A Dissertation Entitled Structural and Enzymatic Studies of Essential

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Structural and Enzymatic Studies of Essential A Dissertation entitled Structural and Enzymatic Studies of Essential Enzymes in Mycobacterium tuberculosis by Jared J. Lindenberger Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry _________________________________________ Dr. Donald R. Ronning, Committee Chair _________________________________________ Dr. James T. Slama, Committee Member _________________________________________ Dr. Steven J. Sucheck, Committee Member _________________________________________ Dr. John J. Bellizzi, Committee Member _________________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2015 Copyright 2015, Jared J. Lindenberger This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Structural and Enzymatic Studies of Essential Enzymes in Mycobacterium tuberculosis by Jared J. Lindenberger Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Chemistry The University of Toledo August 2015 Tuberculosis (TB) continues to be a global health threat. The World Health Organization estimates that nearly 8.6 million new TB cases were reported, and 1.3 million people succumbed to the disease in 2013. The persistence of TB globally is due in part to the hardiness of the bacterium Mycobacterium tuberculosis (M. tb), the etiological agent of TB, and the ability of M. tb to enter a dormant phase that complicates treatment. Typical therapeutic regimens to treat M. tb infections require at least 6 months of anti-tubercular drugs and patient non-compliance during this treatment period is thought to contribute to the selection of antibiotic resistant strains. In 2012, 1 in 5 cases of TB were multiply drug resistant (MDR-TB), while nearly 1 in 10 of these MDR-TB cases was also extensively drug resistant (XDR-TB). Totally drug resistant TB (TDR-TB), which is untreatable by current TB drugs, has also emerged. With current therapies becoming ineffective and the high TB burden continuing worldwide, the need for new drug targets and new therapeutics is of paramount importance. iii The first part of this work describes the biochemical and structural characterization of GlgE, a maltosyltransferase from M. tb. Knock-out of GlgE causes rapid death of the bacterium, which is the result of a toxic build-up of the substrate maltose-1-phosphate. This novel method of killing makes GlgE an intriguing drug target for the design of novel inhibitors to kill M. tb. Here we report the design of a fluorescent based assay to monitor GlgE activity. This was utilized to characterize the kinetics of the enzyme, measure and characterize mutant forms of the enzyme, and screen a compound library for potential inhibitors. Additionally, we report the crystal structures of the M. tb GlgE in a binary complex with maltose, and a ternary complex with maltose and a maltooligosaccharide, maltohexaose. The second part of this work utilized the structural data obtained from the M. tb GlgE to mutate a homologous GlgE from Streptomyces coelicolor to produce an enzyme that crystallizes to higher resolutions than the M. tb GlgE, while having an identical active site. This S. co GlgEI-V279S was used to structurally characterize interactions between the enzyme and four different inhibitor compounds. We also report the design of a novel coupled assay to monitor GlgE activity. This assay was fast, reproducible, and highly amenable to high-throughput screening applications. The next part of this work looks at an essential enzyme in the biosynthesis of trehalose in Mycobacterium tuberculosis. TPP2, a trehalose-6-phosphate phosphatase, is essential for the viability of the organism. It has been speculated that cellular death is the result of the build-up of trehalose-6-phosphate, the substrate. This method of killing makes it an interesting target for the design of inhibitors. Here we report the design of a novel, coupled assay to monitor the activity of TPP2. This assay was also highly amenable to high- iv throughput screening applications. We also attempted to crystallize and solve the structure of the TPP2 enzyme. However, structural information has remained elusive to this date. Crystallization experiments are ongoing, with several new conditions and crystals awaiting diffraction experiments. The final chapter of this work looks at the structural and biochemical characterization of a mycothiol-S-transferase from M. tb (MtMST). MtMST is responsible for maintaining redox homeostasis in the bacterium, detoxifying xenobiotics and electrophilic toxins, and has been implicated in the neutralization of some of the common anti-tubercular drugs used in the treatment of TB. Here we report the first structure of the MtMST. Additionally; we developed an assay to monitor MtMST activity, and utilized this to determine the ability of MtMST to modify antibiotics in vitro. v Acknowledgements First and foremost, I would like to thank my boss, Dr. Donald Ronning. He has been instrumental towards my success in the lab and I will forever be grateful for the opportunities, and knowledge I have obtained in his lab. I would also like to thank my committee members, Drs. Sucheck, Bellizzi, and Slama, for helping me, and giving me guidance through the various projects. Next, I need to thank all my lab members who have come and gone throughout my time in the lab. This includes, but is not limited to: