GOG Ocean Characteristics: COASTAL UPWELLING

Total Page:16

File Type:pdf, Size:1020Kb

GOG Ocean Characteristics: COASTAL UPWELLING Map showing the Gulf of Guinea in the Central Eastern Atlan6c. The Gulf of Guinea is that part of the Eastern Tropical Atlantic Ocean off the western African coast, extending westward from Cap López, near the Equator, to Cape Palmas at longitude 7° west. GOG ocean characteris6cs Gulf of Guinea Region showing prevailing ocean currents Guinea Current flowing southward along the coast of the Gulf of Guinea is essentially a continuation of the Equatorial Counter‐Current. Coastal Ocean currents in the G O G consist of the Guinea current, which is an extension of the North Equatorial Counter current. GOG ocean characteriscs: WATER INPUT A major influence on the region is the input of freshwater from the numerous rivers in this relatively high‐rainfall region, most notably the Niger and Zaire. This results in large masses of warm (above 24°C) and low salinity (less than 35 ppt). GOG OCEAN CHARACTERISTICS: SST The Gulf of Guinea region of the tropical Atlantic has the largest SST seasonal amplitude of between 5‐8°C. A coastal upwelling is observed each year along the northern coast of GOG. GOG ocean characteriscs: CURRENT REVERSALS A reversal in current direction has been detected during the minor upwelling. Avon Mahi 10 canyo n This change is attributed to 0 n mud m coast variations in the flow of the North Equatorial Countercurrent, the Canary Current, and the Benguela Current, and to the weakening of the easterly winds. Atlan4c Ocean These changes are also known to affect plankton production and the seasonal migration of fish and weather patterns which comprise of dry and wet seasons. Trajectory of drier No 26122 deployed off the Benin River estuary in the western Niger Delta.(Awosika and Folorunsho 2008 In press). GOG ocean characteristics: COASTAL UPWELLING Coastal upwelling No coastal upwelling on observed on15 July 15 July 2006 in the same 2005 area (Bourles 2008) Coastal upwellings observed on 15 July 2005 but not observed on 15 July 2006 in approximately the same area in the GOG. (Bourles 2008) COASTAL UPWELLINGS IN THE GULF OF GUINEA Two upwelling seasons: TWO MAIN COASTAL UPWELLING -Main season from June to September; REGIONS: -Minor upwelling (January to March. 1-Côte d’Ivoire-Ghana 2-Congo-Gabon -A remarkable characteristic? -No evident correlation between wind forcing and coastal temperature during the major upwelling season. => Alternative mechanisms have been suggested (mainly for the Côte d’Ivoire- Ghana upwelling): -Current induced upwelling -Cape effect -Remote forcing by trapped Kelvin waves, -etc. (Source: courtesy of Claude Roy, IRD) IMPORTANCE OF SEA SURFACE TEMPERATURE (SST AND SALINITY IN THE GULF OF GUINEA (Bourles et. al. 2007) Comparison of SST between June 10, 2005 (leJ picture) and June 10 2006 (right picture) in the Gulf of Guinea (TMI). Sea surface temperature (SST) in the Gulf of Guinea vary at seasonal and inter‐annual time scales and thus may have a strong impacts on regional climate consisting of the West African monsoon onset and intensity, precipitation (water resources), and fisheries. More data and studies on coastal upwelling variability and its impacts ! ONGOING PROGRAMMES TO UNDERSTAND SST, SSS AND MET OCEAN PROCESSES IN THE GOG PIRATA PIRATA with 10 atlas buoys in the Atlantic Ocean; 5 are managed by IRD, located at (0°E‐0°N) Figure : Pilot Research moored Array in the Tropical Atlan4c ONGOING PROGRAMMES CONTI.. Argo Argo activities in the GOG region so far has trained oceanographer and technicians in the deployment and retrieval of Argo data. On the 12 March 2008, ARGO float was deployed in the GOG (at 0.02°S and 0.15°E) as part of a hands‐on training for African scientists on board the US. Navy vessel HSV-2 Swift. AMMA‐EGEE (REGIONAL PROGRAM OF PHYSICAL OCEANOGRAPHY IN WEST AFRICA, (RIPIECSA ‐ PROPAO) AMMA / EGEE cruises in the 6 cruises: - June-July 2005, 2006 & 2007 Gulf of Guinea ) AMMA / - September 2005, November 2006, September 2007. EGEE cruises in the Gulf of Guinea EGEE 3 - 2nd Leg As part of the AMMA – EGEE- Stations CTD 4oN XBT XCTD PROPAO Programme: the coastal o 0 observation network developed as an 4oS extension of the open ocean studies has 8oS installed three SST autonomous 12oS 15oW 10oW 5oW 0o 5oE 10oE 15oE sensors (ONSET) in Ivory Coast, Ghana, Nigeria, Togo and Benin. INITIAL RESULTS FROM PROPAO ACTIVITIES Sea temperature (ONSET thermometer) time evolution at Cotonou, from July 2005 to August 2007 (raw data) Coastal waters warmer in winter/spring 2006 than in 2007 (>1,5°C) Autonomous thermometers (onset) ONGOING PROGRAMMES CONTI.. WMO INITIATIVES IN THE REGION An ongoing pilot project on marine meteorology and remote sensing (involving three countries Senegal, Cape Vert and Mauritania) is at its final stage for implementation. The project would contribute to the needs expressed by the countries in the region to improve marine meteorological services for maritime safety and fisheries management. Strengthening the capacity of Member States to manage oceanographic data and information (with special attention to the developing countries) and to provide ocean data and information products and services required by users. JCOMM/IOC/IODE Combined Modeling and Data Management Training Workshop ("Jamboree"), Ostend, Belgium, 5-10 September 2005 and 2006. In the GOG region, as well as other regions JCOMM has facilitated the compilation of existing information and guidance on met ocean observations and services. OTHER ONGOING PROGRAMMES ODINAFRICA (Ocean Data and Information Network for Africa) Building an Ocean Data and Information Network for Africa. Increased the number of NODCs in Africa from 4 to 18 in the past 2 years. Equipped with computers, and training is provided in the collection and management of the data. GOOS AFRICA (Global Ocean Observations System) Guinean Current - Large Marine Ecosystem (GCLME) Though some work and understanding of the SST, SSS and coastal upwelling in the GOG area have been done carried out by the different program areas, the region still lacks behind on the long term data that could be used to fully understand these processes . A coordinated SST programme for the GOG should be put in place. Special activities of the GOG SST and SSS under the GOSUD/SAMOS programme should include: •Coordination of all on-going SST and SSS activities in the GOG area. •Collating of existing long term SST and SSS data in the region •Analysis of data to expose long term variability's in SST (PRODUCTS ?). •Publication of the results of the activity •Continuous capacity development of local scientists in the lunching retrieval of data, analysis and interpretation of data. These programms should include: •EGEE, PROPAO •PIRATA, •Ocean Data and Information Network for Africa (ODINAFRICA, IOC/UNESCO), •JCOMM •Global Ocean Observation System (GOOS)-Africa, •Guinean Current - Large Marine Ecosystem (GCLME) The GOSUD/SAMOS Programme is a laudable programme for understanding and determining the status of SST, SSS observing network (data collection, assembly, gaps, QC). This programme presents a viable lunching pad for an integrated approach for the inclusion of the GOG in the programme. While the region has a modest set of scientists that can be included in decision making activities in this programme there exist a moderately young group of scientists and technicians that can be brought onboard. It must be understood that the objective of the GOSUD/SAMOS programme is to fully understand the ocean ( SST, SSS) among others, however this cannot be accomplished with regional data gaps. I acknowledge with thanks support from GOSUD/SAMOS Workshop Organizers and IRD-LEGOS/France & CRHOB/Benin for making my participation possible. .
