Ocean Climate of the South East Atlantic Observed from Satellite Data and Wind Models N.J

Total Page:16

File Type:pdf, Size:1020Kb

Ocean Climate of the South East Atlantic Observed from Satellite Data and Wind Models N.J Progress in Oceanography 59 (2003) 181–221 www.elsevier.com/locate/pocean Ocean climate of the South East Atlantic observed from satellite data and wind models N.J. Hardman-Mountford a,∗, A.J. Richardson b, 1, J.J. Agenbag c, E. Hagen d, L. Nykjaer e, F.A. Shillington b, C. Villacastin e a Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, Devon PL1 2PB, UK b Oceanography Department, University of Cape Town, Rondebosch 7701, Cape Town, South Africa c Marine and Coastal Management, Private Bag X2, Rogge Bay, 8012 Cape Town, South Africa d Insitute for Baltic Sea Research Warnemuende, Seestrasse 15, 19119 Warnemuende, Germany e Institute for Environment and Sustainability, Joint Research Centre, I-21020 Ispra, Va, Italy Revised 8 September 2003; accepted 14 October 2003 Abstract The near-coastal South East Atlantic Ocean off Africa is a unique and highly dynamic environment, comprising the cool Benguela Current, warm Angola Current and warm Agulhas Current. Strong coastal upwelling and the Congo River strongly influence primary production. Much of the present knowledge of the South East Atlantic has been derived from ship-borne measurements and in situ sensors, which cannot generally provide extensive spatial and tem- poral coverage. Similarly, previous satellite studies of the region have often focused on small spatial areas and limited time periods. This paper provides an improved understanding of seasonal and interannual variability in ocean dynamics along the South East Atlantic coast of Africa using time series of satellite and model derived data products. Eighteen years of satellite sea surface temperature data are complimented by 7 years of sea level data. Three years of chlorophyll a data illustrate the seasonal biological response, but the time series is not of sufficient length for investigating interan- nual variability in chlorophyll biomass. Modelled wind fields are used to describe atmospheric forcing of the surface ocean. This is the first synoptic-scale description of the South East Atlantic from a suite of large spatial coverage, long time series products. Previous studies of seasonal and interannual variability in the region are reviewed and used to interpret key oceanographic features and processes identified in the satellite data. Key findings of this study are: 1. Descriptions of seasonal and interannual variability from these data show climate forcing of the South East Atlantic coast of Africa from both the northern and southern boundaries. Bimodal seasonal signals of equatorial origin propagate poleward along the Angolan coast, while the trade winds and events in the Agulhas region dominate the Agulhas Bank and Southern Benguela. The Northern Benguela is a mixed regime, under the influence of forcing from both directions. 2. The Benguela Nin˜o years of 1984 and 1995 are clearly observed in sea surface temperature and sea level anomalies and correspond to anomalously weak southerly winds at the equator. These conditions were also observed in 1999, suggesting this too may have been a Benguela Nin˜o year. 3. Consideration of putative Nin˜o-type events in the equatorial Atlantic from this and other studies suggests that the ∗ Corresponding author. Tel.: +44-1752-633100; fax: +44-1752-633101. E-mail address: [email protected] (N.J. Hardman-Mountford). 1 Present address: Sir Alister Hardy Foundation for Ocean Science, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK. 0079-6611/$ - see front matter 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.pocean.2003.10.001 182 N.J. Hardman-Mountford et al. / Progress in Oceanography 59 (2003) 181–221 frequency of these events is much higher than previously estimated and may be similar to the frequency of El Nin˜o- Southern Oscillation (ENSO) events in the Pacific Ocean. Furthermore, years of anomalously strong southerly winds at the equator occur during Pacific ENSO years. 2003 Elsevier Ltd. All rights reserved. Contents 1. Introduction . 183 1.1. Oceanographic and meteorological overview . 183 1.1.1. Meteorology . 183 1.1.2. Major currents and boundaries . 185 1.1.2.1. Angola Current . 185 1.1.2.2. Benguela Current . 185 1.1.2.3. Angola–Benguela front . 186 1.1.2.4. Agulhas Current . 186 1.1.3. Upwelling . 187 1.1.3.1. Gabon/Angola coastal system . 187 1.1.3.2. Benguela . 187 1.1.3.3. Agulhas Bank . 189 1.1.4. Interannual variability . 189 1.1.4.1. Benguela Nin˜os and tropical-origin anomalous events . 189 1.1.4.2. Agulhas Current intrusions . 190 1.2. Satellite remote sensing of the South East Atlantic Ocean . 190 2. Data and methods . 192 2.1. Data . 192 2.1.1. Sea surface temperature from satellite . 192 2.1.2. Sea level from satellite . 192 2.1.3. Chlorophyll a from satellite . 192 2.1.4. Surface winds from models . 192 2.2. Methods . 193 2.2.1. Monthly maps . 193 2.2.2. Latitude–time plots . 