Dan, Vidhi, Lorenza, Lucile, Erica, Chris, Mike, Cecile, Paniz, all the undergraduates who have been in the lab, and if I missed someone, thank you too. Everyone has been helpful and made every day in the lab enjoyable. I especially need to thank both Sri and Sandeep for helping make the GlgE project successful. I also need to thank all the friends I have made these five years. I love you all, and appreciate everything. Lastly, and most importantly, I want to thank my family for all their love and support. To my mom and pops for their constant love and support over the years, and for all the free meals you’ve supplied, and to my brothers, Japey and Biggins, for always keeping it real with me and never missing an opportunity to make fun of each other. vi Table of Contents Abstract .................................................................................................................................... iii Acknowledgements .................................................................................................................. vi Table of Contents .................................................................................................................... vii List of Tables ......................................................................................................................... xiv Table of Figures ...................................................................................................................... xv List of Equations .................................................................................................................... xix List of Abbreviations .............................................................................................................. xx List of Symbols .................................................................................................................... xxiii 1 Chapter 1 ....................................................................................................................... 24 A primer on Mycobacterium tuberculosis .............................................................................. 24 1.1 Background on Tuberculosis and Mycobacterium tuberculosis ................................... 24 1.1.1 The Tuberculosis Burden ....................................................................................... 24 1.2 Characterization of Mycobacterium tuberculosis ......................................................... 25 1.2.1 The pathogenic Mycobacterium ............................................................................. 25 1.2.2 Description of Mycobacterium tuberculosis .......................................................... 25 1.2.2 Infection and pathogenesis of the disease .............................................................. 26 1.2.3 Treatments .............................................................................................................. 27 vii 1.2.4 Challenge of drug resistance and co-infection with HIV ....................................... 29 1.3 Overview and significance of the different projects ..................................................... 31 1.3.1 GlgE ....................................................................................................................... 31 1.3.2 TPP2 ....................................................................................................................... 32 1.3.3 Mycothiol-S-transferase ......................................................................................... 32 2 Chapter 2 ....................................................................................................................... 34 Kinetic and structural characterization of the Mycobacterium tuberculosis maltosyltransferase, GlgE ....................................................................................................... 34 2.1 Background ..................................................................................................................
Recommended publications
  • A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium Smegmatis Is Involved in De Novo Cysteine Biosynthesis
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2020 A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis Saroj Kumar Mahato University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Cell Biology Commons, Molecular Biology Commons, and the Pathogenic Microbiology Commons Citation Mahato, S. K. (2020). A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3639 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Cell and Molecular Biology by Saroj Kumar Mahato Purbanchal University Bachelor of Science in Biotechnology, 2016 May 2020 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Young Min Kwon, Ph.D. Thesis Director ___________________________________ ___________________________________ Suresh Thallapuranam, Ph.D. Inés Pinto, Ph.D. Committee Member Committee Member ABSTRACT Mycobacteria include serious pathogens of humans and animals. Mycolicibacterium smegmatis is a non-pathogenic model that is widely used to study core mycobacterial metabolism. This thesis explores mycobacterial pathways of cysteine biosynthesis by generating and study of genetic mutants of M. smegmatis. Published in vitro biochemical studies had revealed three independent routes to cysteine synthesis in mycobacteria involving separate homologs of cysteine synthase, namely CysK1, CysK2, and CysM.
