Immunofluorescence Lateral Chromatography in Combination

Total Page:16

File Type:pdf, Size:1020Kb

Immunofluorescence Lateral Chromatography in Combination Materials Express 2158-5849/2021/11/248/007 Copyright © 2021 by American Scientific Publishers All rights reserved. doi:10.1166/mex.2021.1886 Printed in the United States of America www.aspbs.com/mex Immunofluorescence lateral chromatography in combination with detection of hypersensitive C-reactive protein and procalcitonin levels in patients with mental disease associated with coronavirus 2019 disease infection Dan Li1,†, Xiaoliang Zhou2,†,YunShi1,†,PingLi1, Shuzi Chen1, Weifeng Jin1, Xiaoyan Lou1, Zhenhua Li1, Ping Lin1,∗, and Yang Sun3,4,∗ 1Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai 200030, PR China 2Department of Clinical Laboratory, Wuhan Mental Health Center, Wuhan 430022, Hubei, PR China 3Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai 200052, PR China 4Guanghua Integrative Medicine Hospital, Shanghai 200052, PR China IP: 192.168.39.210 On: Sun, 26 Sep 2021 07:58:46 Copyright: American Scientific Publishers Delivered by Ingenta ABSTRACT Article Immunofluorescence lateral chromatography (IFLC) is a quantitative detection technique used to screen C-reactive protein and procalcitonin (PCT) monoclonal antibodies with high efficiency and specificity. This study investigated the application value of IFLC combined with the detection of hypersensitive C-reactive protein (hsCRP) and PCT in patients with mental diseases associated with COVID-19 infection. Sixty-four patients with mental disease admitted to our hospital from January to April 2020, were selected as research subjects. Based on the diagnostic criteria for COVID-19 in the “Corona Virus Disease 2019 Diagnosis and Treatment Scheme (Byass, P., 2020. Eco-epidemiological assessment of the COVID-19 epidemic in China, January- February 2020. Global Health Action, 13(1), p.1760490.) version 6, all patients were tested using the nucleic acid amplification test for COVID-19 and were divided into two groups of 6 infected and 58 non-infected patients. Subsequently, the patients’ hsCRP and PCT levels were measured using IFLC and an automatic biochemistry analyzer (BA). The results showed that the hsCRP and PCT levels in the infected group were higher than the non-infected group. Additionally, the analytical ultracentrifugation (AUC), sensitivity, and specificity of hsCRP were higher than PCT. The AUC, sensitivity, and specificity of hsCRP+PCT measured jointly were significantly higher than hsCRP and PCT measured separately. The BA results showed that the AUC, sensitivity, and speci- ficity of hsCRP were higher than PCT. The AUC, sensitivity, and specificity of hsCRP + PCT measured jointly were significantly higher than hsCRP and PCT measured separately. Comprehensive analysis showed that the AUC, sensitivity, and specificity of hsCRP+PCT tested using IFLC were significantly higher than using the BA. All of the above differences were statistically significant (P<0.05). It was concluded that the joint detection of hsCRP and PCT by IFLC helped identify and diagnose mental diseases associated with COVID-19 infection. ∗Authors to whom correspondence should be addressed. †These three authors contributed equally to this work. 248 Mater. Express, Vol. 11, No. 2, 2021 Immunofluorescence lateral chromatography Materials Express Li et al. Keywords: Immunofluorescence, Joint Detection, COVID-19, Hypersensitive C-Reactive Protein, Procalcitonin. 