin inhibitors are theoretically likely to be more effective than indirect thrombin inhibitors, such as unfractionated heparin or low-molecular-weight heparin, because the heparins block only circulating thrombin, whereas direct thrombin inhibitors block both circulating and clot-bound thrombin. Several initial phase 3 trials did not demonstrate a convincing benefit of direct thrombin inhibitors over unfractionated heparin. However, the Direct Thrombin Inhibitor Trialists’ Collaboration meta-analysis confirms the superiority of direct thrombin inhibitors, particularly hirudin and bivalirudin, over unfractionated heparin for the prevention of death or myocardial infarction (MI) during treatment in patients with ACS, primarily due to a reduction in MI (odds ratio, 0.80; 95% confidence interval, 0.70 to 0.91) with little impact on death. The absolute risk reduction in the composite of death or MI at the end of treatment (0.8%) was similar at 30 days (0.7%), indicating no loss of benefit after cessation of therapy.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Regulation of Tissue Factor and Coagulation Activity;
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 341 Regulation of Tissue Factor and Coagulation Activity; Translation Studies with Focus on Platelet-Monocyte Aggregates and Patients with Acute Coronary Syndrome CHRISTINA CHRISTERSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 UPPSALA ISBN 978-91-554-7177-4 2008 urn:nbn:se:uu:diva-8669 ! " #$ %& #' ( )* " +, - . . , / /, %&, 0 - * / 12, - . * (3" 1 ( . 1 / , 1 , 45#, &$ , , 67 8$&38#353$#$$35, " )"+ 9 . , - .2 . ! . " ! . ! . 2 3 )("1+, ! . " . : %53; , - . 3 ! )*#<% 3 + , ; = 3 .! , - . ! , 6 )-*+ , ! , - ("13 . 3 ", ("1, * ("1 . . (3 -* 3 > , 1 ! 3 " . . , 3 . ! . , / ("1 " , ? (3 -* > , " / (3 - - ! "#$%&'% @ / / %& 7 #;#3;%; 67 8$&38#353$#$$35 ' ''' 3&;;8 ) 'AA ,!,A B C ' ''' 3&;;8+ To my family and to science This thesis is based on the following papers I. Christersson C, Oldgren J, Bylock A, Wallentin L, Sieg- bahn A. Long-term treatment with ximelagatran, an oral di- rect thrombin inhibitor, persistently reduces the coagula- tion activity after a myocardial
    [Show full text]
  • 1 Oral Anticoagulants and Risk of Dementia: a Systematic Review
    Oral Anticoagulants and Risk of Dementia: A Systematic Review and Meta-analysis of Observational Studies and Randomized Controlled Trials Pajaree Mongkhon, PharmD1,2,3; Abdallah Y. Naser, MBA3; Laura Fanning, BPharm (Hons) MPH4; Gary Tse, PhD FACC FRCP5,6; Wallis C.Y. Lau, PhD3; Ian C.K. Wong, PhD3,7,8; Chuenjid Kongkaew, PhD1,3,9 1Centre for Safety and Quality in Health, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Thailand 2School of Pharmaceutical Sciences, University of Phayao, Thailand 3Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom 4Eastern Health Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia 5Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China 6Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China 7Centre for Safe Medication Practice and Research Department of Pharmacology and Pharmacy University of Hong Kong 8Centre for Medication Optimisation Research and Education (CMORE), University College London Hospital, United Kingdom 9Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand 1 Corresponding author Chuenjid Kongkaew, Ph.D. Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University 99 Moo 9, Phitsanulok-Nakhon Sawan Road, Tha Pho, Mueang Phitsanulok, Phitsanulok 65000, Thailand. Tel: 66 55 961825 Fax: 66 55 963731 E-mail: [email protected] Word count: 4320 words (excluding title page, abstract, references, figures and tables) Number of references: 42 references Number of figures: 3 figures Number of tables: 3 tables 2 Abstract Atrial fibrillation (AF) is a documented risk factor for dementia.