Recommended publications
  • The Mean Flow Field of the Tropical Atlantic Ocean
    Deep-Sea Research II 46 (1999) 279—303 The mean flow field of the tropical Atlantic Ocean Lothar Stramma*, Friedrich Schott Institut fu( r Meereskunde, an der Universita( t Kiel, Du( sternbrooker Weg 20, 24105 Kiel, Germany Received 26 August 1997; received in revised form 31 July 1998 Abstract The mean horizontal flow field of the tropical Atlantic Ocean is described between 20°N and 20°S from observations and literature results for three layers of the upper ocean, Tropical Surface Water, Central Water, and Antarctic Intermediate Water. Compared to the subtropical gyres the tropical circulation shows several zonal current and countercurrent bands of smaller meridional and vertical extent. The wind-driven Ekman layer in the upper tens of meters of the ocean masks at some places the flow structure of the Tropical Surface Water layer as is the case for the Angola Gyre in the eastern tropical South Atlantic. Although there are regions with a strong seasonal cycle of the Tropical Surface Water circulation, such as the North Equatorial Countercurrent, large regions of the tropics do not show a significant seasonal cycle. In the Central Water layer below, the eastward North and South Equatorial undercurrents appear imbedded in the westward-flowing South Equatorial Current. The Antarcic Intermediate Water layer contains several zonal current bands south of 3°N, but only weak flow exists north of 3°N. The sparse available data suggest that the Equatorial Intermediate Current as well as the Southern and Northern Intermediate Countercurrents extend zonally across the entire equatorial basin. Due to the convergence of northern and southern water masses, the western tropical Atlantic north of the equator is an important site for the mixture of water masses, but more work is needed to better understand the role of the various zonal under- and countercur- rents in cross-equatorial water mass transfer.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Northwest African Upwelling Scenario
    OCEANOLOGICA ACTA ⋅ VOL. 24 – Supplement Northwest African upwelling scenario Eberhard HAGEN* Baltic Sea Research Institute, Seestrasse 15, 18119 Warnemuende, Germany Received 24 December 1999; revised 15 May 2000; accepted 16 May 2000 Abstract − Observations, hypotheses and derived scenarios are discussed for the Northwest-African coastal upwelling area. The process of coastal upwelling is considered to be composed of a climatic steady-state part and fluctuations acting on different spatial and temporal scales. Attention is focused on disturbances acting globally on the inter-annual time-scale. El Niño-like changes occur in the system of trade winds and modify the equatorial regime of currents as well as the coastal upwelling regimes on both flanks of the Inter-tropical Convergence Zone. There is an opposite thermal response in near-surface layers along the zonal coast in the Gulf of Guinea and along the meridional coast off NW-Africa. Off the continental slope of Senegal and Mauritania, the poleward undercurrent is linked with the system of eastward flowing equatorial undercurrents via the transport of South Atlantic Central Water (SACW) around the eastern flank of the Guinea Dome. The upwelling undercurrent partly feeds its SACW properties into the belt of coastal upwelling and contributes significantly to the biological productivity during ‘normal’ and ‘abnormal’ upwelling years. Future investigations should focus on changes in the time-scale of decades. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS Résumé − Upwelling au nord-ouest de l‘Afrique. La zone d’upwelling située au nord-ouest des côtes africaines est étudiée dans le cadre d‘une discussion portant sur les observations, les hypothèses et les scénarios qui en dérivent.
    [Show full text]
  • Mapping Climatological Seasonal Variations of Surface Currents in the Tropical Atlantic Using Ship Drifts
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. C9, PAGES 10,537-10,550, SEPTEMBER 15, 1986 Mapping Climatological Seasonal Variations of Surface Currents in the Tropical Atlantic Using Ship Drifts PHILIP L. RICHARDSON AND DAVID WALSH Woods Hole Oceanographic Institution, Woods Hole, Massachusetts The seasonal variability of current velocities in the tropical Atlantic was studied by grouping ship drift velocity observations into 2ø x 5ø boxes and calculating monthly mean velocity values. These values were used to calculate and map the annual mean velocity, the seasonal variation about the mean, the annual and semiannual harmonics, and the first two empirical orthogonal functions (EOFs). The seasonal variation is primarily zonal in the equatorial band and in the North Equatorial Countercurrent (NECC) and primarily alongshore near the coast of South America. Maxima of seasonal variation of 23 cm/s are centered in the NECC near 6øN, 42.5øW and in the Gulf of Guinea near 2øN, 7.5øW. Most (-80%) of the variance in the NECC and along the western boundary of the area studied has an annual period; most of the variance along the equator in the mid-Atlantic has a semiannual period. Over the whole region, 49% of the seasonalvariance is explained by the annual harmonic, and 69% is explained by a combination of the annual and semiannual harmonics. The second EOF contains 29% of the variance of the data set and shows a simultaneousspeeding (slowing) of the major equatorial currents (the South Equatorial Current (SEC), the North Brazil Current, the NECC, and the Guinea Current) along their principal axes of variation with a concurrent slowing (speeding) of the Guyana Current and the Brazil Current.