1. INTRODUCTION 2. MATERIALS AND METHODS When the blood or respiratory tract samples tested using 2.1. Materials real-time fluorescence quantitative polymerase chain reac- 2.1.1. Patient Information tion are positive for the novel Coronavirus 2019, or The patients with mental diseases admitted to the Wuhan their viral gene sequencing is significantly homologous Mental Health Center, Wuhan, China, from January to to it, patients are confirmed to be infected with COVID- April 2020, were selected as the research subjects. Inclu- 19 (Coronavirus 2019 Disease) [1]. Mental illness is a sion criteria: (1) meet the diagnostic criteria for mental ill- special kind of disease. A patients’ mental state may ness [5]; (2) the age of 18 years old or more; (3) no recent be affected by their perception of COVID-19 symptoms history of surgery or trauma; (4) family members sign that could even lead to the aggravation of hypochondria, informed consent forms. Exclusion criteria: (1) concomi- social phobia, generalized anxiety disorder, and obsessive- tant immune system diseases; (2) combined with infec- compulsive disorder, which is not conducive to the treat- tious diseases other than COVID-19; (3) complicated with ment of mental illness [2]. COVID-19 is characterized malignant tumor; (4) suffering from heart, liver, kidney by fever, dry cough, fatigue, and other clinical manifesta- and other important visceral lesions. Sixty-four patients tions. It is highly contagious and insidious and can occur were enrolled in the study. Based on the diagnostic criteria in people of all ages. Currently, the nucleic acid test is for COVID-19 in the “Corona Virus Disease 2019 Diag- frequently used in the clinical diagnosis of COVID-19, nosis and Treatment Scheme” version 6, all patients were but it is significantly affected by external factors, lead- tested using the nucleic acid amplification test [6]. They ing to some false-negative results, and there are defi- were divided into an infected group (n = 6) and a non- ciencies in sensitivity and specificity [3]. Therefore, it is infected group (n = 58). 2 detect was used to compare the Article important to find an effective, rapid, and accurate method genders of the two groups, while t test was used to com- for identifying COVID-19 infected patients so that they IP: 192.168.39.210 On: Sun,pare 26 theSep age, 2021 height 07:58:46 and body mass index, and the differ- may obtain timely and effective treatmentCopyright: and stopAmerican the Scientific Publishers ences were not statistically significant (P>0.05) (Table I). spread of the virus. The quantitative detection techniqueDelivered by Ingenta This study was approved by the Medical Ethics Committee of immunofluorescence lateral chromatography (IFLC) is of our hospital. based on the reaction principle of the double-antibody sandwich system. The technique selects monoclonal anti- 2.1.2. Reagents and Suppliers bodies against highly specific target proteins to pair with each other and then produces fluorescence-labeled conju- All reagents were used in this study were analytically · gation; the cloaked, captured antibodies form a double- pure: Na2HPO4 12H2O (disodium hydrogen phosphate) antibody sandwich system, and finally, it detects the target (article No.: 0404, Shanghai Liansuo Biotechnology Co., proteins in serum sample [4]. HsCRP is an acute phase Ltd.), triton-x100 (article No.: X-100, Haian Petrochemi- protein synthesized by liver cells; it can increase sharply cal Plant, Jiangsu Province, China), tris (article No.: 0161 when the body is infected and returns to normal range on AMRESCO), tween-20 (article No.: P137, Shanghai Lian- the remission of the disease and recovery of tissues and suo Biological Technology Co., Ltd.), 99% PROCLIN- structural functions. Therefore, the level of hsCRP reflects 300 (article No.: ZB116, Shanghai Jinjing Biotechnology the occurrence, development, and prognosis of infectious Co., Ltd.), 99% trehalose (article No.: YY11150, Shanghai diseases. PCT is a protein that increases with protozoan, Yuanye Biotechnology Co., Ltd.) polyethylene glycol 600 systemic bacterial or other bacterial infections. Therefore, (article No.: 167161, Xibao Biological Technology, Co., the occurrence and development of infectious diseases can Ltd., Shanghai), fluorescent microspheres F1-XC005 and be accompanied by in vivo changes in serum hsCRP and F1-XC03 (Hongrong Weizre Bioengineering Technology PCT levels. In this study, patients with mental illness and Co., Ltd., Shanghai), polyester