    [Show full text]
  • Clinical Trial Protocol Doc
    Clinical Trial Protocol Doc. No.: c02214385-09 EudraCT No.: 2013 003201 26 BI Trial No.: 1160.186- - BI Investigational Pradaxa®, dabigatran etexilate Product(s): Title: A prospective Randomised, open label, blinded endpoint (PROBE) study to Evaluate DUAL antithrombotic therapy with dabigatran etexilate (110mg and 150mg b.i.d.) plus clopidogrel or ticagrelor vs. triple therapy strategy with warfarin (INR 2.0 – 3.0) plus clopidogrel or ticagrelor and aspirin in patients with non valvular atrial fibrillation (NVAF) that have undergone a percutaneous coronary intervention (PCI) with stenting (RE-DUAL PCI) Clinical Phase: IIIb Trial Clinical Monitor: Phone: Fax: Co-ordinating Investigator: Phone: Fax: Status: Final Protocol (Revised Protocol (based on global Amendments 1, 2 and 3)) Version and Date: Version: 4.0 Date: 21 July 2016 Page 1 of 150 Proprietary confidential information. 2016 Boehringer Ingelheim International GmbH or one or more of its affiliated companies. All rights reserved. This document may not - in full or in part - be passed on, reproduced, published or otherwise used without prior written permission. TITLE PAGE Boehringer Ingelheim 21 Jul 2016 BI Trial No.: 1160.186 Doc. No.: c02214385-09 Trial Protocol Version 4.0 Page 2 of 150 CLINICAL TRIAL PROTOCOL SYNOPSIS Name of company: Tabulated Trial Protocol Boehringer Ingelheim Name of finished product: Pradaxa® Name of active ingredient: Dabigatran Protocol date: Trial number: Revision date: 26 March 2014 1160.186 21 July 2016 Title of trial: A prospective Randomised, open label, blinded endpoint (PROBE) study to Evaluate DUAL antithrombotic therapy with dabigatran etexilate (110mg and 150mg b.i.d.) plus clopidogrel or ticagrelor vs.
    [Show full text]
  • Emergency Management of Patients on Direct Oral Anticoagulants (Doacs)
    Emergency Management of Patients on Direct Oral Anticoagulants (DOACs) Dr Tina Biss Consultant Haematologist Newcastle upon Tyne Hospitals NHS Foundation Trust NE RTC Annual Education Symposium 11 th October 2016 The extent of the problem ≈1-2% of the UK population are anticoagulated 70000 60000 AF 70% VTE 25% 50000 Other 5% 40000 30000 20000 10000 0 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 90 80 8% of individuals 70 >80 years of age are anticoagulated 60 50 40 30 20 10 0 0 20 40 60 80 100 Age distribution of patients on warfarin 2010 2016 Apixaban Rivaroxaban Warfarin Dabigatran Edoxaban Targets of Direct Oral Anticoagulants ORAL PARENTERAL TF/VIIa TTP889 TFPI (tifacogin) X IX Xa Inhibitors : IXa APC (drotrecogin alfa) VIIIa Rivaroxaban sTM (ART-123) Apixaban Edoxaban Va AT LY517717 Indirect Xa inhibitors YM150 Xa Fondaparinux PRT-054021 Idraparinux II SSR-126517 Direct Xa Inhibitors IIa Inhibitors DX-9065a Ximelagatran IIa Otamixaban Dabigatran Fibrinogen Fibrin TF=tissue factor Adapted from Weitz JI et al. J Thromb Haemost. 2005;3:1843-1853. The ideal anticoagulants? • Oral administration • Rapid onset of action • Relatively short half-life • Predictable pharmacokinetics No need for monitoring • Few drug or dietary interactions • Modest risk of bleeding • Rapidly reversible Predictable dose-response relationship No monitoring required Few drug interactions No dietary interactions Current agents and licensed indications Dabigatran Rivaroxaban Apixaban Edoxaban (IIa inhibitor (Xa inhibitor) (Xa inhibitor) (Xa inhibitor)
    [Show full text]
  • Horizons in Novel Oral Anticoagulation Therapy In
    maco har log P y: r O la u p c e n s a A v Shihadeh et al., Cardiol Pharmacol 2015, 4:4 c o c i e d r s a s Open Access C Cardiovascular Pharmacology: DOI: 10.4172/2329-6607.1000155 ISSN: 2329-6607 Review Article OpenOpen Access Access Horizons in Novel Oral Anticoagulation Therapy in Concomitant Acute Coronary Syndromes and Atrial Fibrillation Leydimar Anmad Shihadeh, Diego Fernández-Rodríguez*, Javier Lorenzo-González and Julio Hernández-Afonso Cardiology Department, Nuestra Señora de Candelaria University Hospital, Santa Cruz de Tenerife, Spain Abstract Thrombus formation and coronary artery occlusion, in acute coronary syndromes, occur as a result of an