SAM Sequence Alignment/Map Format

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Lezione 8 DNA sequencing informatics Il materiale di questa lezione è contenuto nel libro ‘Next-generation DNA sequencing informatics’ Edited by Stuart M Brown Disponibile in biblioteca (CHIOSTRO 572.8633 NEXGDS) History of sequencing informatics • Algorithms for sequencing alignment – Needleman and Wunsch (1970) – Smith-Waterman (1981) • Database searching – FASTA, BLAST • Tools to work with sanger sequencing – STADEN package, DNA sequence assembly programs (ex. Sequencer, Mac vector, PC/Gene..) – Phred/Phrap Phred/Phrap cross_match, consed Sanger sequences from ABI • With funding from the Human Genome Project (HGP) the University of Washington (Seattle) developed a set of bioinformatics tools for processing raw sanger sequences collected by ABI sequencing machines and for assembling overlapping reads into larger contigs • Released ad a C source code suitable for compilation by skilled users on unix-based computers Sanger sequences from ABI PHRED SCORE q = -10 Log10 p PHRED Dove p è la probabilità di errore associata ad ogni base Base calling + quality score Quale sarà il Phred Score di una base chiamata con una probabilità di errore di 1/100 (accuratezza del 99%)? E di una con una p di 1/1000? q = 20 nel primo caso -> minimo considerato accettabile q = 30 nel secondo -> da 30 in su la qualità si considera alta Sanger sequences from ABI Frammenti assemblati in contigs PHRED (Smith-Waterman algorithm+ some concepts from FASTA and BLAST) Base calling + quality score PHRAP CONSED GRAPHICAL EDITOR Sanger sequences from ABI Cosa è rimasto di tutto questo nelle analisi di dati prodotti da sequenziamenti NGS? Analisi di dati NGS: Analytic flow 1. Produzione dei dati grezzi (raw data, reads) dal sequenziatore 2. Allineamento delle reads con un riferimento o tra loro (de novo) 3. Visualizzazione degli allineamenti e identificazione dei polimorfismi (se previsto dal progetto) 4. Interpretazione sulla base delle ipotesi e delle domande biologiche di partenza De novo 1. Raw sequence • Imaging (Illumina, 454, solid) or Ion detection (Ion torrent, Proton) • I dati contengono 3 informazioni fondamentali: – ID (identificatore individuale del campione) – Sequenza – Stima della qualità per ogni base chiamata Formato: FASTQ • FASTQ format formato di testo che include sia la sequenza (in genere nucleotidica) che la qualità di ogni base (score). – Line 1: inizia con il carattere '@' seguito da un identificatore e da una descrizione opzionale (come la linea del titolo nel formato FASTA). – Line 2: raw sequence letters. – Line 3: inizia col carattere '+' che può essere seguito da una descrizione (opzionale). – Line 4: codifica la qualità della sequenza (PHRED SCORE) nella Line 2, deve contenere un numero di simboli pari al numero di lettere in sequenza. @HS2:612:C5A6YACXX:3:2310:11800:31609 2:N:0:GCTGAGA GTTCATCTTGGCAGCTGGTTCCCGTATTTACTGAAGAGTATGTAGCACTTGCGTCGCTCGTGATTGAAAACAGATGGCAGCACGACACGGGCACGGTGCG + ?;?DADDBD?D??CFEG@F?<?FE28?EEGDGGBDD9?*?BDGAAFFI>FFBBFFFFBEE=A=@BDBDDCACCC;AA??@@B@===BB79B<B?>@2<9< 2. Allineamento • In generale la parte più impegnativa dell’analisi dei dati NGS • La scelta dell’algoritmo dipende da che tipo di dato abbiamo: de novo o con sequenza di riferimento? La sequenza di riferimento è vicina evolutivamente? Etc.. Alcuni programmi di allineamento per dati NGS • Burrows Wheeler Transformation (BWT) – based aligners: BWA, Bowtie, SOAP2 – Allineamento di corte sequenze (tipico prodotto di NGS) ad un riferimento – BWA produce un allineamento in SAM format, non chiama i siti polimorfici Formato output di allineamento: SAM sequence alignment/map format De novo • I file SAM sono molto grandi (comunemente decine di Gigabytes) -> si usa comprimerli per salvare spazio • Contiene un titolo (opzionale) e una linea per ogni read con con 11 campi obbligatori http://samtools.github.io/hts-specs/SAMv1.pdf • SAM files sono human-readable text files, i BAM files sono il loro equivalente binario, compresso e più adatto ad essere utilizzato dai programmi di analisi che operano i passaggi successivi. De novo alignment • Non c’è una sequenza di riferimento • Si usano comunemente approcci basati su de Brujin digraphs (capitolo 4 NGS DNA sequencing informatics) • Ci sono diversi softwares, riprenderemo il problema durante la parte pratica http://en.wikibooks.org/wiki/Next_Generation_Sequencing_%28NGS%29/De_novo_assembly#Genome_assembly 3. Visualizzazione degli allineamenti ed eventuale variant calling/genotyping • Spesso per fare queste analisi esistono dei PACCHETTI di programmi che permettono di effettuare molti passaggi come visualizzazione, identificazione delle varianti, esclusione di artefatti • Di seguito vedremo degli esempi, ma l’elenco è ancora lungo SAMtools • Insieme di strumenti per interagire con ed effettuare il post processing di allineamenti di corte sequenze di DNA in formati SAM, BAM e CRAM. Questi files sono generati come output di allineatori di corte reads come BWA. • Include sia strumenti semplici che complessi (variant calling, alignment viewing, sorting, indexing, data extraction, format conversion) Variant calling: Finding sequence variation within and between samples (SNPs, InDel..) GATK (Genome Analysis Toolkit) • Software package sviluppato al Broad Institute per analizzare dati di sequenza high-throughput. Il toolkit offre una vasta gamma di strumenti, principalmete focalizzati sulla scoperta di varianti e sulla genotipizzazione, con grande enfasi alla garanzia della qualità del dato. http://varscan.sourceforge.net/ • Lo useremo nelle esercitazioni pratiche http://www.broadinstitute.org/software/igv/home Java-based stand-alone desktop software del Broad Institute che può visualizzare dati NGs in una varietà di formati (FASTA, FASTQ, SAM, BAM) Facile da installare (c’è una versione anche per iPad!) I genomi di riferimento e le relative annotazioni devono essere installate manualmente Robinson et al. Nature Biotechnology 29, 24–26 (2011) Coverage plot and alignments from paired-end reads for a matched tumor/normal pair. Sequencing was performed on an Illumina GA2 platform and aligned with Maq (http://maq.sourceforge.net/). Alignments are represented as gray polygons with reads mismatching the reference indicated by color. Loci with a large percentage of mismatches relative to the reference are flagged in the coverage plot as color-coded bars. Alignments with unexpected inferred insert sizes are indicated by color. There is evidence for a ~10-kb deletion (removing two exons of AIDA) in the tumor sample not present in the normal. BWA SAM tools GATK https://www.broadinstitute.org/gatk/ .
Recommended publications
  • Evidence of Selection at the Ramosa1 Locus During Maize Domestication