193 2.2.3. Annual sea surface temperature anomaly maps . 194 2.2.4. Time series of anomalies . 194 2.2.5. Spectral analysis . 194 3. Results and discussion . 195 3.1. General overview . 195 3.2. Seasonality . 198 3.2.1. Angola Current and Angola coastal upwelling . 198 3.2.2. Congo River plumes . 201 3.2.3. Benguela upwelling . 201 3.2.4. Agulhas Current and Western Agulhas Bank . 202 3.3. Interannual variability . 203 3.3.1. Equatorial forcing and Atlantic Nin˜o-type events . 203 3.3.2. Agulhas warming and warm water intrusions to the Southern Benguela . 214 4. Conclusions . 215 N.J. Hardman-Mountford et al. / Progress in Oceanography 59 (2003) 181–221 183 1. Introduction The near-coastal South East Atlantic Ocean off Africa is a highly dynamic environment (Shannon, 1985a; Shillington, 1998), unique in many respects. The cool Benguela Current is the only eastern boundary current to be bounded at both ends by warm water of tropical origin: the Angola Current in the north and the Agulhas Current to the south (Shannon & Nelson, 1996). Additionally, the Benguela Current system may possess the strongest sustained, locally wind-driven, coastal upwelling of any region of the world ocean, the Lu¨deritz upwelling cell of southern Namibia (Parrish, Bakun, Husby, & Nelson, 1983; Bakun, 1993). Furthermore, into this area flows the Congo River, the largest freshwater input to any eastern ocean bound- ary, and this river has a marked effect on the productivity of the region (Thomas, Carr, & Strub, 2001). Much of the present knowledge of the South East Atlantic has been derived from ship-borne measure- ments and in situ sensors, which cannot generally provide both extensive spatial and temporal coverage. Previous satellite studies of the region have often focused on small spatial areas and limited time periods. We are now in the position to view both physical (sea surface temperature and sea surface height) and biological (chlorophyll a) variables in the South East Atlantic from satellite over broad temporal and spatial scales. The aim of this paper is to provide an improved understanding of the ocean dynamics along the South East Atlantic coast of Africa by describing seasonal and interannual variability using satellite-derived data products. These products include 18 years of sea surface temperature (SST) data, 7 years of sea surface height data, and 3 years of ocean colour data. Additional information for interpretation is provided by 17 years of modelled wind data. This is the first synoptic-scale description of the South East Atlantic from a suite of long time series satellite products. It is hoped that the insights provided by this study will aid current scientific research programmes in the region, such as the Benguela Current Large Marine Ecosystem (BCLME) programme. 1.1. Oceanographic and meteorological overview The major oceanographic features of the South East Atlantic are shown in Fig. 1. 1.1.1. Meteorology Oceanographic conditions in the South East Atlantic are largely controlled by basin-scale, ocean–atmos- phere interactions over the South Atlantic. In the East Atlantic Ocean, the ‘meteorological equator’ or Intertropical Convergence Zone (ITCZ) is to be found several degrees north of the geographical equator. The climatic position of the ITCZ clearly shows an inclination from southwest to northeast (Citeau, Berge´s, Demarcq, & Mahe´, 1988). Low atmospheric pressure over tropical regions of the African continent causes a divergence of the southeast trade winds, creating the southwesterly monsoon winds along the Angolan coast. In the eastern equatorial Atlantic, seasonal and interannual changes in the position of the ITCZ reflect changes in the southwest monsoon and the southeast trade winds directly. Associated fluctuations are correlated with changes in sea level air pressure over the central South Atlantic, in both the position and intensity of the atmospheric high pressure cell that forms the South Atlantic Anticyclone. This anticyclone interacts with the equatorial low-pressure belt of the ITCZ in the north and continental low-pressure cells over southern Africa in the east to control the southeasterly trade winds along the west coast of southern Africa. Accordingly, it provides the driving force for the Benguela Current regime, which feeds into the South Equatorial Current as part of the basin-scale, wind-driven circulation (Peterson & Stramma, 1991). Intense solar radiation warms near-surface waters causing an accumulation of warm surface water in western equatorial zones (Wyrtki, 1982). Here, the current convergence results in positive sea level anomalies and downwelling accompanied by a deep pycnocline (Carton, 1994). Across the whole equatorial ocean, press- ure gradients are established and maintained within superficial layers along and parallel to the equator and 184 N.J. Hardman-Mountford et al. / Progress in Oceanography 59 (2003) 181–221 Fig. 1. Map of the South East Atlantic showing surface and near-surface currents, frontal zones, upwelling cells, major areas of freshwater input and bathymetry.