fiber film, cellulose nitrate infected with COVID-19 were the research subjects, while film CN95, and glass fiber film 8964 (Xuxingtai Quan- non-infected patients with mental illness were the controls. tity Technology Co., Ltd.) PVP K30 (polyvinylpyrroli- In addition to IFLC, an automatic biochemistry analyzer done) (article No.: J0029-1, Suzhou Yaco Technology Co., (BA), commonly used in clinical practice, was used for Ltd.) and PVA (polyvinyl alcohol), article No.: S25454 testing study participants. The purpose of the study was (Shanghai Yuanye Biotechnology Co., Ltd.), CRP mon- to explore the effect of IFLC combined with hsCRP and oclonal antibodies C2, C6, PCT monoclonal antibodies PCT detection on the diagnosis of COVID-19 and provide 42, and 16B5 (Shanghai Yibo Biotechnology Co., Ltd.), a reference for the clinical optimization of the diagnostic CM-EUs (Thermo Fisher Scientific Inc.), sample pads and process. absorbent pads (Bedford, Massachusetts, USA). Mater. Express, Vol. 11, pp. 248–254, 2021 249 Materials Express Immunofluorescence lateral chromatography Li et al. Table I. Comparison of data between the infected and non-infected groups. Gender [case, (n)%] Body mass index Group Male Female Age (x ± s, year) Height (x ± s,cm) (x ± s, kg/m2) Infected group (n = 6) 4 (66.67) 2 (33.33) 45.29 ± 6.54 163.03 ± 5.02 23.05 ± 3.31 Aon-infected group (n = 58) 28 (48.28) 30 (51.72) 45.37 ± 6.47 162.89 ± 5.04 22.94 ± 3.58 2/t 0.184 0.029 0.065 0.072 P 0.668 0.977 0.949 0.943 2.2. Methods microsphere [7, 8]. After activating the fluorescent micro- 2.2.1. Quantitative Immunofluorescence Lateral spheres, the coupled buffer (0.02 M PB, pH 7.4) was taken Chromatography to wash the activated fluorescent microspheres twice ultra- The flowchart for the method is shown in Figure 1. The sonically. Then, the CRP antibody was added as required hsCRP and PCT levels of all patients were determined by to obtain the fluorescence-labeled conjugation (concentra- IFLP. The steps are as follows: the sample diluent was tion: 0.2–1 mg/mL), and the reaction container was oscil- prepared (PEG 6000: triton-X100: proclin-300: buffer = lated at 37 C for 120–180 min. The prepared coupling 0.5%:0.5%:0.02%:0.05 M PBS (Phosphate Buffer Saline), buffer was used to change the liquid and then oscillated pH 7.4), sodium phosphate buffer (0.01 M PBS, pH 7.4), continuously at 37 C for 30 min.
Recommended publications
  • Introduction to Flow Cytometry Principles Data Analysis Protocols Troubleshooting
    Flow Cytometry ipl.qxd 11/12/06 11:14 Page i Introduction to Flow Cytometry Principles Data analysis Protocols Troubleshooting By Misha Rahman, Ph.D. Technical advisors Andy Lane, Ph.D. Angie Swindell, M.Sc. Sarah Bartram, B.Sc. Your first choice for antibodies! Flow Cytometry ipl.qxd 11/12/06 11:14 Page ii Flow Cytometry ipl.qxd 11/12/06 11:14 Page iii Introduction to Flow Cytometry Principles Data analysis Protocols Troubleshooting By Misha Rahman, Ph.D. Technical advisors Andy Lane, Ph.D. Angie Swindell, M.Sc. Sarah Bartram, B.Sc. Flow Cytometry ipl.qxd 11/12/06 11:14 Page 2 Preface How can I explain what flow cytometry is to someone that knows nothing about it? Well, imagine it to be a lot like visiting a supermarket. You choose the goods you want and take them to the cashier. Usually you have to pile them onto a conveyor. The clerk picks up one item at a time and interrogates it with a laser to read the barcode. Once identified and if sense prevails, similar goods are collected together e.g. fruit and vegetables go into one shopping bag and household goods into another. Now picture in your mind the whole process automated; replace shopping with biological cells; and substitute the barcode with cellular markers – welcome to the world of flow cytometry and cell sorting! We aim to give you a basic overview of all the important facets of flow cytometry without delving too deeply into the complex mathematics and physics behind it all. For that there are other books (some recommended at the back).