    Evidence of Selection at the Ramosa1 Locus During Maize Domestication

    Molecular Ecology (2010) 19, 1296–1311 doi: 10.1111/j.1365-294X.2010.04562.x Evidence of selection at the ramosa1 locus during maize domestication BRANDI SIGMON and ERIK VOLLBRECHT Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA Abstract Modern maize was domesticated from Zea mays parviglumis, a teosinte, about 9000 years ago in Mexico. Genes thought to have been selected upon during the domestication of crops are commonly known as domestication loci. The ramosa1 (ra1) gene encodes a putative transcription factor that controls branching architecture in the maize tassel and ear. Previous work demonstrated reduced nucleotide diversity in a segment of the ra1 gene in a survey of modern maize inbreds, indicating that positive selection occurred at some point in time since maize diverged from its common ancestor with the sister species Tripsacum dactyloides and prompting the hypothesis that ra1 may be a domestication gene. To investigate this hypothesis, we examined ear phenotypes resulting from minor changes in ra1 activity and sampled nucleotide diversity of ra1 across the phylogenetic spectrum between tripsacum and maize, including a broad panel of teosintes and unimproved maize landraces. Weak mutant alleles of ra1 showed subtle effects in the ear, including crooked rows of kernels due to the occasional formation of extra spikelets, correlating a plausible, selected trait with subtle variations in gene activity. Nucleotide diversity was significantly reduced for maize landraces but not for teosintes, and statistical tests implied directional selection on ra1 consistent with the hypothesis that ra1 is a domestication locus. In maize landraces, a noncoding 3¢-segment contained almost no genetic diversity and 5¢-flanking diversity was greatly reduced, suggesting that a regulatory element may have been a target of selection.
  • DNA Sequencing