Recommended publications
  • The Mean Flow Field of the Tropical Atlantic Ocean
    Deep-Sea Research II 46 (1999) 279—303 The mean flow field of the tropical Atlantic Ocean Lothar Stramma*, Friedrich Schott Institut fu( r Meereskunde, an der Universita( t Kiel, Du( sternbrooker Weg 20, 24105 Kiel, Germany Received 26 August 1997; received in revised form 31 July 1998 Abstract The mean horizontal flow field of the tropical Atlantic Ocean is described between 20°N and 20°S from observations and literature results for three layers of the upper ocean, Tropical Surface Water, Central Water, and Antarctic Intermediate Water. Compared to the subtropical gyres the tropical circulation shows several zonal current and countercurrent bands of smaller meridional and vertical extent. The wind-driven Ekman layer in the upper tens of meters of the ocean masks at some places the flow structure of the Tropical Surface Water layer as is the case for the Angola Gyre in the eastern tropical South Atlantic. Although there are regions with a strong seasonal cycle of the Tropical Surface Water circulation, such as the North Equatorial Countercurrent, large regions of the tropics do not show a significant seasonal cycle. In the Central Water layer below, the eastward North and South Equatorial undercurrents appear imbedded in the westward-flowing South Equatorial Current. The Antarcic Intermediate Water layer contains several zonal current bands south of 3°N, but only weak flow exists north of 3°N. The sparse available data suggest that the Equatorial Intermediate Current as well as the Southern and Northern Intermediate Countercurrents extend zonally across the entire equatorial basin. Due to the convergence of northern and southern water masses, the western tropical Atlantic north of the equator is an important site for the mixture of water masses, but more work is needed to better understand the role of the various zonal under- and countercur- rents in cross-equatorial water mass transfer.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Abnormal Waves on the South East Coast of South Africa
    ABNORMAL WAVES ON THE SOUTH EAST COAST OF SOUTH AFRICA by J. K. M allo ry Master M ariner, Captain, S. A. Navy (Rtd.), Professor of Oceanography, University of Cape Town Much has been said and written recently about the abnormal waves which have been experienced over the years along the eastern seaboard of South Africa. Many theories have been put forward as to the probable causes of these waves which have incurred considerable damage to vessels when steaming in a southwesterly direction down the east coast between Durnford Point and Great Fish Point. It would therefore be of interest to examine the details concerning the individual occurrences as far as they are known. Unfortunately it is not always possible to obtain full details after a period of time has elapsed since the wave was reported, hence in some instances the case histories are incomplete. It is safe to say that many other ships must have experienced abnormal waves off the South African coast between Durnford Point and Cape Recife, but because the speed of the vessel at the time had been suitably reduced, the ship sustained no damage and hence there was no specific reason for reporting such an occurrence other than as a matter of interest. This is unfortunate because so much more could have been learnt about these phenomena if more specific reports were available, especially if they were to include details on wind and waves, meteorological data, soundings, ship’s course and speed. A list of eleven known cases of vessels either having reported encountering abnormal wave conditions or having foundered as a result of storm waves is given in Appendix A.
    [Show full text]
  • THEME SESSION on North Atlantic Processes (L)
    THEME SESSION on North Atlantic Processes (L) ICES CM 2000/L:01 The relation between long-term variations of water temperature in the North Atlantic and Nordic Seas Yu. Bochkov, E. Sentyabov, and A. Karsakov The paper presents the results of estimation of the character and value of the relation between long-term variations of the water thermal state in the North Atlantic and the adjacent Nordic Seas. A close relation is found between large-scale variations of the water thermal state over the study area from the Labrador Sea to the Barents Sea. These long-range relations are of both synchronous and asynchronous character, which permits us to use them with the purpose of forecast. Using data on the sea surface temperature in the North Atlantic (1982–2000), as well as data on the water temperature at the depth of 0–200 m in the Kola Section (the Barents Sea) as the base, a close synchronous relation between interannual variations of the temperature in the Barents Sea and the Gulf Stream areas (positive relation) and the Labrador Current (negative relation) is found. An important factor of formation of the large-scale and long-term variations in climatic systems of the North Atlantic and adjacent seas is the North Atlantic Oscillation. The other character of the relation is revealed when comparing interannual (1959–1999) variations of temperature of the Atlantic waters in the Faeroe-Shetland Channel (Northeast Atlantic) and in the Kola Section (The Barents Sea). Here a close asynchronous relation is found. Temperature variations in the Kola Section are 10–12 months behind those in the Faeroe-Shetland Channel.