    [Show full text]
  • Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
    JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G.
    [Show full text]
  • Atlantic Ocean Equatorial Currents
    188 ATLANTIC OCEAN EQUATORIAL CURRENTS ATLANTIC OCEAN EQUATORIAL CURRENTS S. G. Philander, Princeton University, Princeton, Centered on the equator, and below the westward NJ, USA surface Sow, is an intense eastward jet known as the Equatorial Undercurrent which amounts to a Copyright ^ 2001 Academic Press narrow ribbon that precisely marks the location of doi:10.1006/rwos.2001.0361 the equator. The undercurrent attains speeds on the order of 1 m s\1 has a half-width of approximately Introduction 100 km; its core, in the thermocline, is at a depth of approximately 100 m in the west, and shoals to- The circulations of the tropical Atlantic and PaciRc wards the east. The current exists because the west- Oceans have much in common because similar trade ward trade winds, in addition to driving divergent winds, with similar seasonal Suctuations, prevail westward surface Sow (upwelling is most intense at over both oceans. The salient features of these circu- the equator), also maintain an eastward pressure lations are alternating bands of eastward- and west- force by piling up the warm surface waters in the ward-Sowing currents in the surface layers (see western side of the ocean basin. That pressure force Figure 1). Fluctuations of the currents in the two is associated with equatorward Sow in the thermo- oceans have similarities not only on seasonal but cline because of the Coriolis force. At the equator, even on interannual timescales; the Atlantic has where the Coriolis force vanishes, the pressure force a phenomenon that is the counterpart of El Ninoin is the source of momentum for the eastward Equa- the PaciRc.
    [Show full text]
  • Phylogeography of Ophioblennius: the Role of Ocean Currents and Geography in Reef Fish Evolution
    Evolution, 55(3), 2001, pp. 561±572 PHYLOGEOGRAPHY OF OPHIOBLENNIUS: THE ROLE OF OCEAN CURRENTS AND GEOGRAPHY IN REEF FISH EVOLUTION ANDREW MUSS,1 D. ROSS ROBERTSON,2 CAROL A. STEPIEN,3 PETER WIRTZ,4 AND BRIAN W. BOWEN1,5 1Department of Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida 32653 2STRI, Smithsonian Institution, Washington, D.C. 20560-0580 3Center for Environmental Science, Technology, and Policy, Cleveland State University, Cleveland, Ohio 44114-4434 4Departamento de Oceanogra®a e Pescas, Cais de S. Cruz, P-9901, Horta, Azores, Portugal Abstract. Many tropical reef ®shes are divided into Atlantic and East Paci®c taxa, placing similar species in two very different biogeographic regimes. The tropical Atlantic is a closed ocean basin with relatively stable currents, whereas the East Paci®c is an open basin with unstable oceanic circulation. To assess how evolutionary processes are in¯uenced by these differences in oceanography and geography, we analyze a 630-bp region of mitochondrial cyto- chrome b from 171 individuals in the blenniid genus Ophioblennius. Our results demonstrate deep genetic structuring in the Atlantic species, O. atlanticus, corresponding to recognized biogeographic provinces, with divergences of d 5 5.2±12.7% among the Caribbean, Brazilian, St. Helena/Ascension Island, Gulf of Guinea, and Azores/Cape Verde regions. The Atlantic phylogeny is consistent with Pliocene dispersal from the western to eastern Atlantic, and the depth of these separations (along with prior morphological comparisons) may indicate previously unrecognized species. The eastern Paci®c species, O. steindachneri, is characterized by markedly less structure than O. atlanticus, with shallow mitochondrial DNA lineages (dmax 5 2.7%) and haplotype frequency shifts between locations in the Sea of Cortez, Paci®c Panama, Clipperton Island, and the Galapagos Islands.
