Challenges in Funding and Developing Genomic Software: Roots and Remedies Adam Siepel
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Evidence of Selection at the Ramosa1 Locus During Maize Domestication
Molecular Ecology (2010) 19, 1296–1311 doi: 10.1111/j.1365-294X.2010.04562.x Evidence of selection at the ramosa1 locus during maize domestication BRANDI SIGMON and ERIK VOLLBRECHT Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA Abstract Modern maize was domesticated from Zea mays parviglumis, a teosinte, about 9000 years ago in Mexico. Genes thought to have been selected upon during the domestication of crops are commonly known as domestication loci. The ramosa1 (ra1) gene encodes a putative transcription factor that controls branching architecture in the maize tassel and ear. Previous work demonstrated reduced nucleotide diversity in a segment of the ra1 gene in a survey of modern maize inbreds, indicating that positive selection occurred at some point in time since maize diverged from its common ancestor with the sister species Tripsacum dactyloides and prompting the hypothesis that ra1 may be a domestication gene. To investigate this hypothesis, we examined ear phenotypes resulting from minor changes in ra1 activity and sampled nucleotide diversity of ra1 across the phylogenetic spectrum between tripsacum and maize, including a broad panel of teosintes and unimproved maize landraces. Weak mutant alleles of ra1 showed subtle effects in the ear, including crooked rows of kernels due to the occasional formation of extra spikelets, correlating a plausible, selected trait with subtle variations in gene activity. Nucleotide diversity was significantly reduced for maize landraces but not for teosintes, and statistical tests implied directional selection on ra1 consistent with the hypothesis that ra1 is a domestication locus. In maize landraces, a noncoding 3¢-segment contained almost no genetic diversity and 5¢-flanking diversity was greatly reduced, suggesting that a regulatory element may have been a target of selection. -
Computational Methods Addressing Genetic Variation In
COMPUTATIONAL METHODS ADDRESSING GENETIC VARIATION IN NEXT-GENERATION SEQUENCING DATA by Charlotte A. Darby A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland June 2020 © 2020 Charlotte A. Darby All rights reserved Abstract Computational genomics involves the development and application of computational meth- ods for whole-genome-scale datasets to gain biological insight into the composition and func- tion of genomes, including how genetic variation mediates molecular phenotypes and disease. New biotechnologies such as next-generation sequencing generate genomic data on a massive scale and have transformed the field thanks to simultaneous advances in the analysis toolkit. In this thesis, I present three computational methods that use next-generation sequencing data, each of which addresses the genetic variations within and between human individuals in a different way. First, Samovar is a software tool for performing single-sample mosaic single-nucleotide variant calling on whole genome sequencing linked read data. Using haplotype assembly of heterozygous germline variants, uniquely made possible by linked reads, Samovar identifies variations in different cells that make up a bulk sequencing sample. We apply it to 13cancer samples in collaboration with researchers at Nationwide Childrens Hospital. Second, scHLAcount is a software pipeline that computes allele-specific molecule counts for the HLA genes from single-cell gene expression data. We use a personalized reference genome based on the individual’s genotypes to reveal allele-specific and cell type-specific gene expression patterns. Even given technology-specific biases of single-cell gene expression data, we can resolve allele-specific expression for these genes since the alleles are often quite different between the two haplotypes of an individual. -
Big Data, Moocs, and ... (PDF)