    [Show full text]
  • A Multicenter Analysis of Subjectivity of Indirect Immunofluorescence Test in Antinuclear Antibody Screening
    Arch Rheumatol 2019;34(3):326-333 doi: 10.5606/ArchRheumatol.2019.7310 ORIGINAL ARTICLE A Multicenter Analysis of Subjectivity of Indirect Immunofluorescence Test in Antinuclear Antibody Screening Vildan TURAN FARAŞAT1, Talat ECEMİŞ1, Yavuz DOĞAN2, Aslı Gamze ŞENER3, Gülfem TEREK ECE4, Pınar ERBAY DÜNDAR5, Tamer ŞANLIDAĞ6 1Department of Medical Microbiology, Manisa Celal Bayar University, Faculty of Medicine, Manisa, Turkey 2Department of Medical Microbiology, Dokuz Eylül University, Faculty of Medicine, Izmir, Turkey 3Department of Medical Microbiology, Katip Çelebi University, Faculty of Medicine, Izmir, Turkey 4Department of Medical Microbiology, Izmir Medicalpark Hospital, Izmir, Turkey 5Department of Public Health, Manisa Celal Bayar University, Faculty of Medicine, Manisa, Turkey 6Department of Medical Microbiology, Manisa Celal Bayar University, Faculty of Medicine, Manisa, Turkey ABSTRACT Objectives: This study aims to evaluate the interpretation of the antinuclear antibody (ANA)-indirect immunofluorescence (IIF) test results based on the interpreter-related subjectivity and to examine the inter-center agreement rates with the performance of each laboratory. Patients and methods: The ANA-IIF testing was carried out in a total of 600 sera and evaluated by four laboratories. The inter-center agreement rates were detected. The same results given by the four centers were accepted as gold standard and the predictive values of each center were calculated. Results: The inter-center agreement was reported for ANA-IIF test results from 392 of 600 (65.3%) sera, while 154 of 392 results were positive. Four study centers reported 213 (35.5%), 222 (37.0%), 266 (44.3%), and 361 (60.2%) positive test results, respectively. In terms of the patterns, the highest and lowest positive predictive values were 72.3% and 42.7%, respectively, while the highest and lowest negative predictive values were 99.6% and 61.5%, respectively.
    [Show full text]
  • Comparison of Histopathology, Immunofluorescence, and Serology
    Global Dermatology Cae Report ISSN: 2056-7863 Comparison of histopathology, immunofluorescence, and serology for the diagnosis of autoimmune bullous disorders: an update Seline Ali E1, Seline Lauren N1, Sokumbi Olayemi1* and Motaparthi Kiran2,3 1Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA 2Dermatopathology, Miraca Life Sciences, USA 3Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA Introduction In an ELISA, the target antigen of interest (such as the NC16a domain of BP180) is immobilized by physical adsorption or by The diagnosis of autoimmune bullous disorders (AIBDs) relies on antibody capture. When antibody capture is utilized, this is referred to several different diagnostic methods. These include histopathology, as “sandwich ELISA” because the target antigen is bound between the direct immunofluorescence (DIF), indirect immunofluorescence immobilizing antibody and the primary antibody. Primary antibodies (IIF), enzyme-linked immunosorbent assay (ELISA) and are present in the patient’s serum. Enzyme-linked secondary antibodies immunoblotting. When faced with a presumptive AIBD, the are then added which bind the Fc region of primary antibodies. most widely employed method for diagnosis by dermatologists is Substrate is added and converted by the enzyme into a signal. A a combination of histopathology and DIF. While DIF is still the resulting color change, fluorescence, or electrochemical signal is diagnostic method of choice for linear IgA bullous disease and IgA quantitatively measured and reported [5]. pemphigus, ELISA is a more accurate, cost-effective and less invasive method of diagnosis for several AIBDs including pemphigus vulgaris Western blot is synonymous with immunoblot. For this method, and foliaceus, based on currently available evidence [1-3].