    DNA Sequencing

    Contig Assembly ATCGATGCGTAGCAGACTACCGTTACGATGCCTT… TAGCTACGCATCGTCTGATGGCAATGCTACGGAA.. C T AG AGCAGA TAGCTACGCATCGT GT CTACCG GC TT AT CG GTTACGATGCCTT AT David Wishart, Ath 3-41 [email protected] DNA Sequencing 1 Principles of DNA Sequencing Primer DNA fragment Amp PBR322 Tet Ori Denature with Klenow + ddNTP heat to produce + dNTP + primers ssDNA The Secret to Sanger Sequencing 2 Principles of DNA Sequencing 5’ G C A T G C 3’ Template 5’ Primer dATP dATP dATP dATP dCTP dCTP dCTP dCTP dGTP dGTP dGTP dGTP dTTP dTTP dTTP dTTP ddCTP ddATP ddTTP ddGTP GddC GCddA GCAddT ddG GCATGddC GCATddG Principles of DNA Sequencing G T _ _ short C A G C A T G C + + long 3 Capillary Electrophoresis Separation by Electro-osmotic Flow Multiplexed CE with Fluorescent detection ABI 3700 96x700 bases 4 High Throughput DNA Sequencing Large Scale Sequencing • Goal is to determine the nucleic acid sequence of molecules ranging in size from a few hundred bp to >109 bp • The methodology requires an extensive computational analysis of raw data to yield the final sequence result 5 Shotgun Sequencing • High throughput sequencing method that employs automated sequencing of random DNA fragments • Automated DNA sequencing yields sequences of 500 to 1000 bp in length • To determine longer sequences you obtain fragmentary sequences and then join them together by overlapping • Overlapping is an alignment problem, but different from those we have discussed up to now Shotgun Sequencing Isolate ShearDNA Clone into Chromosome into Fragments Seq. Vectors Sequence 6 Shotgun Sequencing Sequence Send to Computer Assembled Chromatogram Sequence Analogy • You have 10 copies of a movie • The film has been cut into short pieces with about 240 frames per piece (10 seconds of film), at random • Reconstruct the film 7 Multi-alignment & Contig Assembly ATCGATGCGTAGCAGACTACCGTTACGATGCCTT… TAGCTACGCATCGTCTGATGGCAATGCTACGGAA.
  • New Softwares for Automated Microsatellite Marker Development

    New Softwares for Automated Microsatellite Marker Development

    Published online February 21, 2006 Nucleic Acids Research, 2006, Vol. 34, No. 4 e31 doi:10.1093/nar/gnj030 New softwares for automated microsatellite marker development Wellington Martins, Daniel de Sousa1, Karina Proite2, Patrı´cia Guimara˜es2, Marcio Moretzsohn2 and David Bertioli3 Department of Computer Science, Catholic University of Goia´s, Brazil, 1Department of Computer Science, Catholic University of Rio de Janeiro, Brazil, 2Embrapa Genetic Resources and Biotechnology, Brası´lia, Brazil and 3Genomic Sciences and Biotechnology, Catholic University of Brası´lia, Brazil Received November 23, 2005; Revised and Accepted January 31, 2006 ABSTRACT whose unit of repetition is between 1 and 6 bp. They are highly abundant in the genomes of eukaryotes, polymorphic and Microsatellites are repeated small sequence motifs usually co-dominant and transferable between different map- that are highly polymorphic and abundant in the ping populations. Microsatellite markers can also be used in genomes of eukaryotes. Often they are the molecular automated genotyping techniques. Thus, they have become markers of choice. To aid the development of micro- one of the most useful molecular markers for a large number satellite markers we have developed a module that of organisms. integrates a program for the detection of microsatel- Researchers working on the development of microsatellite lites (TROLL), with the sequence assembly and markers need an efficient way to go from usually hundreds or analysis software, the Staden Package. The module thousands of trace and/or text sequence files to the identifi- has easily adjustable parameters for microsatellite cation of new potential markers. However, the softwares lengths and base pair quality control.
  • A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection

    A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection

    ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection Nikolaos Alachiotis Emmanouella Vogiatzi∗ Scientific Computing Group Institute of Marine Biology and Genetics HITS gGmbH HCMR Heidelberg, Germany Heraklion Crete, Greece [email protected] [email protected] Pavlos Pavlidis Alexandros Stamatakis Scientific Computing Group Scientific Computing Group HITS gGmbH HITS gGmbH Heidelberg, Germany Heidelberg, Germany [email protected] [email protected] ∗ Affiliated also with the Department of Genetics and Molecular Biology of the Democritian University of Thrace at Alexandroupolis, Greece. Corresponding author: Nikolaos Alachiotis Keywords: chromatograms, software, mis-calls Abstract Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability.
  • A Guide to HIV-1 Reverse Transcriptase and Protease Sequencing for Drug Resistance Studies