HHMI Constellation Studios for Science Education November 13-15, 2015 | HHMI Headquarters | Chevy Chase, MD Big Data, MOOCs, and Quantitative Education for Biologists Co-Chairs Pavel Pevzner, University of California- San Diego Sarah Elgin, Washington University Studio Objectives Discuss existing challenges in bioinformatics education with experts in computational biology and quantitative biology education, Evaluate best practices in teaching quantitative and computational biology, and Collaborate with scientist educators to develop instructional modules to support a biology curriculum that includes quantitative approaches. Friday | November 13 4:00 pm Arrival Registration Desk 5:30 – 6:00 pm Reception Great Hall 6:00 – 7:00 pm Dinner Dining Room 7:00 – 7:15 pm Welcome K202 David Asai, HHMI Cynthia Bauerle, HHMI Pavel Pevzner, University of California-San Diego Sarah Elgin, Washington University Alex Hartemink, Duke University 7:15 – 8:00 pm How to Maximize Interaction and Feedback During the Studio K202 Cynthia Bauerle and Sarah Simmons, HHMI 8:00 – 9:00 pm Keynote Presentation K202 "Computing + Biology = Discovery" Speakers: Ran Libeskind-Hadas, Harvey Mudd College Eliot Bush, Harvey Mudd College 9:00 – 11:00 pm Social The Pilot Saturday | November 14 7:30 – 8:15 am Breakfast Dining Room 8:30 – 10:00 am Lecture session 1 K202 Moderator: Pavel Pevzner 834a-854a “How is body fat regulated?” Laurie Heyer, Davidson College 856a-916a “How can we find mutations that cause cancer?” Ben Raphael, Brown University “How does a tumor evolve over time?” 918a-938a Russell Schwartz, Carnegie Mellon University “How fast do ribosomes move?” 940a-1000a Carl Kingsford, Carnegie Mellon University 10:05 – 10:55 am Breakout working groups Rooms: S221, (coffee available in each room) N238, N241, N140 1. -
DNA Sequencing
Contig Assembly ATCGATGCGTAGCAGACTACCGTTACGATGCCTT… TAGCTACGCATCGTCTGATGGCAATGCTACGGAA.. C T AG AGCAGA TAGCTACGCATCGT GT CTACCG GC TT AT CG GTTACGATGCCTT AT David Wishart, Ath 3-41 [email protected] DNA Sequencing 1 Principles of DNA Sequencing Primer DNA fragment Amp PBR322 Tet Ori Denature with Klenow + ddNTP heat to produce + dNTP + primers ssDNA The Secret to Sanger Sequencing 2 Principles of DNA Sequencing 5’ G C A T G C 3’ Template 5’ Primer dATP dATP dATP dATP dCTP dCTP dCTP dCTP dGTP dGTP dGTP dGTP dTTP dTTP dTTP dTTP ddCTP ddATP ddTTP ddGTP GddC GCddA GCAddT ddG GCATGddC GCATddG Principles of DNA Sequencing G T _ _ short C A G C A T G C + + long 3 Capillary Electrophoresis Separation by Electro-osmotic Flow Multiplexed CE with Fluorescent detection ABI 3700 96x700 bases 4 High Throughput DNA Sequencing Large Scale Sequencing • Goal is to determine the nucleic acid sequence of molecules ranging in size from a few hundred bp to >109 bp • The methodology requires an extensive computational analysis of raw data to yield the final sequence result 5 Shotgun Sequencing • High throughput sequencing method that employs automated sequencing of random DNA fragments • Automated DNA sequencing yields sequences of 500 to 1000 bp in length • To determine longer sequences you obtain fragmentary sequences and then join them together by overlapping • Overlapping is an alignment problem, but different from those we have discussed up to now Shotgun Sequencing Isolate ShearDNA Clone into Chromosome into Fragments Seq. Vectors Sequence 6 Shotgun Sequencing Sequence Send to Computer Assembled Chromatogram Sequence Analogy • You have 10 copies of a movie • The film has been cut into short pieces with about 240 frames per piece (10 seconds of film), at random • Reconstruct the film 7 Multi-alignment & Contig Assembly ATCGATGCGTAGCAGACTACCGTTACGATGCCTT… TAGCTACGCATCGTCTGATGGCAATGCTACGGAA. -
Cloud Computing and the DNA Data Race Michael Schatz