    [Show full text]
  • Comparative Analysis of Mutants in the Mycothiol Biosynthesis Pathway in Mycobacterium Smegmatis
    Biochemical and Biophysical Research Communications 363 (2007) 71–76 www.elsevier.com/locate/ybbrc Comparative analysis of mutants in the mycothiol biosynthesis pathway in Mycobacterium smegmatis Mamta Rawat a, Chantale Johnson a, Vanessa Cadiz a, Yossef Av-Gay b,* a Department of Biology, California State University-Fresno, Fresno, CA 937401, USA b Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada V5Z 3J5 Received 17 August 2007 Available online 31 August 2007 Abstract The role of mycothiol in mycobacteria was examined by comparative analysis of mutants disrupted in the four known genes encoding the protein machinery needed for mycothiol biosynthesis. These mutants were sensitive to acid stress, antibiotic stress, alkylating stress, and oxidative stress indicating that mycothiol and mycothiol-dependent enzymes protect the mycobacterial cell against attack from various different types of stresses and toxic agents. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Mycothiol; Mycothiol deacetylase; Mycothiol ligase; Mycothiol synthase; Oxidative stress; Toxins; Xenobiotics Mycobacteria, like most other Gram-positive bacteria do We have previously reported that Mycobacterium not make glutathione but produce another low molecular smegmatis mutants disrupted in the four known genes weight thiol, mycothiol (MSH) (Fig. 1), 1-D-myoinosityl- [3,9–11] involved in mycothiol biosynthesis are resistant to 2-(n-acetyl-L-cysteinyl)-amido-2-deoxy-a-D-glucopyranoside. isoniazid, a front-line drug used in the treatment of tubercu- Since MSH is unique to actinomycetales [1], enzymes losis. We have also reported that M. smegmatis mutants involved in MSH biosynthesis and metabolism are poten- lacking mycothiol ligase activity and thus mycothiol are tial targets for drugs directed against pathogenic mycobac- sensitive to a wide range of antibiotics, alkylating agents, teria like Mycobacterium tuberculosis.
    [Show full text]
  • Great South African Molecules: the Case for Mycothiol
    REVIEW ARTICLE C.M. Nkambule, 67 S. Afr. J. Chem., 2017, 70, 67–81, <http://journals.sabinet.co.za/sajchem/>. Great South African Molecules: The Case For Mycothiol Comfort M. Nkambule Department of Chemistry, Tshwane University of Technology, Pretoria, 0001, South Africa. Received 13 September 2016, revised 15 March 2017, accepted 17 March 2017. ABSTRACT South Africa has one of the oldest chemical societies in the world and has a long history of natural products, synthetic, and medici- nal chemistry yet the visibility of molecules discovered or synthesized in South Africa is very low. Is this because South African scientists are incapable of discovering influential and celebrated molecules, or is there inadequate publicity of such discoveries? Perspective profiles on the discovery and scope of research on ‘Great South African Molecules’ should be a good start to redress this state of affairs. One such molecule deserving publicity is the antioxidant mycothiol which is produced by mycobacteria. This is a molecule of interest not only because of its medicinal potential in the fight against tuberculosis, but also from synthetic methodology and enzyme inhibition studies. This review aims to illuminate the scope of research in mycothiol chemistry for the purpose of promoting multidisciplinary investigations related to this South African molecule. KEYWORDS Mycothiol, Mycobacterium tuberculosis, great molecules, chemistry Nobel Prize. Table of Contents 1. What is a Great Molecule?· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2. Is Mycothiol a Great Molecule? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71 2.1. Is Mycothiol a South African Molecule? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71 3. Why is Mycothiol a Molecule of Great Potential? · · · · · · · · · · · · · · · · · · · · · · · · · · · 72 3.1. Mycothiol’s Significance to the TB Problem· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 72 3.2.