    [Show full text]
  • Respective Roles of the Guinea Current and Local Winds on the Coastal Upwelling in the Northern Gulf of Guinea
    JUNE 2017 D J A K O U R É ET AL. 1367 Respective Roles of the Guinea Current and Local Winds on the Coastal Upwelling in the Northern Gulf of Guinea S. DJAKOURÉ Laboratoire de Physique de l’Atmosphère et de Mécanique des Fluides, UFR SSMT, Université Félix Houphouët-Boigny, Abidjan, Cote^ d’Ivoire, and International Chair of Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, Cotonou, Benin P. PENVEN Laboratoire d’Océanographie Physique et Spatiale, UMR 6523 CNRS/IFREMER/IRD/UBO, Plouzané, France B. BOURLÈS Laboratoire d’Études en Géophysique et Océanographie Spatiales, UMR 5566 CNES/CNRS/IRD/UPS, Plouzané, France, and International Chair of Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, Cotonou, Benin V. KONÉ Centre de Recherches Océanologiques, Abidjan, Cote^ d’Ivoire J. VEITCH South African Environmental Observation Network, Egagasini Node, Cape Town, South Africa (Manuscript received 26 May 2016, in final form 20 March 2017) ABSTRACT The northern Gulf of Guinea is a part of the eastern tropical Atlantic where oceanic conditions due to the presence of coastal upwelling may influence the regional climate and fisheries. The dynamics of this coastal upwelling is still poorly understood. A sensitivity experiment based on the Regional Oceanic Modeling System (ROMS) is carried out to assess the role of the detachment of the Guinea Current as a potential mechanism for coastal upwelling. This idealized experiment is performed by canceling the inertia terms re- sponsible for the advection of momentum in the equations and comparing with a realistic experiment. The results exhibit two major differences.
    [Show full text]
  • Book 31 Oyashio Current.Indb
    (MPCBM*OUFSOBUJPOBM 8BUFST"TTFTTNFOU 0ZBTIJP$VSSFOU (*8"3FHJPOBMBTTFTTNFOU "MFLTFFW "7 ,ISBQDIFOLPW '' #BLMBOPW 1+ #MJOPW :( ,BDIVS "/ .FEWFEFWB *" .JOBLJS 1"BOE(%5JUPWB Global International Waters Assessment Regional assessments Other reports in this series: Russian Arctic – GIWA Regional assessment 1a Caribbean Sea/Small Islands – GIWA Regional assessment 3a Caribbean Islands – GIWA Regional assessment 4 Barents Sea – GIWA Regional assessment 11 Baltic Sea – GIWA Regional assessment 17 Caspian Sea – GIWA Regional assessment 23 Aral Sea – GIWA Regional assessment 24 Gulf of California/Colorado River Basin – GIWA Regional assessment 27 Yellow Sea – GIWA Regional assessment 34 East China Sea – GIWA Regional assessment 36 Patagonian Shelf – GIWA Regional assessment 38 Brazil Current – GIWA Regional assessment 39 Amazon Basin – GIWA Regional assessment 40b Canary Current – GIWA Regional assessment 41 Guinea Current – GIWA Regional assessment 42 Lake Chad Basin – GIWA Regional assessment 43 Benguela Current – GIWA Regional assessment 44 Indian Ocean Islands – GIWA Regional assessment 45b East African Rift Valley Lakes – GIWA Regional assessment 47 South China Sea – GIWA Regional assessment 54 Mekong River – GIWA Regional assessment 55 Sulu-Celebes (Sulawesi) Sea – GIWA Regional assessment 56 Indonesian Seas – GIWA Regional assessment 57 Pacifi c Islands – GIWA Regional assessment 62 Humboldt Current – GIWA Regional assessment 64 Global International Waters Assessment Regional assessment 31 Oyashio Current GIWA report production Series editor:
    [Show full text]
  • Ocean Climate of the South East Atlantic Observed from Satellite Data and Wind Models N.J