    [Show full text]
  • AG 39: Immunofluorescence Assays (PDF)
    ibidi Application Guide Immunofluorescence Assays The Principle of Immunofluorescence Immunofluorescence Applied: Assays . 2 Experimental Examples . 13 Rat Hippocampal Neuron and Astrocyte Staining 14 Immunofluorescence Staining: Visualization of Endothelial Cell Junctions . 13 A Typical Workflow . 3 Immunostaining of Rat Dorsal Root Ganglionic Experiment Planning and Sample Preparation . 4 Cells and Schwann Cells . 13 Sample Fixation . 4 Adherens Junctions and Actin Cytoskeleton of Cell Permeabilization . 5 HUVECs Under Flow . 14 Blocking . 5 Mitochondria Staining of MDCK cells . 14 Primary Antibody Incubation . 5 Focal Adhesions of Differentiated Mouse Fibroblasts on an Elastic Surface . 15 Secondary Antibody Incubation . 6 Counterstain and Mounting . 7 Microscopy . 7 Troubleshooting . 8 Selected Publications Immunofluorescence C. Xu, et al. NPTX2 promotes colorectal cancer growth and liver With the ibidi Chambers . 9 metastasis by the activation of the canonical Wnt/beta-catenin pathway via FZD6. Cell Death & Disease, 2019, 10.1038/s41419- Comparison of Immunocytochemistry Protocols . 10 019-1467-7 Chambered Coverslips . 11 read abstract Kobayashi, T., et al. Principles of early human development and Channel Slides . 11 germ cell program from conserved model systems. Nature, Chamber Slides . 12 2017, 10.1038/nature22812 read abstract H. Tada et al. Porphyromonas gingivalis Gingipain-Dependently Enhances IL-33 Production in Human Gingival Epithelial Cells. PloS one, 2016, 10.1371/journal.pone.0152794 read abstract N. J. Foy, M. Akhrymuk, A. V. Shustov, E. I. Frolova and I. Frolov. Hypervariable Domain of Nonstructural Protein nsP3 of Venezuelan Equine Encephalitis Virus Determines Cell-Specific Mode of Virus Replication. Journal of Virology, 2013, 10.1128/ jvi.00720-13 read abstract .com The Principle of Immunofluorescence Assays Immunofluorescence (IF) is a powerful approach for getting insight into cellular structures and processes using microscopy .
    [Show full text]
  • Immunofluorescence Staining
    ptglab.com 1 The Complete Guide To Optimizing IMMUNOFLUORESCENCE STAINING www.ptglab.com 2 The Complete Guide To Optimizing Immunofluorescence Staining ptglab.com 3 FOREWORD Immunofluorescence (IF) staining is a widely used technique in biological research and clinical diagnostics. IF utilizes fluorescent-labeled antibodies in order to detect specific target antigens. Followed by imaging, it is a very direct technique as you can actually see something. Although it is a well-established tool, multiple factors have to be considered and various optimization steps have to be taken to ensure successful staining. This guide provides not only an introduction to immunofluorescence staining, but also includes protocols and detailed troubleshooting. We discuss and present useful tips for preparing optimal samples that produce the best signal-to-noise ratios for immunofluorescence staining signals. What’s Inside 6–8 General Protocols 9–10 Sample Preparation 11–12 Signal-To-Noise Ratios 13–14 Visualization 15 IF Staining Controls 16 Afterword 17–18 FAQs and Tips 19 Contact Us 4 The Complete Guide To Optimizing Immunofluorescence Staining THE BENCHMARK IN ANTIBODIES Since the day it was founded, Proteintech®* has been making all of its products to the highest standards possible whilst taking complete responsibility for the quality of each product. • Proteintech makes every single antibody in its 12,000+ catalog. • Each Proteintech product is unique and cannot be bought under a different label. • Antibodies are detected with siRNA-treated samples to demonstrate specificity. • It works in every single species and application or get a full money-back refund. Proteintech has over 12,000 antibodies in its extensive catalog, all fully validated and available for next day delivery.