    [Show full text]
  • Cape-Agulhas-WC033 2020 IDP Amendment
    REVIEW AND AMENDMENTS TO THE INTEGRATED DEVELOPMENT PLAN 2020/21 CAPE AGULHAS MUNICIPALITY REVIEW AND AMENDMENTS TO THE INTEGRATED DEVELOPMENT PLAN 2020/21 29 My 2020 Together for excellence Saam vir uitnemendheid Sisonke siyagqwesa 1 | P a g e REVIEW AND AMENDMENTS TO THE INTEGRATED DEVELOPMENT PLAN 2020/21 SECTIONS THAT ARE AMENDED AND UPDATED FOREWORD BY THE EXECUTIVE MAYOR (UPDATED)............................................................................ 4 FOREWORD BY THE MUNICIPAL MANAGER (UPDATED) ..................................................................... 5 1 INTRODUCTION ............................................................................................................................... 7 1.1 INTRODUCTION TO CAPE AGULHAS MUNICIPALITY (UPDATED) ......................................... 7 1.2 THE INTEGRATED DEVELOPMENT PLAN AND PROCESS ......................................................... 8 1.2.4 PROCESS PLAN AND SCHEDULE OF KEY DEADLINES (AMENDMENT) ........................... 8 1.3 PUBLIC PARTICIPATION STRUCTURES, PROCESSES AND OUTCOMES .................................. 9 1.3.3 MANAGEMENT STRATEGIC WORKSHOP (UPDATED) .................................................... 10 2. LEGAL FRAMEWORK AND INTERGOVERNMENTAL STRATEGY ALIGNMENT ................................. 11 2.2.2 WESTERN CAPE PROVINCIAL PERSPECTIVE (AMENDED) ............................................. 11 3 SITUATIONAL ANALYSIS...............................................................................................................
    [Show full text]
  • Northwest African Upwelling Scenario
    OCEANOLOGICA ACTA ⋅ VOL. 24 – Supplement Northwest African upwelling scenario Eberhard HAGEN* Baltic Sea Research Institute, Seestrasse 15, 18119 Warnemuende, Germany Received 24 December 1999; revised 15 May 2000; accepted 16 May 2000 Abstract − Observations, hypotheses and derived scenarios are discussed for the Northwest-African coastal upwelling area. The process of coastal upwelling is considered to be composed of a climatic steady-state part and fluctuations acting on different spatial and temporal scales. Attention is focused on disturbances acting globally on the inter-annual time-scale. El Niño-like changes occur in the system of trade winds and modify the equatorial regime of currents as well as the coastal upwelling regimes on both flanks of the Inter-tropical Convergence Zone. There is an opposite thermal response in near-surface layers along the zonal coast in the Gulf of Guinea and along the meridional coast off NW-Africa. Off the continental slope of Senegal and Mauritania, the poleward undercurrent is linked with the system of eastward flowing equatorial undercurrents via the transport of South Atlantic Central Water (SACW) around the eastern flank of the Guinea Dome. The upwelling undercurrent partly feeds its SACW properties into the belt of coastal upwelling and contributes significantly to the biological productivity during ‘normal’ and ‘abnormal’ upwelling years. Future investigations should focus on changes in the time-scale of decades. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS Résumé − Upwelling au nord-ouest de l‘Afrique. La zone d’upwelling située au nord-ouest des côtes africaines est étudiée dans le cadre d‘une discussion portant sur les observations, les hypothèses et les scénarios qui en dérivent.