    [Show full text]
  • A Thesis Entitled Phor, Phop and Mshc
    A Thesis entitled PhoR, PhoP and MshC: Three essential proteins of Mycobacterium tuberculosis by Erica Loney Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Chemistry __________________________________ Dr. Donald R. Ronning, Committee Chair __________________________________ Dr. John J. Bellizzi, Committee Member __________________________________ Dr. Ronald Viola, Committee Member __________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo May 2014 Copyright 2014, Erica Loney This document is copyrighted material. Under copyright law, no parts of this document may be produced without the expressed permission of the author. An Abstract of PhoR, PhoP and MshC: Three essential proteins of Mycobacterium tuberculosis by Erica Loney Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Chemistry The University of Toledo May 2014 The tuberculosis (TB) pandemic is responsible for 1.6 million deaths annually, most of which occur in developing nations. TB is treatable, though patient non- compliance, co-infection with HIV, and the long, 6-9 month treatment regimen have resulted in the emergence of drug-resistant TB. For these reasons, the development of novel anti-tuberculin drugs is essential. Three proteins – PhoR, PhoP, and MshC – of Mycobacterium tuberculosis (M.tb), the causative agent of TB, are the focus of this thesis. The PhoPR two-component system is a phosphorelay system responsible for the virulence of M.tb. The histidine kinase PhoR responds to a yet-unknown environmental stimulus and autophosphorylates a conserved histidine. The phosphate is transferred to an aspartate of the response regulator PhoP, which then forms a head-to-head homodimer and initiates the transcription of 114 virulence genes.
    [Show full text]
  • Biosynthesis and Functions of Bacillithiol, a Major Low-Molecular-Weight Thiol in Bacilli
    Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli Ahmed Gaballaa,1, Gerald L. Newtonb,1, Haike Antelmannc, Derek Parsonaged, Heather Uptone, Mamta Rawate, Al Claiborned, Robert C. Faheyb, and John D. Helmanna,2 aDepartment of Microbiology, Cornell University, Ithaca, NY 14853-8101; bDepartment of Chemistry and Biochemistry, University of California, La Jolla, CA 92093-0314; cInstitute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany; dCenter for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157; and eDepartment of Biology, California State University, Fresno, CA 93740 Edited* by Richard M. Losick, Harvard University, Cambridge, MA, and approved February 25, 2010 (received for review January 26, 2010) Bacillithiol (BSH), the α-anomeric glycoside of L-cysteinyl-D-glucosamine disulfide oxidoreductases (TDORs) including thioredoxins (Trx) with L-malic acid, is a major low-molecular-weight thiol in Bacillus sub- and glutaredoxins (5). Oxidized glutaredoxins are reduced by GSH tilis and related bacteria. Here, we identify genes required for BSH generating oxidized GSSG, which is in turn reduced by glutathione biosynthesis and provide evidence that the synthetic pathway has sim- reductase at the expense of NADPH. Thioredoxins are directly ilarities to that established for the related thiol (mycothiol) in the reduced by Trx reductase. Actinobacteria. Consistent with a key role for BSH in detoxification of In addition to disulfide bond formation, thiols can function as electrophiles, the BshA glycosyltransferase and BshB1 deacetylase are nucleophiles to form S-conjugates (6, 7). Thiols react rapidly with encoded in an operon with methylglyoxal synthase. BshB1 is partially some alkylating agents (e.g., N-ethylmaleimide, iodoacetamide) redundant in function with BshB2, a deacetylase of the LmbE family.