    Progress in Oceanography 59 (2003) 181–221 www.elsevier.com/locate/pocean Ocean climate of the South East Atlantic observed from satellite data and wind models N.J. Hardman-Mountford a,∗, A.J. Richardson b, 1, J.J. Agenbag c, E. Hagen d, L. Nykjaer e, F.A. Shillington b, C. Villacastin e a Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon PL1 2PB, UK b Oceanography Department, University of Cape Town, Rondebosch 7701, Cape Town, South Africa c Marine and Coastal Management, Private Bag X2, Rogge Bay, 8012 Cape Town, South Africa d Insitute for Baltic Sea Research Warnemuende, Seestrasse 15, 19119 Warnemuende, Germany e Institute for Environment and Sustainability, Joint Research Centre, I-21020 Ispra, Va, Italy Revised 8 September 2003; accepted 14 October 2003 Abstract The near-coastal South East Atlantic Ocean off Africa is a unique and highly dynamic environment, comprising the cool Benguela Current, warm Angola Current and warm Agulhas Current. Strong coastal upwelling and the Congo River strongly influence primary production. Much of the present knowledge of the South East Atlantic has been derived from ship-borne measurements and in situ sensors, which cannot generally provide extensive spatial and tem- poral coverage. Similarly, previous satellite studies of the region have often focused on small spatial areas and limited time periods. This paper provides an improved understanding of seasonal and interannual variability in ocean dynamics along the South East Atlantic coast of Africa using time series of satellite and model derived data products. Eighteen years of satellite sea surface temperature data are complimented by 7 years of sea level data.
    [Show full text]
  • Aquatic Sciences and Fisheries Information System: Geographic
    ASFIS-7 (Rev. 3) AQUATIC SCIENCES AND FISHERIES INFORMATION SYSTEM GEOGRAPHIC AUTHORITY LIST ASFIS REFERENCE SERIES, No. 7 Revision 3 ASFIS-7 (Rev. 3) AQUATIC SCIENCES AND FISHERIES INFORMATION SYSTEM GEOGRAPHIC AUTHORITY LIST edited by David S Moulder Plymouth Marine Laboratory Plymouth, United Kingdom revised by Ian Pettman and Hardy Schwamm Freshwater Biological Association Ambleside, Cumbria, United Kingdom Food and Agriculture Organization of the United Nations Rome, 2019 Required citation: FAO. 2019. Aquatic sciences and fisheries information system. Geographic authority list. ASFIS-7 (Rev. 3) Rome. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131173-8 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode).
    [Show full text]
  • XIV-44 California Current LME XIV-45 East Bering Sea LME XIV-46 Gulf of Alaska LME XIV-47 Gulf of California LME XIV-48 Pacific Central-American Coastal LME
    XIV NORTH EAST PACIFIC XIV-44 California Current LME XIV-45 East Bering Sea LME XIV-46 Gulf of Alaska LME XIV-47 Gulf of California LME XIV-48 Pacific Central-American Coastal LME 592 XIV North East Pacific XIV North East Pacific 593 XIV-44 California Current LME M.C. Aquarone and S. Adams The California Current LME is bordered by the USA and Mexico, between subtropical and subarctic LMEs. It has a surface area of around 2.2 million km², of which 1.31% is protected, and it contains 0.01% of the world’s coral reefs and 1.04% of the world’s sea mounts (Sea Around Us 2007). The LME shoreline is more than two thousand miles long. The LME features more than 400 estuaries and bays, including the Columbia River, San Francisco Bay and Puget Sound, which constitute 61% of the estuary and bay acreage. This LME is characterised by its temperate climate and strong coastal upwelling. Book chapters and articles pertaining to this LME include MacCall (1986), Mullin (1991), Bakun (1993), Bottom et al. (1993), McGowan et al. (1999), Brodeur et al. (1999) and Lluch- Belda et al. (2003). Additional information on this well-studied LME is available from the Pacific Marine Environmental Laboratory at< www.pmel.noaa.gov>. I. Productivity The effects of coastal upwelling, ENSO and the Pacific Decadal Oscillation (PDO) result in strong interannual variability in the productivity of the ecosystem and, consequently, of the catch levels of different species groups (Bakun 1993). ENSO events are characterised locally by an increase in temperature, a rise in coastal sea level, diminished upwelling and increased coastal rainfall (Bakun 1993).
    [Show full text]