Andrzej Lech Kawczyński Instytut Chemii Fizycznej PAN Warszawa Seminarium Ogólnoinstytutowe 6 Czerwiec 2008
Total Page:16
File Type:pdf, Size:1020Kb
Andrzej Lech Kawczyński Instytut Chemii Fizycznej PAN Warszawa Seminarium Ogólnoinstytutowe 6 czerwiec 2008 „Gerhard Ertl – laureat nagrody Nobla z dziedziny chemii w 2007 r.” “for his studies of chemical processes on solid surfaces” K Paul Sabatier –Nobel 1912 "for his method of hydrogenating organic compounds in the presence of finely disintegrated metals whereby the progress of organic chemistry has been greatly advanced in recent years" Fritz Haber – Nobel 1918 "for the synthesis of ammonia from its elements" Irving Langmuir – Nobel 1932 "for his discoveries and investigations in surface chemistry" •Curriculum Vitae: •Years • •Function • •Institution •2004-now • •Professor emeritus • •Dept. of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin •1986-2004 • •Director • •Dept. of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin •1981-1982 • •Visiting Professor • •Dept. of Chemistry, University of California, Berkeley •1979 • •Visiting Professor • •Dept. of Physics, University of Wisconsin, Milwaukee •1976-1977 • •Visiting Professor • •Dept. of Chemical Engineering, California Institute of Technology, Pasadena •1973-1986 • •Professor & Director • •Inst. for Physical Chemistry, Ludwig Maximilians University, Munich •1968-1973 • •Professor & Director • •Inst. for Physical Chemistry, Technical University, Hannover (presently Gottfried Wilhelm Leibniz University) •1965-1968 • •Assistant & Lecturer • •Technical University, Munich •1962-1965 • • •Technical University, Munich: Dr. rer. nat in 1965 •1959-1961 • • •Technical University, Stuttgart: Dipl. Phys. in 1961 •1958-1959 • • •Ludwig Maximilians University, Munich •1957-1958 • • •University of Paris •1955-1957 • • •Technical University, Stuttgart •1936 • •born • •October 10, in Stuttgart, Germany Diploma thesis „Eine Temperatursprungmetode zur Untersuchung schneller Dissozationsreaktionen mit Hilfe eines Mikrowellenimpulses” -”Temperature jump experiments to study fast dissociation reactions using microwave pulses”- promotor prof. Heinz Gerischer; 1961 Ph.D. thesis „Über die Kinetik der katalytischen Oxidation von Wasserstoff an Germanium Einkristallen” – „On the kinetics of the catalytic hydrogen oxidation on Germanium single crystals” -promotor prof. Heinz Gerischer, 1965 Habilitation thesis „Untersuchung von Oberfläschenstrukturen und -reaktionen mittels Beugung langsamer Elektronen” – „Surface structural and reactivity studies using low energy electron diffraction”, 1967 676.G. Ertl: Reaktionen an Oberflächen: vom Atomaren zum Komplexen (Nobel-Vortrag).Angew. Chem. 120, 3578-3590 (2008). Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture).Angew. Chem. Int. Ed. 47, 3524-3535 (2008). G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis, 2nd ed., 8 vols. Wiley-VCH, Weinheim (2008). 675.G. Ertl: Non-Linear Dynamics: Oscillatory Kinetics and Spatio- Temporal Pattern Formation, Chapter 5.2.4 in: Handbook of Heterogeneous Catalysis, 2nd ed. pp. 1492-1516. 674.G. Ertl: Dynamics of Surface Reactions, Chapter 5.2.2 in: Handbook of Heterogeneous Catalysis, 2nd ed. pp. 1462-1479. •Honors and Awards: •Year • •Designation • •Organization • 2008 • •Großes Bundesverdienstkreuz mit Stern • •President of the Federal Republic of Germany • 2008 • •Dr. honoris causa • •Technische Universität München • 2008 • •Dr. honoris causa • •Queen’s University Belfast • 2008 • •Verdienstmedaille • •Land Baden-Würtemberg • 2007 • •Nobel Prize in Chemistry ••The Nobel Prize Foundation • 2007 • •Otto-Hahn-Preis • •Gesellschaft Deutscher Chemiker, Deutsche Physikalische Gesellschaft, & the City of Fra • 2007 • •Gold Medal • •Slovak Chemical Society • 2007 • •Baker Lectureship ••Cornell University, Ithaca (NY) • 2007 • •Faraday Lectureship ••Royal Society of Chemistry • 2006 • •Guptill Lecture • •Dalhousie University, Halifax • 2005 • •Angström Lecture • •University of Uppsala • 2005 • •Linus Pauling Lecture • •California Institute of Technology • 2003 • •Dr. honoris causa • •University of Aarhus • 2003 • •Dr. honoris causa • •Chalmers University of Technology, Goeteborg • 2003 • •Dr. honoris causa • •University of Leuven • 2002 • •FMC Lectureship • •Princeton University • 2002 • •Karl Ziegler Visiting Professor • •Max Planck Institute Mulheim • 2002 • •Spiers Memorial Medal and Lectureship • •Royal Society of Chemistry • 2001 • •G.F. Smith Lecture • •University of Illinois, Urbana • 2001 • •Kelly Lecture • •Purdue University • 2001 • •Schuit Lecture • •Technical University of Eindhoven • 2001 • •Pitzer Lecture • •University of California, Berkeley The principle of heterogeneous catalysis. Energy diagram illustrating the progress of a chemical reaction with and without a catalyst. STM image from a Pt(111) surface (5.3x5.5 mm) after exposure to a small concentration of O2 molecules at 165 K STM snapshots from O atoms adsorbed on a Ru(001) surface at 300 K: a) at very