    [Show full text]
  • University of Birmingham Synthesis of -Glucan in Mycobacteria Involves A
    University of Birmingham Synthesis of -glucan in mycobacteria involves a hetero-octameric complex of trehalose synthase TreS and Maltokinase Pep2 Roy, Rana; Veeraraghavan, Usha; Kermani, Ali; Scott, David J; Hyde, Eva I; Besra, Gurdyal S; Alderwick, Luke J; Fütterer, Klaus DOI: 10.1021/cb400508k License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Roy, R, Veeraraghavan, U, Kermani, A, Scott, DJ, Hyde, EI, Besra, GS, Alderwick, LJ & Fütterer, K 2013, 'Synthesis of -glucan in mycobacteria involves a hetero-octameric complex of trehalose synthase TreS and Maltokinase Pep2', ACS chemical biology, vol. 8, no. 10, pp. 2245-2255. https://doi.org/10.1021/cb400508k Link to publication on Research at Birmingham portal Publisher Rights Statement: Eligibility for repository : checked 30/06/2014 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • The Significance of N-Methylation of Bacillithiol on Its Biological Activity As a Redox Cofactor
    THE SIGNIFICANCE OF N-METHYLATION OF BACILLITHIOL ON ITS BIOLOGICAL ACTIVITY AS A REDOX COFACTOR Hazel Nicole Moxham A thesis submitted for the Degree of Master of Science by Research University of East Anglia School of Pharmacy September 2018 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. 1 Abstract Low molecular weight thiols play a crucial role in a multitude of biological processes such as maintaining redox homeostasis and the detoxification of chemical stressors. Different classes of microorganisms utilise different low molecular weight thiols. For example: glutathione is found eukaryotes and most gram-negative bacteria, mycothiol is found in the actinomycetes, and bacillithiol is found in the firmicutes. This study focused on N-methyl-bacillithiol, the novel low molecular weight thiol found in the green sulfur bacteria. Due to the unavailability of the thiol, the biophysical properties of a series of related derivatives were analysed and compared. Six thiols were examined so that each of their macroscopic and microscopic pKa values as well as their thiol-disulfide exchange rate constants and their copper catalysed autoxidation rates were isolated. The results determined that each thiol maintains its own set of biophysical properties that are unique to each compound. These were then observed alongside others within the literature to compare and contrast. Predictions were made regarding the properties of N-methylated bacillithiol by associating the data of those with similar structural differences.
    [Show full text]
  • Infant Antibiotic Exposure Search EMBASE 1. Exp Antibiotic Agent/ 2
    Infant Antibiotic Exposure Search EMBASE 1. exp antibiotic agent/ 2. (Acedapsone or Alamethicin or Amdinocillin or Amdinocillin Pivoxil or Amikacin or Aminosalicylic Acid or Amoxicillin or Amoxicillin-Potassium Clavulanate Combination or Amphotericin B or Ampicillin or Anisomycin or Antimycin A or Arsphenamine or Aurodox or Azithromycin or Azlocillin or Aztreonam or Bacitracin or Bacteriocins or Bambermycins or beta-Lactams or Bongkrekic Acid or Brefeldin A or Butirosin Sulfate or Calcimycin or Candicidin or Capreomycin or Carbenicillin or Carfecillin or Cefaclor or Cefadroxil or Cefamandole or Cefatrizine or Cefazolin or Cefixime or Cefmenoxime or Cefmetazole or Cefonicid or Cefoperazone or Cefotaxime or Cefotetan or Cefotiam or Cefoxitin or Cefsulodin or Ceftazidime or Ceftizoxime or Ceftriaxone or Cefuroxime or Cephacetrile or Cephalexin or Cephaloglycin or Cephaloridine or Cephalosporins or Cephalothin or Cephamycins or Cephapirin or Cephradine or Chloramphenicol or Chlortetracycline or Ciprofloxacin or Citrinin or Clarithromycin or Clavulanic Acid or Clavulanic Acids or clindamycin or Clofazimine or Cloxacillin or Colistin or Cyclacillin or Cycloserine or Dactinomycin or Dapsone or Daptomycin or Demeclocycline or Diarylquinolines or Dibekacin or Dicloxacillin or Dihydrostreptomycin Sulfate or Diketopiperazines or Distamycins or Doxycycline or Echinomycin or Edeine or Enoxacin or Enviomycin or Erythromycin or Erythromycin Estolate or Erythromycin Ethylsuccinate or Ethambutol or Ethionamide or Filipin or Floxacillin or Fluoroquinolones
    [Show full text]
  • Investigations Into Intracellular Thiols of Biological Importance
    Investigations into Intracellular Thiols of Biological Importance by Christine Elizabeth Hand A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2007 © Christine Elizabeth Hand 2007 AUTHOR'S DECLARATION I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The presence of thiols in living systems is critical for the maintenance of cellular redox homeostasis, the maintenance of protein thiol-disulfide ratios and the protection of cells from reactive oxygen species. In addition to the well studied tripeptide glutathione (γ-Glu-Cys-Gly), a number of compounds have been identified that contribute to these essential cellular roles. Many of these molecules are of great clinical interest due to their essential role in the biochemistry of a number of deadly pathogens, as well as their possible role as therapeutic agents in the treatment of a number of diseases. A series of studies were undertaken using theoretical, chemical and biochemical approaches on a selection of thiols, ergothioneine, the ovothiols and mycothiol, to further our understanding of these necessary biological components. Ergothioneine is present at significant physiological levels in humans and other mammals; however, a definitive role for this thiol has yet to be determined. It has been implicated in radical scavenging in vivo and shows promise as a therapeutic agent against disease states caused by oxidative damage.
