7&~ Philip Bedient Assistant Professor, Department of Herman Brown Professor of Earth Science Engineering, Dept of Civil and Environmental Engineering
Total Page:16
File Type:pdf, Size:1020Kb
RICE UNIVERSITY Timescale and Latitudinal dependence of Glacial Erosion Rates from Patagonia and Antarctic Peninsula Tidewater Glaciers (46°-65° S) by Rodrigo Alejandro Fernandez-Vasquez A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Doctor of Philosophy APPROVED, THESIS COMMITTEE Dale Sawyer . Maurice Ewing Professor in Professor, Department of Earth Oceanograpy, Department of Earth Science Science 7&~ Philip Bedient Assistant Professor, Department of Herman Brown Professor of Earth Science Engineering, Dept of Civil and Environmental Engineering HOUSTON, TEXAS November 2011 Abstract Timescale and Latitudinal dependence of Glacial Erosion Rates from Patagonia and Antarctic Peninsula Tidewater Glaciers (46°-65° S) by Rodrigo Alejandro Fernandez-Vasquez I use time-constrained sediment volumes delivered by glaciers calving into Marinelli Fjord (55°S), an outlet glacier of the Cordillera Darwin Ice Cap, Southern Patagonia, to determine erosion rates across different timescales. These results indicate that modem sediment yields and erosion rates from temperate tidewater glaciers can exceed long-term values over the time of deglaciation after the LGM (centennial and millennia! time scales) by up to two orders of magnitude. In northern Patagonia (Gualas glacier area, 46.5°S), an overall increase in sediment production in the late Holocene is interpreted as result of a sharp increase in centennial timescale precipitation (intensified westerly winds). Erosion rates values span two orders of magnitude from 0.03 mm/yr for Lapeyrere Bay at Anver Island (~64.5°S), up to 1.09 mmlyr for San Rafael glacier at northern Patagonia ( ~6.5°S). Rates from the Antarctic Peninsula glaciers are in general lower than the temperate Patagonian glaciers. A good correlation of erosion rates and modem (estimated sea level annual 1970 temperature) sea level annual temperature was found. Latitudinal decrease of millenia! <Er> is interpreted as result of decreasing annual temperature although decreasing in annual precipitation is suggested. The pattern of thermochronology ages from other studies (Thompson et al., 2010; Guenthner et al., 2010), along with the values of 103 and 106 years time scales erosion rates from this study, indicate that long-term glacial erosion decreases significantly its efficiency with latitude, implying that long-term glacial cover acts as a protective blanket, hindering erosion and allowing mountain growth. We conclude that the pattern of erosion rate decrease with timescale reflects the sensitivity of glaciers to climate variability. Temperate glaciers have higher sensitivity and greater response amplitude to climatic stress than subpolar or polar glaciers. This results in a decrease in erosion rates (sediment production) with latitude, and also in a decrease of erosion rate gradients with timescale. Acknowledgments I would like to thank my advisor Dr. John Anderson for his support and guidance during my time at Rice. I want to thanks also those who served on my thesis and proposal committees, including Dr. Dale Sawyer, Dr. Brandon Dugan, Dr. Andre Droxler, Dr. Jerry Dickens and Dr. Philip Bedient. I am very grateful of the many co-workers and friends that helped me to carry to a good end my endeavour at Rice. Many thanks to my friends Lizette Leon-Rodriguez, Maximiliano Bezada, Karem Lopez, Davin Wallace, Becky Minzoni, Alex Kirshner, Travis Stolldorf, Winnie Yu, Bora Song and Ulyana Horodyskyj. My friends Sarita Martinez and Nicholas Voronov gave me great support and the feeling of having the comfort of a family which was invaluable during my early years in US. I would like to give special thanks to all the supportive staff of the Rice University Earth Science Department: Soookie Sanchez, Mary Ann Lebar, Pat Jordan, Roger Romero, Sandra Flechsig, Bonnie Hoffman and Lee Willson. Nothing would have been possible without the unconditional support of my wife Mariela Gonzalez and my parents Benito Fernandez and Miriam Vasquez, to whom I dedicate this work. As always and ever, I thank the Tao, Zen and AIKIDO. v Contents Acknowledgments ........................................................................................................... iv Contents ............................................................................................................................. v List of Figures ................................................................................................................ viii List of Tables ..................................................................................................................... x Chapter 1: Introduction ................................................................................................... 1 1.1. Overview ................................................................................................................ 1 1.2. Layout of the thesis ................................................................................................ 6 Chapter 2: Timescale dependence of glacial erosion rates, a case study of Marinelli Glacier, Cordillera Darwin, southern Patagonia .................................................. 7 2.1. Introduction ............................................................................................................ 9 2.2. Regional Background ........................................................................................... 12 2.2.1. Physical Setting ........................................................................................... 12 2.2.2. Geology ....................................................................................................... 13 2.3. Marinelli Glacier Area ......................................................................................... 15 2.3.1. Glacial History ............................................................................................. 15 2.3.2. Depositional Basins ..................................................................................... 17 2.4. Methods ................................................................................................................ 18 2.5. Sediment Volume and Erosion rate Determination .............................................. 20 2.5.1. Basic Concepts and Parameters ................................................................... 20 2.5.2. Numerical Approximation ........................................................................... 22 2.6. Results .................................................................................................................. 24 2.6.1. Seismic Units ................................................................................................ 24 2.6.2. Erosion Rates ................................................................................................ 26 2.6.3. Error estimates .............................................................................................. 27 2.6.4. Integration of Time Scales ............................................................................ 28 VI 2.7. Discussion ............................................................................................................ 29 2.7.1. Conceptual Model and Limitations ............................................................. .29 2.7.2. Time Scale Dependance ofErosion Rates ................................................... .32 2.8. Conclusions .......................................................................................................... 37 2.9. Acknowledgements .............................................................................................. 38 Chapter 3: Gualas Glacier sedimentary record of climate and environmental change, Golfo Elefantes, Western Patagonia (46.5°8) ........................................ 50 3.1. futroduction .......................................................................................................... 51 3.2. Glacial Evolution of Patagonia ............................................................................ 54 3.2.1. LGM and Deglaciation ................................................................................ 54 3.2.2. Neoglaciation ................................................................................................ 55 3.3. Methods ................................................................................................................ 51 3.4. Results .................................................................................................................. 58 3.4.1. Seismic Facies and Architecture .................................................................. 58 3.4.2. Sedimentology of Seismic Units ................................................................. 60 3.4.3. Age Constraints for Seismic Units .............................................................. 61 3.4.4. Sediment Discharge ..................................................................................... 64 3.5. Discussion ............................................................................................................ 67 3.5.1. Implications for the Late Pleistocene Glacial History of the Fjords West of the North Patagonia lcefield (NPI) ........................................................................ 67 3.5.2. Implications for Sediment Discharge Variations in the Holocene .............. 69 3.5.3. lmplicantions for the Holocene Climate of the West NPI Area .................. 71 3.6. Conclusions .........................................................................................................