small coverage; b) at higher coverage. The Sabatier reaction or Sabatier process involves the reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst to produce methane and water. Optionally ruthenium on alumina makes a more efficient catalyst. It is described by the following reaction: CO2 + 4H2 → CH4 + 2H2O Since the work of Sabatier there was a longstanding question of how hydrogen is organized on metals like palladium, platinum and nickel. Haber-Bosch process N2 + 3H2 → 2NH3 The Haber-Bosch process was the first industrial chemical process to make use of extremely high pressures (200 to 400 atmospheres) and high temperatures (670 to 920 K). Catalyst composed mostly of iron. The efficiency of the reaction is a function of pressure and temperature - greater yields are produced at higher pressures and lower temperatures. Surface topography and chemical composition of an industrial ammonia synthesis catalyst (the Mittasch catalyst). P. H. Emmett, one of the pioneers of catalysis research in 1974 concluded: “The experimental work of the past 50 years leads to the conclusion that the rate-limiting step in ammonia synthesis over iron catalysts is the chemisorption of nitrogen. The question as to whether the nitrogen species involved is molecular or atomic is still not conclusively resolved …”. The variation of the relative coverage N atoms (y) chemisorbed at 693 K at various Fe single-crystal surfaces with exposure to gaseous N2 (1 L=1.33x106 mbars is about the exposure that would suffice to form a complete monolayer if each incident moleculeis adsorbed). Kinetic oscillations in the catalytic oxidation CO The mechanism of CO oxidation. Energy diagram for the catalytic oxidation of CO on Pt. Onset of temporal oscillations of the rate of CO2 formation -5 on a Pt(110) surface. T=470 K; pCO=310 mbar. 3D plots (only CO-1x1 and hex). Cycle numbers: a=10, b=52, c=70, d=128, e=160, f=228. Structures of CO (a), O (b), and O+CO (c) chemisorbed on a Rh(111) surface. Distances are given in Å. Structures of the Pt(110) surface: a) the 1x2 structure of the clean surface; b) the 1x1 structure representing termination of the bulk structure. Target patterns in catalytic oxidation of CO on a Pt(110)surface as imaged by PEEM. PEEM image of the formation of spiral waves in catalytic CO -4 oxidation on a Pt(110) surface. T=448 K; pO2=4x10 mbar; -5 pCO=4.3x10 mbar. The diameter of the picture is 500 μm. PEEM image from a Pt(110) surface in the state of chemical turbulence. -4 -4 T=548 K; pO2=4x10 mbar; pCO=1.2x10 mbar. The image size is 360x360 μm. Conversion of oxygen islands. Subsequent PEEM images separated by equal time intervals Δ t are shown from top left to bottom right. The parameters are: (a)T= 400 K, Δt=120 s, image size 150 μm x 420 μm; (b)T=453 K, Δ t=60s, 220 μm x 420 μm; and (c) T=503 K, Δ t=30s, 165 μm x 420 μm. -4 A typical two-into-one wave collision at T=533 K, pCO=1.84x10 mbar, -4 and pO2=4x10 mbar. Subsequent PEEM images of size 170 μm x 130 μm are separated by equal time intervals Δt=1.92 s. A wave collision of the two-into-two type. The reaction parameters are -5 -4 T=503 K, pCO=9x10 mbar, and pO2=4x10 mbar. Subsequent PEEM images of size 180 μm x 130 μm are separated by equal intervals Δt=0.8 s. 2 2 ∂u 3 ∂ u ∂ u = k p ()1−u −k u −k uv+ D + D ∂t 1 CO 2 3 x ∂x2 y ∂y2 ∂v = k p [s w + s ()()1− w ] 1− u − v 2 ∂t 4 O2 O,1×1 O,1×2 − k3uv − k6uv()1− s + k7 s(1− v) ∂w = k ( f (u, s) − w ∂t 5 ∂s = k vw()1− s − k s ()1− v ∂t 6 7 exp[(u − u ) /δ ]+ exp[(s − s )δ ] f ()u, s = 0 u 0 y 1+ exp[((u − u0 ) /δ u ]+ exp[(s − s0 )δ y ] u – the local CO coverage; v – the surface oxygen coverage w – the local structural state of the surface: w=0 for 1x2, w=1 for 1x1 s - the local concentration of subsurface oxygen i= -0.3u -v+ 3s Spatial profiles of PEEM intensity (a) during a two-into-one collision. Spatial profiles of PEEM intensity during a two-into-two collision. Computer simulation of the evolution of spiral waves in catalytic CO oxidation. Computer simulation of the break up of spiral waves to chemical turbulence. Simulation of a complex reflective collision in two dimensions. Subsequent computed PEEM images of size 100 μm x 200 μ m are separated by equal intervals Δ t = 4 s. S.C. Badescu, K. Jacobi, Y. Wang, K. Bedürftig, G. Ertl, P. Salo, T. Ala-Nissila and S.C. Ying: Vibrational states of a H monolayer on the Pt(111) surface. Phys. Rev. B 68, 205401-1-6 (2003). I.Rabin, W. Schulze and G. Ertl: Mass spectra from Mg clusters in Ar shells. Chem. Phys. Lett. 379, 314-318 (2003). T.Lei, J. Lee, M.S. Zei and G. Ertl: Surface properties of Ru(0001) electrodes interacting with formic acid. J. Electroanal. Chem. 554-555, 41-48 (2003). D.N. Denzler, C. Frischkorn, M. Wolf, and G. Ertl: Surface Femtochemistry: Associative Desorption of Hydrogen from Ru(001) Induced by Electronic Excitations. J. Phys. Chem. B 108, 14503-14510 (2004). Foundation of the Institute The Kaiser-Wilhelm Institutes for Chemistry (left) and for Physical Chemistry and Electrochemistry (right) --(1913).