    A Guide to HIV-1 Reverse Transcriptase and Protease Sequencing for Drug Resistance Studies

    HIV-1 RT and Protease Sequencing for Drug Resistance Studies 1 A Guide to HIV-1 Reverse Transcriptase and Reviews Protease Sequencing for Drug Resistance Studies Robert W. Shafer1, Kathryn Dupnik1, Mark A. Winters1, Susan H. Eshleman2 1 Division of Infectious Diseases, Stanford University, Stanford, CA 94305 2 Dept. of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21205 I. HIV-1 Drug Resistance A. Introduction HIV-1 RT and protease sequencing and drug susceptibility testing have been done in research settings for more than ten years to elucidate the genetic mechanisms of resistance to antiretroviral drugs. Retrospective studies have shown that the presence of drug resistance before starting a new drug regimen is an independent predictor of virologic response to that regimen (DeGruttola et al., 2000; Hanna and D’Aquila, 2001; Haubrich and Demeter, 2001). Prospective studies have shown that patients whose physicians have access to drug resistance data, particularly genotypic resistance data, respond better to therapy than control patients whose physicians do not have access to the same data (Baxter et al., 2000; Cohen et al., 2000; De Luca et al., 2001; Durant et al., 1999; Melnick et al., 2000; Meynard et al., 2000; Tural et al., 2000). The accumulation of retrospective and prospective data has led three expert panels to recommend the use of resistance testing in the treatment of HIV-infected patients (EuroGuidelines Group for HIV Resistance, 2001; Hirsch et al., 2000; US Department of Health and Human Services Panel on Clinical Practices for Treatment of HIV Infection, 2000) (Table 1). There have been several recent reviews on methods for assessing HIV-1 drug resistance (Demeter and Haubrich, 2001; Hanna and D’Aquila, 2001; Richman, 2000) and on the mutations associated with drug resistance (Deeks, 2001; Hammond et al., 1999; Loveday, 2001; Miller, 2001; Shafer et al., 2000b).
  • Next-Generation DNA Sequencing Informatics, 2Nd Edition

    Next-Generation DNA Sequencing Informatics, 2Nd Edition

    This is a free sample of content from Next-Generation DNA Sequencing Informatics, 2nd edition. Click here for more information on how to buy the book. Index Page references followed by f denote figures. Page references followed by t denote tables. A Needleman–Wunsch (NW) algorithm, 49, 54, 110–113 overview, 109–110 Abeel, Thomas, 103 – – – ABI. See Applied Biosystems Inc. Smith Waterman (SW) algorithm, 38, 49, 62 63, 111 113 Ab initio genome annotation, 172, 178, 180t–181t Splign, 182 – TopHat, 43, 182 ab1PeakReporter software, 52 53 – A-Bruijn graph, 133–134 Alignment score, FASTA, 64 65 ABySS (Assembly by Short Sequencing), 134, 142, 147–153 Allele, 52, 354 Allele frequency, 76, 94, 193 effect of k-mer size and minimum pair number on assembly, fi 148–149, 149f Allele-speci c expression, 155, 298 overview of, 147–148 ALLPATHS, 134 quality of assembly, 149–153, 150t, 151f–152f ALN format, 92 α transcriptome assembly (Trans-ABySS), 158t, 160–161, 166 -diversity indices, 319 – – AceView database, 294, 295f Alternative splicing, 182, 293 296, 294f 295f Acrylamide gels Altschul, Stephen, 65 capillary tube, 4 Amazon Elastic Compute Cloud (EC2), 43, 254, 300, 315, – Sanger sequencing and, 2, 3–4 362 364, 366, 369 – ACT, 179t Amino acids, pairwise comparisons, 48 49 Adapter removal, 37–39, 39f, 43 Amplicons, 8, 30, 89, 204, 309, 312 Adapter Removal program, 38 Amplicon Variant Analyzer, 101 Affine gaps, 42, 110, 111–112 AmpliSeq Cancer Panel (Ion Torrent), 206 Algorithms Annotation, 75. See also Genome annotation – – – alignment, 49, 109–124, 129, 223, 338, 344 ChIP-seq peak, 240 242, 255, 259, 262 263, 262f 263f – assembly, 59, 127–129, 133–134, 338 proteogenomics and, 327 328, 328f – database searching, 113–115 of variants, 208 212 development, 364 ANNOVAR, 211 DNA fragment/genome assembly, 127–129, 133–134, 142 Anthrax, 141 dynamic programming, 110–124 Anti-sense RNA, 281 file compression, 79 Application programming interface (API), 368 Golay error-correcting, 31 Applied Biosystems Inc.
  • Comparison of DNA Sequence Assembly Algorithms Using Mixed Data Sources