Cloud Computing and the DNA Data Race Michael Schatz April 14, 2011 Data-Intensive Analysis, Analytics, and Informatics Outline 1. Genome Assembly by Analogy 2. DNA Sequencing and Genomics 3. Large Scale Sequence Analysis 1. Mapping & Genotyping 2. Genome Assembly Shredded Book Reconstruction • Dickens accidentally shreds the first printing of A Tale of Two Cities – Text printed on 5 long spools It was theIt was best the of besttimes, of times, it was it wasthe worstthe worst of of times, times, it it was was the the ageage of of wisdom, wisdom, it itwas was the agethe ofage foolishness, of foolishness, … … It was theIt was best the bestof times, of times, it was it was the the worst of times, it was the theage ageof wisdom, of wisdom, it was it thewas age the of foolishness,age of foolishness, … It was theIt was best the bestof times, of times, it was it wasthe the worst worst of times,of times, it it was the age of wisdom, it wasit was the the age age of offoolishness, foolishness, … … It was It thewas best the ofbest times, of times, it wasit was the the worst worst of times,of times, itit waswas thethe ageage ofof wisdom,wisdom, it wasit was the the age age of foolishness,of foolishness, … … It wasIt thewas best the bestof times, of times, it wasit was the the worst worst of of times, it was the age of ofwisdom, wisdom, it wasit was the the age ofage foolishness, of foolishness, … … • How can he reconstruct the text? – 5 copies x 138, 656 words / 5 words per fragment = 138k fragments – The short fragments from every copy are mixed -
BENG181/CSE 181/BIMM 181 Molecular Sequence Analysis Instructor: Pavel Pevzner
COURSE ANNOUNCEMENT FOR WINTER 2021 BENG181/CSE 181/BIMM 181 Molecular Sequence Analysis https://sites.google.com/site/ucsdcse181 Instructor: Pavel Pevzner ● phone: (858) 822-4365 ● e.mail: [email protected] ● web site: bioalgorithms.ucsd.edu Teaching Assistants: ● Andrey Bzikadze ([email protected]) ● Hsuan-lin (Charlene) Her ([email protected]) Time: 6:30-7:50 Mon/Wed, Place: online (seminar Friday 4:00-4:50 online) Zoom link for the class: https://ucsd.zoom.us/j/99782745100 Zoom link for the seminar: https://ucsd.zoom.us/j/96805484881 Office hours: PP: (Th 3-5 online), TAs (online Tue 1-2 PM and 4-5 PM or by appointment online) PP zoom link: https://ucsd.zoom.us/j/96986851791 Andrey Bzikadze zoom link: https://ucsd.zoom.us/j/94881347266 Hsuan-lin (Charlene) Her zoom link: https://ucsd.zoom.us/j/95134947264 Prerequisites: The course assumes some prior background in biology, some algorithmic culture (CSE 101 course on algorithms as a prerequisite), and some programming skills. Flipped online class. Starting in 2014, the Innovative Learning Technology Initiative (ILTI) at University of California encourages professors to transform their classes into online offerings available across various UC campuses. Dr. Pevzner is funded by the ILTI and NIH to develop new online approaches to bioinformatics education at UCSD. Since 2014, well before the COVID-19 pandemic, all lectures in this class are available online rather than presented in the classroom. Multi-university class. This class closely follows the textbook Bioinformatics Algorithms: an Active Learning Approach that has now been adopted by 140+ instructors from 40+ countries. -
New Softwares for Automated Microsatellite Marker Development
Published online February 21, 2006 Nucleic Acids Research, 2006, Vol. 34, No. 4 e31 doi:10.1093/nar/gnj030 New softwares for automated microsatellite marker development Wellington Martins, Daniel de Sousa1, Karina Proite2, Patrı´cia Guimara˜es2, Marcio Moretzsohn2 and David Bertioli3 Department of Computer Science, Catholic University of Goia´s, Brazil, 1Department of Computer Science, Catholic University of Rio de Janeiro, Brazil, 2Embrapa Genetic Resources and Biotechnology, Brası´lia, Brazil and 3Genomic Sciences and Biotechnology, Catholic University of Brası´lia, Brazil Received November 23, 2005; Revised and Accepted January 31, 2006 ABSTRACT whose unit of repetition is between 1 and 6 bp. They are highly abundant in the genomes of eukaryotes, polymorphic and Microsatellites are repeated small sequence motifs usually co-dominant and transferable between different map- that are highly polymorphic and abundant in the ping populations. Microsatellite markers can also be used in genomes of eukaryotes. Often they are the molecular automated genotyping techniques. Thus, they have become markers of choice. To aid the development of micro- one of the most useful molecular markers for a large number satellite markers we have developed a module that of organisms. integrates a program for the detection of microsatel- Researchers working on the development of microsatellite lites (TROLL), with the sequence assembly and markers need an efficient way to go from usually hundreds or analysis software, the Staden Package. The module thousands of trace and/or text sequence files to the identifi- has easily adjustable parameters for microsatellite cation of new potential markers. However, the softwares lengths and base pair quality control. -