    [Show full text]
  • Physiological Response to Short-Term Starvation in an Abundant Krill
    Physiological response to short-term starvation in an abundant krill species of the Northern Benguela Current, Euphausia hanseni Lara Kim Hünerlage, Isabella Kandjii (MME, Namibia),Thorsten Werner and Friedrich Buchholz Alfred-Wegener-Institut für Polar- und Meeresforschung AWI, Bremerhaven, Germany Introduction Krill occupy a central role in oceanic food webs as consumers as well as producers. They are a major source of nutrition to fish, birds, seals, and whales. A change in a krill population may thus have dramatic impacts on ecosystems. Within the zooplankton community, Euphausia hanseni belongs to one of the most abundant krill species of the Northern Benguela Current (Olivar and Barange 1990; Map 1: Hydrographic situation off the coast of Namibia at 20 m depth. Image is based on CTD data and was created by Barange et al. 1991). GENUS-subproject “Physical Oceanography” (Mohrholz et al. 2011). The aim of this study was to investigate specific adaptations within the life strategy of E. hanseni. The Experimental Design animals rely on upwelling pulses that lead to rich plankton patches as a food source. The Benguela Current system is a nutritionally poly-pulsed and stratified environment. During late austral summer, the region is typically characterized by minimum upwelling A (Hagen et al. 2001) which goes along with short periods of food deprivation. The following questions shall be answered: How does E. hanseni metabolically adjust during a period of starvation, i.e. between upwelling pulses? C B Map 2: Stations sampled in austral summer 30.01- 7.08.2011 during Are there metabolic differences in krill influenced A) Maintenance of krill during starvation experiment (n=48) research cruise of Maria S.
    [Show full text]
  • St Helena Bay
    The variability of retention in St Helena Bay Anathi Manyakanyaka MNYANA002 Supervisors: Dr Jenifer Jackson-Veitch (SAEON) and A/Prof Mathieu Rouault (UCT) A minor dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Applied Ocean Sciences of the University of Cape Town University of Cape Town Department of Oceanography Faculty of Science Submitted February 2020 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I know that plagiarism is wrong. Plagiarism is to use another’s work and pretend that it is one’s own. I have used the Harvard Style referencing convention for citation and referencing. Each contribution to, and quotation in, this thesis from the work(s) of other people has been attributed and has been cited and referenced. This thesis is my own work. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work. Signature ______________________________ Date 06 February 2020 _________________ 1 | Page Abstract The circulation in St Helena Bay and the variability of the retention of the Bay are investigated using seasonal climatologies of the Regional Ocean Modelling System (ROMS). While retention has been studied biologically, the seasonality of the hydrodynamics contributing to the retention have received less attention.
    [Show full text]
  • Characteristics of Intermediate Water Flow in the Benguela Current As
    Deep-Sea Research II 50 (2003) 87–118 Characteristics of intermediate water flow in the Benguela current as measured with RAFOS floats P.L. Richardsona,*, S.L. Garzolib a Department of Physical Oceanography, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543, 3 Water Street, P.O. Box 721, USA b Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Received 28 September 2001; accepted 26 July 2002 Abstract Seven floats (not launched in rings) crossed over the mid-Atlantic Ridge in the Benguela extension with a mean westward velocity of around 2 cm=s between 22S and 35S. Two Agulhas rings crossed over the mid-Atlantic Ridge with a mean velocity of 5:7cm=s toward 2851: This implies they translated at around 3:8cm=s through the background velocity field near 750 m: The boundaries of the Benguela Current extension were clearly defined from the observations. At 750 m the Benguela extension was bounded on the south by 35S and the north by an eastward current located between 18S and 21S. Other recent float measurements suggest that this eastward current originates near the Trindade Ridge close to the western boundary and extends across most of the South Atlantic, limiting the Benguela extension from flowing north of around 20S. The westward transport of the Benguela extension was estimated to be 15 Sv by integrating the mean westward velocities from 22S to 35S and multiplying by the 500 m estimated thickness of intermediate water. Roughly 1.5 Sv of this are transported by the B3 Agulhas rings that cross the mid-Atlantic Ridge each year (as observed with altimetry).