    [Show full text]
  • Cultural Soil
    Structural and functional metage- nomic analyses of a tropical agri- cultural soil Análisis metagenómicos estructurales y funcionales de un suelo agrícola tropical Análises metagenómicas estruturais e funcionais de um solo agrícola tropical AUTHORS Received: 04.07.2018 Revised: 09.12.2018 Accepted: 21.01.2019 Lateef Babatunde 1 Salam@, 1 ABSTRACT babssalaam@yahoo. com Understanding the intricate link between the soil microbiota and their metabolic functions is important for agricultural and ecological processes and could be used as a biomarker of soil health. Oluwafemi Sunday To understand the relationship between soil microbial community structure and functions, a soil 2 Obayori microcosm designated 2S (agricultural soil) was set up. Metagenomic DNA was extracted from the soil microcosm and sequenced using Miseq Illumina next generation sequencing and analysed for their structural and functional properties. Structural analysis of the soil microcosm by MG-RAST @ Corresponding Author revealed 40 phyla, 78 classes, 157 orders, 273 families and 750 genera. Actinobacteria (54.0%) and 1Department of Biological Proteobacteria (17.5%) are the dominant phyla while Conexibacter (8.38%), Thermoleophilum (7.40%), Sciences, Al-Hikmah and Streptomyces (4.14%) are the dominant genera. Further assignment of the metagenomics using University, Ilorin, Kwara State, Nigeria. Cluster of Orthologous Groups (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), GhostKOALA, and NCBI’s CDD revealed diverse metabolic pathways utilized by the microbial 2Department of Microbiology, Lagos State community for the metabolism of carbohydrates, amino acids, lipids, biosynthesis of secondary University, Ojo, Lagos metabolites and resistance to antibiotics. Taxonomic analysis of the annotated genes also revealed State, Nigeria. the preponderance of members of Actinobacteria and Proteobacteria.
    [Show full text]
  • Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT)
    International Journal of Molecular Sciences Review Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT) Abu Iftiaf Md Salah Ud-Din 1, Alexandra Tikhomirova 1 and Anna Roujeinikova 1,2,* 1 Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; [email protected] (A.I.M.S.U.-D.); [email protected] (A.T.) 2 Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia * Correspondence: [email protected]; Tel.: +61-3-9902-9194; Fax: +61-3-9902-9222 Academic Editor: Claudiu T. Supuran Received: 30 May 2016; Accepted: 20 June 2016; Published: 28 June 2016 Abstract: General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
    [Show full text]
  • The International Pharmacopoeia
    The International Pharmacopoeia THIRD EDITION Pharmacopoea internationalis Editio tertia Volume 4 Tests, methods, and general requirements Quality specifications for pharmaceutical substances, excipients, and dosage forms World Health Organization Geneva 1994 WHO Library Cataloguing in Publication Data The International Pharmacopoeia.- 3rd ed. Contents: v. 4. Tests, methods, and general requirements 1. Drugs -analysis 2. Drugs -standards ISBN 92 4 154462 7 (NLM Classification: QV 25) The World Health Organization welcomes requests for permission to reproduce or translate its publica- tions, in part or in full. Applications and enquiries should be addressed to the Of£ice of Publications, World Health Organization, Geneva, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. O World Health Organization, 1994 Publications of the World Health Organization enjoy copyright protection in accordance with the provi- sions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distin- guished by initial capital letters.
    [Show full text]