On the Analysis and Design of In-Wheel Motor for Vehicle Application
Total Page:16
File Type:pdf, Size:1020Kb
On the analysis and design of in-wheel motor for vehicle application Dissertation zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) von M.Sc. Sergey Perekopskiy geb. am 16.01.1988 in Makeevka, Donezka obl., Ukraine genehmigt durch die Fakultät Maschinenbau der Otto-von-Guericke Universität Magdeburg Gutachter: Prof. Dr.-Ing. Roland Kasper Prof. Igor Gorobets Promotionskolloquium am 18.09.2020 For my family II Abstract The revolutionary changes in automotive industry which are based on the following trends in environmental protection, lead to the new requirements that must be met in modern vehicles. Thus, for the automotive industry, electric powered vehicles are becoming an increasingly relevant factor in the competition against climate change. The expert community is united in the opinion that e-mobility is becoming the dominant factor in improving the operating efficiency of vehicles. At the same time, the key aspects of changes in the context of the development of vehicles represent directions that bring serious changes to the traditional automotive industry, especially in its design and technological basis. One special example of a possible way of change represents an in-wheel motor which provides a powerful and compact drive solution for electric vehicles. The in-wheel motor as a modular element of an electric drive has long been known. In-wheel motors for a vehicle have remarkable advantages as compactness and present a wide field of research for possible integration in vehicle structures. Currently, the development of motor-in-wheeled electric transport drives is continuously increasing. However, such a constructive solution for the vehicles could not be implemented until recently for a variety of reasons. First of all, due to the impossibility of development of a compact, highly efficient drive that meets its power and torque requirements. Therefore, the main disadvantage of the in-wheel motor is an unsprung weight. This is why a usage of modern lightweight technologies in in-wheel motors is significant. The purpose of this thesis is to present for the first time the findings and conclusions about the potential of the novel in-wheel motor design with significant specific power and torque density for a vehicle with regard to manufacturability and functionality. For this purpose, the design methodology of the in-wheel motor was presented, which has an ambivalent manner. On the one hand the ascertainment of increased potentials for modern lightweight technologies and materials according to their application on the in-wheel motor is applied to minimize the total weight of the motor. On the other hand, an increase of the power and torque characteristics is realized by the usage of new concept of the motor active parts – novel winding technique and arrangement of the magnets. In addition, features such as functionality, stiffness and robustness have been considered due to the innovative approach of specific load compensation in the in-wheel motor. Relevant research has demonstrated that integration of the in-wheel motor in common vehicles together with a unique coupling element is soluble. The potentials of the developed methodology were demonstrated by component and system testing of the completed prototypes. III Kurzfassung Die revolutionären Änderungen in der Automobilbranche, die auf den Tendenzen des Umweltschutzes beruhen, führen zu den neuen Anforderungen, die in modernen Fahrzeugen erfüllt werden müssen. Für die Automobilindustrie werden somit die elektrisch angetriebenen Fahrzeuge zu einem immer wichtigeren Faktor im Wettbewerb gegen den Klimawandel. Die Experten sind sich in der Meinung einig, dass die Elektromobilität zu einem dominierenden Faktor wird, da die Steigerung der Fahrzeugeffizienz somit gewährleistet ist. Gleichzeitig stellen die Schwerpunkte der Veränderungen im Zusammenhang mit der Entwicklung von Fahrzeugen die neuen Entwicklungsrichtungen dar, die gravierende Veränderungen für die traditionelle Automobilindustrie mit sich bringen, insbesondere in Bezug auf Design und technologische Basis. Ein spezielles Beispiel der möglichen Art und Weise von Veränderungen stellt ein Radnabenmotor dar, der eine leistungsstarke und kompakte Antriebslösung für Elektrofahrzeuge bietet. Der Radnabenmotor als modulares Element des Elektroantriebs ist schon lange bekannt. Radnabenmotoren für die Fahrzeuge haben erhebliche Vorteile wie die Kompaktheit und stellen ein weites Forschungsfeld für eine mögliche Integration in die Fahrzeugstruktur dar. Zurzeit nimmt die Entwicklung von elektrischen Radnabenantrieben kontinuierlich zu. Allerdings war es bis vor kurzem aus einer Vielzahl von Gründen nicht möglich, eine solche konstruktive Lösung für die Fahrzeuge