    [Show full text]
  • Mapping Climatological Seasonal Variations of Surface Currents in the Tropical Atlantic Using Ship Drifts
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. C9, PAGES 10,537-10,550, SEPTEMBER 15, 1986 Mapping Climatological Seasonal Variations of Surface Currents in the Tropical Atlantic Using Ship Drifts PHILIP L. RICHARDSON AND DAVID WALSH Woods Hole Oceanographic Institution, Woods Hole, Massachusetts The seasonal variability of current velocities in the tropical Atlantic was studied by grouping ship drift velocity observations into 2ø x 5ø boxes and calculating monthly mean velocity values. These values were used to calculate and map the annual mean velocity, the seasonal variation about the mean, the annual and semiannual harmonics, and the first two empirical orthogonal functions (EOFs). The seasonal variation is primarily zonal in the equatorial band and in the North Equatorial Countercurrent (NECC) and primarily alongshore near the coast of South America. Maxima of seasonal variation of 23 cm/s are centered in the NECC near 6øN, 42.5øW and in the Gulf of Guinea near 2øN, 7.5øW. Most (-80%) of the variance in the NECC and along the western boundary of the area studied has an annual period; most of the variance along the equator in the mid-Atlantic has a semiannual period. Over the whole region, 49% of the seasonalvariance is explained by the annual harmonic, and 69% is explained by a combination of the annual and semiannual harmonics. The second EOF contains 29% of the variance of the data set and shows a simultaneousspeeding (slowing) of the major equatorial currents (the South Equatorial Current (SEC), the North Brazil Current, the NECC, and the Guinea Current) along their principal axes of variation with a concurrent slowing (speeding) of the Guyana Current and the Brazil Current.
    [Show full text]
  • Conservation Management in Agulhas National Park: Challenges & Successes a PLACE of CONTINENTAL SIGNIFICANCE…
    Conservation Management in Agulhas National Park: Challenges & Successes A PLACE OF CONTINENTAL SIGNIFICANCE… 20⁰00’E 34⁰ 50’ S to be celebrated, a showcase of all we are and all we can achieve SOUTHERNMOST TIP OF AFRICA S34˚49’59” E20˚00’12” ↑ On 14 September 1998 SANParks acquired a 4 ha portion of land at the southernmost tip of the African continent to establish a national park. Reason for establishment Declared in 1999 (GN 1135 in GG 20476) dated 23 September 1999. The key intention of founding the park was to protect the following 4 aspects: Lowland fynbos with A wide variety of wet- Geographic location Rich cultural heritage four vegetation units lands(freshwater of the Southernmost (From Stone-age, San, Khoi with high conservation springs,rivers,estuaries Tip of Africa herders, Shipwrecks, status: ,floodplains,lakes, vleis (To conserve and European settlement, Fishermen, agriculture, Central rûens shale and pans) The ecological maintain the spirit of flower farming, salt mining renoster-veld (critically functioning of the wetlands and place of the endangered); other fresh water systems on southernmost tip of until today) Elim ferricrete fynbos the Agulhas plain is critically Africa and develop its (endangered) dependent on water quality and tourism potential) Agulhas sand fynbos quantity of interlinked pans, wetlands, seasonal streams, (vulnerable) flow and interchanges that Cape inland salt pans occur under natural conditions. (vulnerable The ANP started out with the following huge establishment challenges: • Staff capacity insufficient
    [Show full text]
  • Global Ocean Meridional Overturning
    2550 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 37 NOTES AND CORRESPONDENCE Global Ocean Meridional Overturning RICK LUMPKIN Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida KEVIN SPEER Department of Oceanography, The Florida State University, Tallahassee, Florida (Manuscript received 9 August 2005, in final form 9 January 2007) ABSTRACT A decade-mean global ocean circulation is estimated using inverse techniques, incorporating air–sea fluxes of heat and freshwater, recent hydrographic sections, and direct current measurements. This infor- mation is used to determine mass, heat, freshwater, and other chemical transports, and to constrain bound- ary currents and dense overflows. The 18 boxes defined by these sections are divided into 45 isopycnal (neutral density) layers. Diapycnal transfers within the boxes are allowed, representing advective fluxes and mixing processes. Air–sea fluxes at the surface produce transfers between outcropping layers. The model obtains a global overturning circulation consistent with the various observations, revealing two global-scale meridional circulation cells: an upper cell, with sinking in the Arctic and subarctic regions and upwelling in the Southern Ocean, and a lower cell, with sinking around the Antarctic continent and abyssal upwelling mainly below the crests of the major bathymetric ridges. 1. Introduction (WGASF 2001; Garnier et al. 2000; Josey 2001; Josey et al. 1999). The global pattern of wind and heat gain and Wind, and heat and freshwater fluxes at the ocean loss in these products is qualitatively consistent in the surface are, together with tidal and other energy Northern Hemisphere where the ocean gains heat in sources, responsible for the global ocean circulation, the Tropics and loses large amounts of heat in the mixing, and the formation of a broad range of water northern North Atlantic.
    [Show full text]