    [Show full text]
  • Introduction to Flow Cytometry
    Introduction to flow cytometry Flow cytometry is a popular laser-based technology. Discover more with our introduction to flow cytometry. Flow cytometry is now a widely used method for analyzing the expression of cell surface and intracellular molecules, characterizing and defining different cell types in a heterogeneous cell populations, assessing the purity of isolated subpopulations and analyzing cell size and volume. It allows simultaneous multi-parameter analysis of single cells. It is predominantly used to measure fluorescence intensity produced by fluorescent-labeled antibodies detecting proteins, or ligands that bind to specific cell-associated molecules such as propidium iodide binding to DNA. The staining procedure involves making a single-cell suspension from cell culture or tissue samples. The cells are then incubated in tubes or microtiter plates with unlabeled or fluorochrome-labeled antibodies and analyzed on the flow cytometer. Contents The flow cytometer: fluidics The flow cytometer: measurement of forward and side scatter of light The flow cytometer: measurement of scatter light and fluorescence Antibody staining Selecting a fluorochrome conjugate Discover more at abcam.com 1 of 8 The flow cytometer: fluidics Figure 1. Overview of the flow cytometer. Sheath fluid focuses the cell suspension, causing cells to pass through a laser beam one cell at a time. Forward and side scattered light is detected, as well as fluorescence emitted from stained cells. When a cell suspension is run through the cytometer, sheath fluid is used to hydrodynamically focus the cell suspension through a small nozzle. The tiny stream of fluid takes the cells past the laser light one cell at a time (Figure 1).
    [Show full text]
  • Fetal and Neonatal Pathology
    J Clin Pathol: first published as 10.1136/jcp.40.12.1491-d on 1 December 1987. Downloaded from Book reviews 1491 Mesothelioma. Diagnosis and Management. astrocytomas, ependymomas, pineal Fetal and Neonatal Pathology. Ed Jean W CF Kittle. (Pp 106; £34.) Wolfe Medical tumours, etc., are then reviewed, but the Keeling. (Pp 590; 587 figs.; £99.) Springer. Publications Ltd. 1987. ISBN 0-8151- contributions are uneven and a central 1987. ISBN 0-387-16211-9. 5095-4. concept fails to emerge. Aspects of pathol- ogy, diagnosis, prognosis and therapy are This 28 chapter book edited by Jean Keeling This is a good little book which ironically briefly and haphazardly covered. provides a very clear and concise cover ofthe suffers from the preface and first two chap- The standard of illustration is high, as is subject but with particular emphasis on ters being sufficiently good to make it almost the price of the book. At £135 it is greatly common important problems facing a unnecessary to read the rest. The chapters overpriced. neonatal pathologist. It is a well set out book on imaging and treatment will be of value to PL LANTOS reflecting the editor's knowledge on the anyone reading for examinations but too subject. This book becomes available at a short for those who have to deal with cases. most opportune time because neonatal There is however a good up to date reference Immunopathology of the Skin. 3rd ed. Ed EH paediatrics is an expanding field, in part due list. Beutner, TP Chorzelski, V Kumar. (Pp 769; to rapid progression in prenatal diagnosis The pathology and epidemiology are £78.) John Wiley & Sons Ltd.