Steven L. Salzberg
Steven L. Salzberg McKusick-Nathans Institute of Genetic Medicine Johns Hopkins School of Medicine, MRB 459, 733 North Broadway, Baltimore, MD 20742 Phone: 410-614-6112 Email: [email protected] Education Ph.D. Computer Science 1989, Harvard University, Cambridge, MA M.Phil. 1984, M.S. 1982, Computer Science, Yale University, New Haven, CT B.A. cum laude English 1980, Yale University Research Areas: Genomics, bioinformatics, gene finding, genome assembly, sequence analysis. Academic and Professional Experience 2011-present Professor, Department of Medicine and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University. Joint appointments as Professor in the Department of Biostatistics, Bloomberg School of Public Health, and in the Department of Computer Science, Whiting School of Engineering. 2012-present Director, Center for Computational Biology, Johns Hopkins University. 2005-2011 Director, Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies 2005-2011 Horvitz Professor, Department of Computer Science, University of Maryland. (On leave of absence 2011-2012.) 1997-2005 Senior Director of Bioinformatics (2000-2005), Director of Bioinformatics (1998-2000), and Investigator (1997-2005), The Institute for Genomic Research (TIGR). 1999-2006 Research Professor, Departments of Computer Science and Biology, Johns Hopkins University 1989-1999 Associate Professor (1996-1999), Assistant Professor (1989-1996), Department of Computer Science, Johns Hopkins University. On leave 1997-99. 1988-1989 Associate in Research, Graduate School of Business Administration, Harvard University. Consultant to Ford Motor Co. of Europe and to N.V. Bekaert (Kortrijk, Belgium). 1985-1987 Research Scientist and Senior Knowledge Engineer, Applied Expert Systems, Inc., Cambridge, MA. Designed expert systems for financial services companies. -
A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection
ChromatoGate: A Tool for Detecting Base Mis-Calls in Multiple Sequence Alignments by Semi-Automatic Chromatogram Inspection Nikolaos Alachiotis Emmanouella Vogiatzi∗ Scientific Computing Group Institute of Marine Biology and Genetics HITS gGmbH HCMR Heidelberg, Germany Heraklion Crete, Greece [email protected] [email protected] Pavlos Pavlidis Alexandros Stamatakis Scientific Computing Group Scientific Computing Group HITS gGmbH HITS gGmbH Heidelberg, Germany Heidelberg, Germany [email protected] [email protected] ∗ Affiliated also with the Department of Genetics and Molecular Biology of the Democritian University of Thrace at Alexandroupolis, Greece. Corresponding author: Nikolaos Alachiotis Keywords: chromatograms, software, mis-calls Abstract Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. -
Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by Pickeringhutchins Ltd
European Bioinformatics Institute EMBL-EBI Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by PickeringHutchins Ltd www.pickeringhutchins.com EMBL member states: Austria, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom. Associate member state: Australia EMBL-EBI is a part of the European Molecular Biology Laboratory (EMBL) EMBL-EBI EMBL-EBI EMBL-EBI EMBL-European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD United Kingdom Tel. +44 (0)1223 494 444, Fax +44 (0)1223 494 468 www.ebi.ac.uk EMBL Heidelberg Meyerhofstraße 1 69117 Heidelberg Germany Tel. +49 (0)6221 3870, Fax +49 (0)6221 387 8306 www.embl.org [email protected] EMBL Grenoble 6, rue Jules