    Comparison of DNA Sequence Assembly Algorithms Using Mixed Data Sources

    Comparison of DNA Sequence Assembly Algorithms Using Mixed Data Sources A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Master of Science in the Department of Computer Science University of Saskatchewan Saskatoon By Tejumoluwa Abegunde c Tejumoluwa Abegunde, April/2010. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Computer Science 176 Thorvaldson Building 110 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5C9 i Abstract DNA sequence assembly is one of the fundamental areas of bioinformatics.
  • Downloading and Will Run As Stand-Alone Software

    Downloading and Will Run As Stand-Alone Software

    BMC Bioinformatics BioMed Central Software Open Access preAssemble: a tool for automatic sequencer trace data processing Alexei A Adzhubei*1,4, Jon K Laerdahl2 and Anna V Vlasova3 Address: 1Norwegian School of Veterinary Science, BasAM – Genetics, P.O. Box 8146 Dep, NO-0033 Oslo, Norway, 2Centre for Molecular Biology and Neuroscience (CMBN) Institute of Medical Microbiology, Rikshospitalet, NO-0027 Oslo, Norway, 3Engelhardt Institute of Molecular Biology, Vavilov St. 32, 117984 Moscow, Russia and 4The Biotechnology Centre of Oslo, University of Oslo, P.O. Box 1125 Blindern, NO-0317 Oslo, Norway Email: Alexei A Adzhubei* - [email protected]; Jon K Laerdahl - [email protected]; Anna V Vlasova - [email protected] * Corresponding author Published: 17 January 2006 Received: 02 August 2005 Accepted: 17 January 2006 BMC Bioinformatics 2006, 7:22 doi:10.1186/1471-2105-7-22 This article is available from: http://www.biomedcentral.com/1471-2105/7/22 © 2006 Adzhubei et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Trace or chromatogram files (raw data) are produced by automatic nucleic acid sequencing equipment or sequencers. Each file contains information which can be interpreted by specialised software to reveal the sequence (base calling). This is done by the sequencer proprietary software or publicly available programs. Depending on the size of a sequencing project the number of trace files can vary from just a few to thousands of files.
  • Basecalling, Alignment, Assembly and Deconvolution of Sanger

    Basecalling, Alignment, Assembly and Deconvolution of Sanger

    Rausch et al. BMC Genomics (2020) 21:230 https://doi.org/10.1186/s12864-020-6635-8 SOFTWARE Open Access Tracy: basecalling, alignment, assembly and deconvolution of sanger chromatogram trace files Tobias Rausch1,2,3*† , Markus Hsi-Yang Fritz2†, Andreas Untergasser1,4† and Vladimir Benes1 Abstract Background: DNA sequencing is at the core of many molecular biology laboratories. Despite its long history, there is a lack of user-friendly Sanger sequencing data analysis tools that can be run interactively as a web application or at large-scale in batch from the command-line. Results: We present Tracy, an efficient and versatile command-line application that enables basecalling, alignment, assembly and deconvolution of sequencing chromatogram files. Its companion web applications make all functionality of Tracy easily accessible using standard web browser technologies and interactive graphical user interfaces. Tracy can be easily integrated in large-scale pipelines and high-throughput settings, and it uses state-of-the-art file formats such as JSON and BCF for reporting chromatogram sequencing results and variant calls. The software is open-source and freely available at https://github.com/gear-genomics/tracy, the companion web applications are hosted at https://www.gear-genomics.com. Conclusions: Tracy can be routinely applied in large-scale validation efforts conducted in clinical genomics studies as well as for high-throughput genome editing techniques that require a fast and rapid method to confirm discovered variants or engineered mutations. Molecular biologists benefit from the companion web applications that enable installation-free Sanger chromatogram analyses using intuitive, graphical user interfaces. Keywords: Chromatogram, PCR, Sanger sequencing, Alignment, Variant calling Background patch a reference sequence based on trace information.
  • Gap5—Editing the Billion Fragment Sequence Assembly James K