einzusetzen. Zunächst einmal aufgrund der Unmöglichkeit, einen kompakten, hocheffizienten Antrieb zu entwickeln, der den Leistungs- und Drehmomentanforderungen genügt. Folglich ist der Hauptnachteil des Radnabenmotors eine ungefederte Masse. Aus diesem Grund ist der Einsatz moderner Leichtbautechnologien im Radnabenmotor von Bedeutung. Ziel dieser Arbeit ist es, erstmals die Erkenntnisse und Schlussfolgerungen über das Potential der neuartigen Radmotorkonstruktion mit signifikanter spezifischer Leistungs- und Drehmomentdichte für ein Fahrzeug im Hinblick auf Herstellbarkeit und Funktionalität darzustellen. Zu diesem Zweck wurde die Entwurfsmethodik des Radnabenmotors in zwiespältiger Weise vorgestellt. Zum einen wird die Ermittlung erhöhter Potentiale für moderne Leichtbautechnologien und -werkstoffe entsprechend ihrer Anwendung auf den Radnabenmotor angewendet, um das Gesamtgewicht des Motors zu minimieren. Zum anderen wird eine Erhöhung der Leistungs- und Drehmomentcharakteristika durch den Einsatz eines neuen Konzeptes der motoraktiven Teile - neuartige Wicklungstechnik und Anordnung der Magnete, realisiert. Zusätzlich wurden solche Eigenschaften wie Funktionalität, Steifigkeit und Robustheit durch die Verwendung eines innovativen Ansatzes der spezifischen Lastkompensation im Radnabenmotor berücksichtigt. Aktuelle Untersuchungen haben gezeigt, dass die Integration des Radnabenmotors in ein konventionelles Fahrzeug in Verbindung mit einem speziellen Kupplungselement lösbar ist. Die Potentiale der entwickelten Methodik wurden durch Komponenten- und Systemtests an den fertigen Prototypen demonstriert. IV Acknowledgements The present dissertation and the research were conducted from February 2016 until March 2020 at the chair of the Mechatronics at the Institute of Mobile Systems of the Otto von Guericke University Magdeburg. First, I would like to thank Prof. Dr.-Ing. Roland Kasper for the opportunity to carry out research in such exiting scientific area and for the supervision and extensive support during my research work. I would also like to thank Prof. Igor Gorobets for the submission of the second examination report and his intense interest to the topic of dissertation. I would also like to thank the head of my examination committee Prof. Dr.-Ing. habil. Manja Krüger. I do appreciate the excellent and outstanding co-operation with all partners from LeiRaMo project and especially to Mr. Falk Höhne from Elektromotoren und Gerätebau Barleben GmbH for hours of discussion and finding of solutions. I am also very grateful to all my colleagues from the university and especially from the chair of Mechatronics for their cooperation during my research. I would like to express my special thanks to M.Sc. Martin Schmidt for assistance by prototype testing and discussions in the theoretical side, Dipl.-Ing. Ralf Hinzelmann and Dipl.-Ing. Andreas Zörnig for their helpful discussions and suggestions by the development of the motor, Dr. Jörg Sauerhering for his constant readiness to explain and discuss thermodynamical aspects, M.Sc. Markus Höfer for his support in manufacturing and assembling of the prototypes, interesting discussions and suggestions, and encouragement during research. I would like to thank my numerous bachelor and master students for their work on a number of different topics, which help to succeed scientific targets. I would also like to mention the various support provided by the University's workshops as well as the secretariats and administration. My special thank goes to all colleagues of mechanical workshop at the Institute for Mobile Systems for their fast and accurate manufacturing of parts for prototypes, especially to Mr. Sven Förster and to Mr. Uwe Kuske. I also would like to express my gratitude to all my small "army" of student assistants, who furiously “fought” side by side on the "battlefield" of prototype manufacturing. Without all these people, it would be impossible to carry out meaningful research work. At last but not least, I would like to express my gratitude to my friends. Above all, I would like to thank my friends John, Michael, Chad, Anthony and James Newell Osterberg for their endless support and captivating by the idea of getting things done. I would like also to take this opportunity to express my deep sense of gratitude towards my family who supported me throughout during research and writing this dissertation. Finally, my heartfelt appreciation goes to my wife Alina, without her help this work would have been written three to four months earlier. Magdeburg, 15.04.2020 Sergey Perekopskiy V A deal of poverty grows out of the carriage of excess weight. Henry Ford VI Contents Contents Abstract...........................................................................................................................................................III