Horowitz, BP181 38042 Grenoble, Cedex 9 France Tel. +33 (0)476 20 7269, Fax +33 (0)476 20 2199 EMBL Hamburg c/o DESY Notkestraße 85 22603 Hamburg Germany Tel. +49 (0)4089 902 110, Fax +49 (0)4089 902 149 EMBL Monterotondo Adriano Buzzati-Traverso Campus Via Ramarini, 32 00015 Monterotondo (Rome) Italy Tel. +39 (0)6900 91402, Fax +39 (0)6900 91406 © 2012 EMBL-European Bioinformatics Institute All texts written by EBI-EMBL Group and Team Leaders. This publication was produced by the EBI’s Outreach and Training Programme. Contents Introduction Foreword 2 Major Achievements 2011 4 Services Rolf Apweiler and Ewan Birney: Protein and nucleotide data 10 Guy Cochrane: The European Nucleotide Archive 14 Paul Flicek: -
THE BIG CHALLENGES of BIG DATA As They Grapple with Increasingly Large Data Sets, Biologists and Computer Scientists Uncork New Bottlenecks
TECHNOLOGY FEATURE THE BIG CHALLENGES OF BIG DATA As they grapple with increasingly large data sets, biologists and computer scientists uncork new bottlenecks. EMBL–EBI Extremely powerful computers are needed to help biologists to handle big-data traffic jams. BY VIVIEN MARX and how the genetic make-up of different can- year, particle-collision events in CERN’s Large cers influences how cancer patients fare2. The Hadron Collider generate around 15 petabytes iologists are joining the big-data club. European Bioinformatics Institute (EBI) in of data — the equivalent of about 4 million With the advent of high-throughput Hinxton, UK, part of the European Molecular high-definition feature-length films. But the genomics, life scientists are starting to Biology Laboratory and one of the world’s larg- EBI and institutes like it face similar data- Bgrapple with massive data sets, encountering est biology-data repositories, currently stores wrangling challenges to those at CERN, says challenges with handling, processing and mov- 20 petabytes (1 petabyte is 1015 bytes) of data Ewan Birney, associate director of the EBI. He ing information that were once the domain of and back-ups about genes, proteins and small and his colleagues now regularly meet with astronomers and high-energy physicists1. molecules. Genomic data account for 2 peta- organizations such as CERN and the European With every passing year, they turn more bytes of that, a number that more than doubles Space Agency (ESA) in Paris to swap lessons often to big data to probe everything from every year3 (see ‘Data explosion’). about data storage, analysis and sharing. -
UNIVERSITY of CALIFORNIA RIVERSIDE RNA-Seq
UNIVERSITY OF CALIFORNIA RIVERSIDE RNA-Seq Based Transcriptome Assembly: Sparsity, Bias Correction and Multiple Sample Comparison A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Wei Li September 2012 Dissertation Committee: Dr. Tao Jiang , Chairperson Dr. Stefano Lonardi Dr. Marek Chrobak Dr. Thomas Girke Copyright by Wei Li 2012 The Dissertation of Wei Li is approved: Committee Chairperson University of California, Riverside Acknowledgments The completion of this dissertation would have been impossible without help from many people. First and foremost, I would like to thank my advisor, Dr. Tao Jiang, for his guidance and supervision during the four years of my Ph.D. He offered invaluable advice and support on almost every aspect of my study and research in UCR. He gave me the freedom in choosing a research problem I’m interested in, helped me do research and write high quality papers, Not only a great academic advisor, he is also a sincere and true friend of mine. I am always feeling appreciated and fortunate to be one of his students. Many thanks to all committee members of my dissertation: Dr. Stefano Lonardi, Dr. Marek Chrobak, and Dr. Thomas Girke. I will be greatly appreciated by the advice they offered on the dissertation. I would also like to thank Jianxing Feng, Prof. James Borneman and Paul Ruegger for their collaboration in publishing several papers. Thanks to the support from Vivien Chan, Jianjun Yu and other bioinformatics group members during my internship in the Novartis Institutes for Biomedical Research.