atherosclerotic plaque rupture/erosion and the subsequent activation of platelets and coagulation factors. Also, cardioembolic events, in atrial fibrillation, are related to the thrombus formation and the systemic arterial embolization secondary to the blood stasis in left atrium. Antiplatelet treatments in acute coronary syndromes and long-term oral anticoagulation in atrial fibrillation have improved prognosis by reducing ischemic events but both treatments are associated with an increase in the risk of bleeding. Furthermore, thrombin and activated factor X are the key elements in the coagulation cascade and novel oral anticoagulants act by inhibiting these coagulation factors, generating a double effect: the reduction of ischemic events and the increment in hemorrhagic events. To date, the clinical benefit of novel oral anticoagulants, in patients presenting acute coronary syndromes and atrial fibrillation, has not well studied. For that reason, the objective of this manuscript is to explain basic clinical trials testing novel oral anticoagulants in patients with acute coronary syndromes and ongoing trials evaluating the use of new oral anticoagulants in population with acute coronary syndromes and atrial fibrillation: the PIONEER AF-PCI (Rivaroxaban), the RT-AF (Rivaroxaban) and the REDUAL-PCI (Dabigatran) trials.
    [Show full text]
  • Heparin EDTA Patent Application Publication Feb
    US 20110027771 A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0027771 A1 Deng (43) Pub. Date: Feb. 3, 2011 (54) METHODS AND COMPOSITIONS FORCELL Publication Classification STABILIZATION (51) Int. Cl. (75)75) InventorInventor: tDavid Deng,eng, Mountain rView, V1ew,ar. CA C09KCI2N 5/073IS/00 (2006.01)(2010.01) C7H 2L/04 (2006.01) Correspondence Address: CI2O 1/02 (2006.01) WILSON, SONSINI, GOODRICH & ROSATI GOIN 33/48 (2006.01) 650 PAGE MILL ROAD CI2O I/68 (2006.01) PALO ALTO, CA 94304-1050 (US) CI2M I/24 (2006.01) rsr rr (52) U.S. Cl. ............ 435/2; 435/374; 252/397:536/23.1; (73) Assignee: Arts Health, Inc., San Carlos, 435/29: 436/63; 436/94; 435/6: 435/307.1 (21) Appl. No.: 12/847,876 (57) ABSTRACT Fragile cells have value for use in diagnosing many types of (22) Filed: Jul. 30, 2010 conditions. There is a need for compositions that stabilize fragile cells. The stabilization compositions of the provided Related U.S. Application Data inventionallow for the stabilization, enrichment, and analysis (60) Provisional application No. 61/230,638, filed on Jul. of fragile cells, including fetal cells, circulating tumor cells, 31, 2009. and stem cells. 14 w Heparin EDTA Patent Application Publication Feb. 3, 2011 Sheet 1 of 17 US 2011/0027771 A1 FIG. 1 Heparin EDTA Patent Application Publication Feb. 3, 2011 Sheet 2 of 17 US 2011/0027771 A1 FIG. 2 Cell Equivalent/10 ml blood P=0.282 (n=11) 1 hour 6 hours No Composition C Composition C Patent Application Publication Feb.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Of Drug 45, 142, 144, 346, 414 ACE Inhibitors 1
    479 Index a –– voltage-gated ion channel state Abl inhibition 359 transitions 297, 298 absorption, distribution, metabolism, and – prolongation 298 elimination (ADME), of drug 45, 142, 144, – simulated cardiac, in M cells 297, 299, 300 346, 414 – simulations 303, 304, 320 ACE inhibitors 10, 12 – stratification of AP timings 301 acetaminophen 176, 374 – supra-AP timescales 300 – inhibitors, protects against hepatotoxicity – waveform 298, 304 in vivo 376 activity-based protein profiling (ABPP) 390 – liver damage 125 acute coronary syndrome (ACS) 281, 331, – overdose 110 337 acetylation 89 acute liver injury (ALI) 88, 96, 110, 115–118, acetylators 89 120 acetylcysteine (AC) 110, 113, 115 acute lymphoblastic leukemia (ALL) 332, 333, acetylhydrazine 89 377, 401 acetyl isoniazid 89 acylcarnitines 112, 115, 116 acne 341, 342, 344, 380, 458 administration route, of drugs 52, 53 action potential 258 α2 adrenergic receptor (α2 AR) 22 – AP/QT prolongation adrenergic receptor antagonists 10 –– as a torsadogenicity biomarker 320 β-adrenergic receptors (β-ADRs) 35, 235 – duration 304 adrenocorticotropic hormone (ACTH) – estimation of proarrhythmic hERG 465 occupancy levels based on 304 ADRs. See adverse drug reactions (ADRs) –– nontrappable blockers 305 adverse drug reactions (ADRs) 3, 4, 6–8, 14, 15, –– trappable blockers 304 457 – isomorphic lengthening 298 – as a drug-induced disease 30 – normal AP and proarrhythmic – as drug-induced diseases 29 abnormalities 296 – multiscale models of 30, 31 –– abnormal calcium channel reopening – primary toxicity