    [Show full text]
  • Double Immunofluorescence – Simultaneous Protocol
    Double immunofluorescence – simultaneous protocol In order to be able to examine the co-distribution of two (or more) different antigens in the same sample, a double immunofluorescence procedure can be carried out. Primary antibodies raised in different species can be used either in parallel (in a mixture) or in a sequential way. Preparation of slides and samples 1. Cell lines, cytology smears, cytospin preparations 1.1. Coat coverslips with polyethylineimine or poly-L-lysine for 1 hr at room temperature. 1.2. Rinse coverslips well with sterile H 2O (3 times 5 min each). 1.3. Allow coverslips to dry completely and sterilize them under UV light for at least 4 hrs. 1.4. Grow cells on glass coverslips or prepare cytospin or smear preparation. 1.5. Rinse briefly in phosphate-buffered saline (PBS). 2. Frozen (cryostat) sections 2.1. Snap frozen fresh tissue in liquid nitrogen or isopentane pre-cooled in liquid nitrogen. Store frozen blocks at -80°C. 2.2. Cut 4-8 µm thick cryostat sections and mount on superfrost or gelatin coated slides. You can store slides at -80°C until needed. 2.3. Before IF staining, warm up slides at room temperature for 30 minutes. 3. Paraffin-embedded sections 3.1. Deparaffinize sections in xylene 2x5 min. 3.2. Hydrate with 100% ethanol 2x3 min. 3.3. Hydrate with 95% ethanol 1 min. 3.4. Rinse in distilled water and then follow procedure for fixation and antigen retrieval as required (please see IHC protocol for formalin-fixed paraffin-embedded tissue sections for further details). Fixation 1.
    [Show full text]
  • Liquid Biopsies in Solid Cancers: Implementation in a Nordic Healthcare System
    cancers Review Liquid Biopsies in Solid Cancers: Implementation in a Nordic Healthcare System Oddmund Nordgård 1,2,*,†, Rakel Brendsdal Forthun 3,4,†, Morten Lapin 1 , Bjørn Henning Grønberg 5,6, Karl Henning Kalland 7,8 , Reidun Kristin Kopperud 7, Liv Cecilie Vestrheim Thomsen 7 , Kjersti Tjensvoll 1, Bjørnar Gilje 1, Bjørn Tore Gjertsen 7,9 and Randi Hovland 3,4 1 Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; [email protected] (M.L.); [email protected] (K.T.); [email protected] (B.G.) 2 Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway 3 Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway; [email protected] (R.B.F.); [email protected] (R.H.) 4 Section of Cancer Genomics, Haukeland University Hospital, 5021 Bergen, Norway 5 Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway; [email protected] 6 Department of Oncology, St. Olav’s Hospital, Trondheim University Hospital, 7030 Trondheim, Norway 7 Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; [email protected] (K.H.K.); [email protected] (R.K.K.); [email protected] (L.C.V.T.); [email protected] (B.T.G.) 8 Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway 9 Department of Internal Medicine, Hematology Section, Haukeland University Hospital, 5021 Bergen, Norway Citation: Nordgård, O.; Brendsdal * Correspondence: [email protected] Forthun, R.; Lapin, M.; Grønberg, † Shared first-authorship.
    [Show full text]
  • Immunofluorescence in Dermatology
    CONTINUING MEDICAL EDUCATION Immunofluorescence in dermatology Diya F. Mutasim, MD, and Brian B. Adams, MD Cincinnati, Ohio The accurate diagnosis of bullous and other immune diseases of the skin requires evaluation of clinical, histologic, and immunofluorescence findings. Immunofluorescence testing is invaluable in confirming a diagnosis that is suspected by clinical or histologic examination. This is especially true in subepidermal bullous diseases that often have overlap in the clinical and histologic findings. Direct immunofluorescence is performed on perilesional skin for patients with bullous diseases and lesional skin for patients with connective tissue diseases and vasculitis. (J Am Acad Dermatol 2001;45:803-22.) Learning objective: At the completion of this learning activity, participants should be familiar with the ideal method of obtaining immunofluorescence testing for the diagnosis of immune skin diseases and be aware of the value and limitations of immunofluorescence studies. mmunofluorescence has been used for 4 decades, both to investigate pathophysiology of Abbreviations used: skin disorders and to help physicians in the diag- I BMZ: basement membrane zone nosis of various cutaneous disorders, especially bul- BP: bullous pemphigoid lous diseases and connective tissue diseases. This CP: cicatricial pemphigoid article addresses the present status of immunofluo- DEJ: dermoepidermal junction rescence in dermatology. DH: dermatitis herpetiformis DIF: direct immunofluorescence DIAGNOSIS AND PATHOPHYSIOLOGY OF DLE: discoid lupus erythematosus BULLOUS DISEASES EBA: epidermolysis bullosa acquisita Great progress has been made during the past 5 HG: herpes gestationis decades in our understanding of the biology of the HSP: Henoch-Schönlein purpura ICS: intercellular space skin as it relates to bullous diseases. This has led to IIF: indirect immunofluorescence more accurate classification and diagnosis.