    Gap5—Editing the Billion Fragment Sequence Assembly James K

    Vol. 26 no. 14 2010, pages 1699–1703 BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btq268 Genome analysis Advance Access publication May 30, 2010 Gap5—editing the billion fragment sequence assembly James K. Bonfield∗ and Andrew Whitwham Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK Associate Editor: Dmitrij Frishman ABSTRACT and memory footprint. However, the solutions typically employed Motivation: Existing sequence assembly editors struggle with the by these programs are only amenable for read-only access, with the volumes of data now readily available from the latest generation of exception of NGSView that can perform some minor editing tasks. DNA sequencing instruments. In addition to algorithmic efficiency, the large increase in Results: We describe the Gap5 software along with the data the number of DNA fragments has put a strain on our storage structures and algorithms used that allow it to be scalable. We requirements. By using data compression methods, the storage demonstrate this with an assembly of 1.1 billion sequence fragments burden can be greatly reduced, with the BAM file format being and compare the performance with several other programs. We one such recent example. When coupled with an index, compressed analyse the memory, CPU, I/O usage and file sizes used by Gap5. BAM files can be randomly accessed. Availability and Implementation: Gap5 is part of the Staden We present the Gap5 program: a sequence assembly viewer and Package and is available under an Open Source licence from http:// editor. This encompasses both base by base editing operations as staden.sourceforge.net. It is implemented in C and Tcl/Tk.
  • Download from Ftp:/ Matter of Fashion? Nat Rev Genet 2004, 5:63-69

    Download from Ftp:/ Matter of Fashion? Nat Rev Genet 2004, 5:63-69

    BMC Bioinformatics BioMed Central Software Open Access STAMP: Extensions to the STADEN sequence analysis package for high throughput interactive microsatellite marker design Lars Kraemer1,2, Bánk Beszteri2, Steffi Gäbler-Schwarz2, Christoph Held2, Florian Leese2,3, Christoph Mayer3, Kevin Pöhlmann2 and Stephan Frickenhaus*2 Address: 1Institut für Klinische Molekularbiologie, Universität Kiel, Arnold-Heller-Str 3, 24105 Kiel, Germany, 2Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany and 3Animal Ecology, Evolution and Biodiversity, Ruhr University, 44780 Bochum, Germany Email: Lars Kraemer - [email protected]; Bánk Beszteri - [email protected]; Steffi Gäbler-Schwarz - [email protected]; Christoph Held - [email protected]; Florian Leese - [email protected]; Christoph Mayer - [email protected]; Kevin Pöhlmann - [email protected]; Stephan Frickenhaus* - [email protected] * Corresponding author Published: 30 January 2009 Received: 24 September 2008 Accepted: 30 January 2009 BMC Bioinformatics 2009, 10:41 doi:10.1186/1471-2105-10-41 This article is available from: http://www.biomedcentral.com/1471-2105/10/41 © 2009 Kraemer et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Microsatellites (MSs) are DNA markers with high analytical power, which are widely used in population genetics, genetic mapping, and forensic studies. Currently available software solutions for high-throughput MS design (i) have shortcomings in detecting and distinguishing imperfect and perfect MSs, (ii) lack often necessary interactive design steps, and (iii) do not allow for the development of primers for multiplex amplifications.
  • The Staden Package Manual Last Update on 22 October 2002

    The Staden Package Manual Last Update on 22 October 2002

    The Staden Package Manual Last update on 22 October 2002 James Bonfield, Kathryn Beal, Mark Jordan, Yaping Cheng and Rodger Staden Copyright c 1999-2002, Medical Research Council, Laboratory of Molecular Biology. Permission is given to duplicate this manual in both paper and electronic forms. If you wish to charge more than the duplication costs, or wish to make edits to the manual, please contact the authors by email to [email protected]. i Short Contents 1 Sequence assembly and finishing using Gap4.................... 3 2 Searching for point mutations using pregap4 and gap4 .......... 207 3 Preparing readings for assembly using pregap4 ................ 223 4 Marking poor quality and vector segments of readings .......... 291 5 Screening Against Vector Sequences ........................ 293 6 Screening Readings for Contaminant Sequences ............... 305 7 Viewing and editing trace data using trev .................... 309 8 Analysing and comparing sequences using spin ................ 319 9 User Interface ......................................... 401 10 File Formats .......................................... 411 11 Man Pages ........................................... 445 References ............................................... 477 General Index ............................................. 479 File Index ................................................ 491 Variable Index ............................................ 493 Function Index ............................................ 495 ii The Staden Package Manual iii Table