    [Show full text]
  • Antithrombotic Agents in the Management of Sepsis
    Antithrombotic Agents in the Management of Sepsis !"#$ Loyola University Medical Center, Maywood, Illinois-60153, USA ABSTRACT Sepsis, a systemic inflammatory syndrome, is a response to infection and when associated with mul- tiple organ dysfunction is termed, severe sepsis. It remains a leading cause of mortality in the critically ill. The response to the invading bacteria may be considered as a balance between proinflammatory and antiinflammatory reaction. While an inadequate proinflammatory reaction and a strong antiinflammatory response could lead to overwhelming infection and death of the patient, a strong and uncontrolled pro- inflammatory response, manifested by the release of proinflammatory mediators may lead to microvas- cular thrombosis and multiple organ failure. Endotoxin triggers sepsis by releasing various mediators inc- luding tumor necrosis factor-alpha and interleukin-1(IL-1). These cytokines activate the complement and coagulation systems, release adhesion molecules, prostaglandins, leukotrienes, reactive oxygen speci- es and nitric oxide (NO). Other mediators involved in the sepsis syndrome include IL-1, IL-6 and IL-8; arachidonic acid metabolites; platelet activating factor (PAF); histamine; bradykinin; angiotensin; comp- lement components and vasoactive intestinal peptide. These proinflammatory responses are counterac- ted by IL-10. Most of the trials targeting the different mediators of proinflammatory response have failed due a lack of correct definition of sepsis. Understanding the exact pathophysiology of the disease will enable better treatment options. Targeting the coagulation system with various anticoagulant agents inc- luding antithrombin, activated protein C (APC), tissue factor pathway inhibitor (TFPI) is a rational appro- ach. Many clinical trials have been conducted to evaluate these agents in severe sepsis.
    [Show full text]
  • Center for Drug Evaluation and Research Application
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22-512 PHARMACOLOGY REVIEW(S) Tertiary Pharmacology Review By: Paul C. Brown, Ph.D., ODE Associate Director for Pharmacology and Toxicology OND IO NDA: 22-307 Submission date: 4/19/2010 Drug: Pradaxa™ (Dabigatran etexilate mesylate) Sponsor: Boehringer Ingelheim Pharma GmbH & Co. KG Indication: Prevention of stroke and systemic embolism in patients with atrial fibrillation Reviewing Division: Division of Cardiovascular and Renal Products Comments: The pharm/tox reviewer and supervisor found the nonclinical information submitted for dabigatran to be sufficient to support the proposed use. The reviewer proposes pregnancy category C for the labeling. Dabigatran induced some reproductive toxicity in rats manifest as a decreased number of implantations, decreased number of viable fetuses, increase in the resorption rate, increase in post-implantation loss, and an increase in the number of dead offspring when given at doses of 70 mg/kg (about 2.6 to 3 times the MRHD of 300 mg/day on a mg/m2 basis). Dabigatran also induced some fetal structural variations but did not induce fetal malformations in rats or rabbits. Dabigatran was evaluated for carcinogenicity in 2-year rat and mouse studies. The Executive Carcinogenicity Assessment Committee concluded that these studies were adequate and there were no drug-related tumors in either study. Conclusions: I concur with the Division pharm/tox conclusion that the nonclinical data support approval of this NDA. No additional nonclinical studies are recommended at this time. The proposed Established Pharmacologic Class for dabigatran is "direct thrombin inhibitor". This is appropriate because it is consistent with other moieties of this class.
    [Show full text]