    [Show full text]
  • Supplemental Materials and Methods Immunofluorescence Cells (5X103
    Supplemental Materials and Methods Immunofluorescence Cells (5x103 cells per chamber) were seeded into 8-chamber culture slides (BD Falcon, Franklin Lakes, NJ). The next day, cells were rinsed with ice-cold PBS and fixed with 4% paraformaldehyde for 10 min at room temperature followed by permeabilization with 0.1% Sodium Citrate plus 0.1% Triton X-100. The cells were subjected to immunofluorescence staining with ERBB2 (1:500) antibody for 2 h at room temperature. The cells were then washed with cold PBS three times for 3 min each, and incubated with Alexa 514-labeled anti-rabbit secondary antibody (1:800) (Invitrogen) at room temperature for 1 h. For dual immunofluorescence staining, cells were incubated with ERBB2 (1:500) and Flag (1:1000) antibodies for 2 h at room temperature. The cells were washed with cold PBS, and incubated with Alexa 568-labeled anti-rabbit (1:800) and Alexa 488-labeled anti-mouse (1:800) secondary antibodies (Invitrogen) at room temperature for 1 h. The cells were examined by fluorescence microscopy (Olympus America Inc, Center Valley, PA). Fluorescence intensities from images of six randomly selected microscopic fields of cells were semi-quantitatively analyzed by densitometry (ImageJ software, NIH Image). Cross-linking trastuzumab and cell surface ERBB2 receptor Cells (5x103 cells per chamber) were plated into 8-chamber culture slides (BD Falcon). To evaluate the interaction of trastuzumab with the ERBB2 receptor, cells were first treated with vehicle or trastuzumab (20 μg/ml) for 1 h on ice. To crosslink trastuzumab and ERBB2, cells were washed with PBS and incubated with BS3 (bis[sulfosuccinimidyl]) (5 mg/ml) (Thermo Scientific, Rockford, IL) in PBS for 30 min.
    [Show full text]
  • Technology Assessment on Genetic Testing Or Molecular Pathology Testing of Cancers with Unknown Primary Site to Determine Origin
    Technology Assessment Technology Assessment on Genetic Testing or Molecular Pathology Testing of Cancers with Unknown Primary Site to Determine Origin Technology Assessment Program Prepared for: Final Agency for Healthcare February 20, 2013 Research and Quality 540 Gaither Road Rockville, Maryland 20850 Technology Assessment on Genetic Testing or Molecular Pathology Testing of Cancers with Unknown Primary Site to Determine Origin Technology Assessment Report Project ID: CANU5011 February 20, 2013 RTI International-University of North Carolina at Chapel Hill Evidence-based Practice Center Name After Peer Review Sreeletha Meleth, Ph.D., Nedra Whitehead, M.S., Ph.D., Tammeka Swinson Evans, M.O.P., Linda Lux, M.P.A. This report is based on research conducted by the RTI Inernational- University of North Carolina at Chapel Hill (RTI-UNC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (HHSA290200710056I #8). The findings and conclusions in this document are those of the authors who are responsible for its contents. The findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of the Agency for Healthcare Research and Quality or of the U.S. Department of Health and Human Services. The information in this report is intended to help with health care decision-makers; patients and clinicians, health system leaders and policy makers, make well-informed decisions and thereby improve the quality of health care services. This report is not intended to substitute for the application of clinical judgement. Decisions concerning the provision of clinical care should consider this report in the same way as any medical ii reference and in conjuction with all other pertinent information, i.e.
    [Show full text]